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Abstract: Cardiovascular disease (CVD), which seriously threatens human health, can be prevented
by blood pressure (BP) measurement. However, convenient and accurate BP measurement is a vital
problem. Although the easily-collected pulse wave (PW)-based methods make it possible to monitor
BP at all times and places, the current methods still require professional knowledge to process the
medical data. In this paper, we combine the advantages of Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) networks, to propose a CNN-LSTM BP prediction method
based on PW data. In detailed, CNN first extract features from PW data, and then the features are
input into LSTM for further training. The numerical results based on real-life data sets show that the
proposed method can achieve high predicted accuracy of BP while saving training time. As a result,
CNN-LSTM can achieve convenient BP monitoring in daily health.

Keywords: blood pressure prediction; pulse wave; Long Short-Term Memory Networks; Convolu-
tional Neural Networks

1. Introduction

Nowadays, work pressures and fast-paced lifestyles produce various health problems
for most people, especially cardiovascular disease (CVD), which causes great damage to
the human heart and brain [1]. Once CVD occurs, there is a high probability of severe
cerebral hemorrhage or ischemia, which then seriously threatens the health of patients.
The World Health Organization (WHO) considers CVD the primary cause of death all over
the world, as it accounted for 31% of the global deaths reported in 2018 [2]. Blood pressure
(BP), as one of the main characteristics of the cardiovascular system, is the main basis for
clinical diagnosis and treatment. Controlling BP within a reasonable range is the primary
goal in daily health [3,4]. Therefore, how to measure BP and predict the trend of BP values
effectively has become a key point in preventing CVD [5].

BP measurement methods can be divided into two types: the invasive method and non-
invasive method [6]. The invasive method refers to the arterial puncture method, which
punctures or cuts the blood vessel and then puts the high-precision sensor of the measuring
devices directly into the blood vessel [7,8]. Although the invasive method is the most
accurate, it requires high professional skills and is not suitable for daily health monitoring.
Non-invasive methods use various sensing technologies and signal processing methods
to measure blood pressure indirectly, including the auscultatory method [9], oscillometric
method [10], and pulse wave based method [11,12]. Among them, the pulse wave based
method has attracted a wide range of research interests, due to its easy collection and
accurate measurement results.

The pulse wave (PW), the regular pulsation of the arteries, is the cyclical change
in the pressure caused by the contraction and relaxation of the ventricles [13]. Thanks
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to the PW signal containing important information, such as blood pressure and blood
oxygen, some studies have already focused on BP measurement based on PW. In 1984,
Tanaka et al. [14] proposed that BP could be measured by pulse wave velocity (PWV) for
the first time. The PWV refers to the propagation speed of pulse waves along the arterial
vessel wall, which is affected by such factors as the elasticity and thickness of the vessel
wall. Furthermore, PWV can be calculated by the pulse wave transmit time (PWTT) and
has a positive correlation with BP. As a result, Wibmer et al. [15] used PWTT to indirectly
calculate the BP value. However, current PWTT methods based on wearable devices still
lack clinical accuracy. Thus, a novel non-invasive BP monitoring method called CNAP2GO
was proposed in [16], which has become a breakthrough for wearable sensors for BP
monitoring in clinical settings. The characteristics can be extracted from the PW, and then
models can be established based on the correlation between the characteristics and BP for
dynamic BP measurement [17–19].

However, the PW data need to be pre-processed for current BP measurement methods,
which is cumbersome and requires medical knowledge. Owing to the rapid development
of artificial intelligence (AI), machine learning has become a potential solution for BP
measurement and prediction, but the features still need to be manually extracted before
inputting them into the neural network. Therefore, we consider introducing Convolutional
Neural Networks (CNN) for features extraction. Generally, CNN can be used in the
field of pattern recognition [20,21], natural language processing [22,23] and computer
vision [24,25]. Furthermore, taking into account that PW is a time sequence, we can
introduce the Long Short-Term Memory (LSTM) network to further process the features.
LSTM is a specific type of Recurrent Neural Network (RNN), and has the ability to avoid
the exploding gradient problem and the vanishing gradient problem in processing long
sequences [26,27]. LSTM is widely used in the field of speech recognition [28,29] and time
sequence forecasting [30,31]. Nowadays, some researchers combine the advantages of CNN
and LSTM to design models for sentiment analysis [32], time sequences forecasting [33] and
other fields. In particular, several kinds of CNN-LSTM methods are used for BP estimation
based on electrocardiograms (ECGs) and photoplethysmography (PPG) [34,35], but these
methods are still not convenient enough for BP monitoring. In this paper, we focus on
designing CNN-LSTM methods for BP prediction based on PW directly. Our contributions
are as follows:

1. We introduce the state-of-art LSTM networks to predict blood pressure based on
easy-to-collect pulse wave data so as to realize fast and convenient blood pressure
monitoring;

2. In order to avoid complicated processing of pulse wave data, we further use CNN to
extract features from pulse wave before inputting to LSTM to achieve direct blood
pressure prediction;

3. We carry out experiments on real-life data sets and set two groups of benchmarks,
where Group 1 only uses neural networks without CNN and Group 2 uses CNN
to extract features first. The numerical results show that the proposed method can
improve the predicted accuracy by up to 30.41% while saving training time.

The remainder of this paper is organized as follows. In Section 2, we introduce the
related work about BP estimation and prediction. Section 3 describes the BP prediction
problem based on PW data. Then CNN-LSTM prediction method is proposed in Section 4.
We then show the numerical result and analyze the performance in Section 5. Finally, we
make brief conclusions and look forward to future work in Section 6.

2. Related Work

Artificial intelligence (AI) has been used for BP measurement and prediction without
professional medical skills. Zhang et al. [36] used the Genetic Algorithm-Back Propa-
gation Neural Network to estimate BP after extracting 13 parameters from PPG signals.
Chen et al. [37] proposed a continuous BP measurement method based on the K-nearest-
neighbor (KNN) algorithm. The experimental results on the MIMIC II data set achieved
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a root mean square error of 2.47 mmHg. In Reference [38], the authors set up a support
vector machine regression model and random forest regression model for BP prediction,
and the average absolute error was less than 5 mmHg. It is worth noting that all of the
above methods require data pre-processing.

In recent years, CNN has also been applied to BP estimation and BP risk level predic-
tion. In Reference [39], the authors used CNN to generate features from PW automatically
to estimate BP from PPG, and achieve better accuracy than the conventional method.
Sun et al. [40] adopted a new kind of CNN based on Hilbert–Huang Transform (HHT) to
predict blood pressure (BP) risk level from PPG. However, they did not make predictions
about BP values. Generally speaking, CNN is rarely used in the field of BP measurement,
but some researchers use CNN for features extraction of medical images.

Because of the advantages of LSTM for long sequences, it has been applied to BP
estimation. Zhao et al. [41] utilized the efficient processing characteristics of LSTM for time
series to predict the systolic and diastolic BP. However, the LSTM model is used to predict
BP for adult goats, which cannot be applied to human. In Reference [42], the authors used
LSTM for BP estimation. However, they designed a two-stage zero-order holding (TZH)
algorithm to process the BP data before LSTM networks. Tanveer et al. [43] proposed a
hierarchical Artificial Neural Network-Long Short Term Memory (ANN-LSTM) model
for BP estimation, where ANNs layers were used to extract features from ECG and PPG
waveforms, and LSTM layers were used to account for the time domain variation of the
features. The mean absolute error (MAE) of systolic and diastolic blood pressure were 1.10
and 0.58 mmHg. Furthermore, Eom et al. proposed an end-to-end CNN-RNN architecture
using raw signals (ECG, PPG, etc.) without the process of extracting features; the MAE
values were 4.06 and 3.33 mmHg for systolic and diastolic BP [35].

However, current BP estimation methods have strong dependence on ECG and PPG,
which cannot be applied to convenient BP estimation. Therefore, we introduce CNN-LSTM
networks to predict BP based on easy-to-collect PW data.

3. Problem Description

In our work, the PW and the BP data are obtained from the Multi-parameter Intelligent
Monitoring in Intensive Care (MIMIC) data set [44], which can be downloaded freely from
PhysioBank (https://archive.physionet.org/cgi-bin/atm/ATM, accessed on 12 July 2021).
The MIMIC data set collects physiological data of over 90 patients in the intensive care unit
(ICU), and the patient is denoted by u, where u ∈ U = {1, . . . , U}. The sampling frequency
of the data is 500 Hz, and thus we denote time as time slots, i.e., t ∈ T = {1, . . . , T}.

The PW data are obtained via fingertip pulse oximeter, and the unit is millivolt
(mV). The PW data of patient u can be denoted by Pu = {p1

u, p2
u, . . . , pt

u, . . . , pT
u}. The BP

data used in this paper are the arterial blood pressure (ABP), which is obtained by the
invasive method, and the unit is millimeter of mercury (mmHg), which is denoted by
Bu = {b1

u, b2
u, . . . , bt

u, . . . , bT
u }. When making BP predictions of u for time slot t + 1 in time

slot t, we use nw time slots PW data, i.e., (pt−nw+1
u , pt−nw+2

u , · · · , pt−1
u , pt

u), to predict bt+1
u .

The BP prediction can described as a stochastic process, which is shown as follows:

bt+1
u = f (pt−nw+1

u , pt−nw+2
u , · · · , pt−1

u , pt
u, εt, θ), (1)

where f is a non-linear and complicated function. εt is the white noise and θ is the
parameter set. In other words, bt+1

u is obtained from the mapping of time sequence
(pt−nw+1

u , pt−nw+2
u , · · · , pt−1

u , pt
u). The white noise εt obeys a normal distribution with a

mean of zero and the standard deviation of σ, i.e., εt ∼ N(0, σ2).
In general, the function f is difficult to obtain by traditional methods. Therefore, we

introduce neural networks to obtain the approximate function f̂ , which is shown as follows:

b̂t+1
u = f̂ (pt−nw+1

u , pt−nw+2
u , · · · , pt−1

u , pt
u, εt, θ). (2)

https://archive.physionet.org/cgi-bin/atm/ATM 


Electronics 2021, 10, 1664 4 of 15

In order to evaluate the performance of the approximate function f̂ , a function is
constructed as follows:

g(θ) = ∑
t∈testset

(bt+1
u − b̂t+1

u )2, (3)

where testset denotes the test set for the training of neural networks. Obviously, the smaller
the g(θ), the better the performance of f̂ . Therefore, the aim of training neural networks is
to minimize g(θ) and find the optimal θ̂:

θ̂ = arg min
θ

g(θ). (4)

During the training process, b̂t+1
u is obtained based on feedforward propagation, and

the neural networks update the weight parameters according to the gradient based on back
propagation. By repeating this process, the weight parameters are continuously updated
until the error of the loss function meets the precision requirement, which means that the
approximate function f̂ is fitted [31].

4. Proposed CNN-LSTM Prediction Method

In this section, we first introduce Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) Networks. Next, the proposed prediction method, which is
based on CNN and LSTM, is described.

4.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a kind of feedforward neural network.
In this work, we mainly consider the convolutional layer and pooling layer of CNN.

Convolutional Layer. In CNN, convolution is the most fundamental operation. Ba-
sically, the filter can be seen as the neuron of this layer, which has a weighted input and
produces an output value. The essence of convolution is 2-D spatial filtering; filters can
only slide on the x-axis and y-axis to extract features. The number of filters and their kernel
size need to be carefully determined to form feature maps.

Pooling Layer. There are still too many parameters in feature maps after the convo-
lutional layer; thus, the pooling layer is used for subsampling. On the one hand, pooling
makes the feature maps smaller to reduce complexity, and on the other hand, it extracts
important features. The general idea of pooling is to create a new feature map by taking
the maximum or average value, i.e., max pooling and average pooling, respectively [22].

In summary, we can take advantage of CNN to extract the features of the input data
for obtaining better models.

4.2. Long Short-Term Memory Networks

In a traditional neural networks model, it is fully connected between each layers but
it is disconnected between the nodes in each layer [45]. As a result, it is inefficient for
handling sequence problems. As mentioned above, the PW and BP data are both a time
sequence. Accordingly, Recurrent Neural Networks (RNN) can be used for prediction. The
nodes in the hidden layer of RNN are connected, which is different from traditional neural
networks. What is more, the input of the hidden layer includes not only the output of the
input layer, but also the output of the hidden layer of the previous time slot. The recurrent
connections of RNN can add feedback and memory to the network over time. In summary,
RNN has a strong learning ability and input generalization ability for sequence problems.

However, when back-propagation is used in a very deep RNN, the gradient of the
neural network may become unstable, which will cause the exploding gradient problem
or vanishing gradient problem [46], hence making the generated model unreliable. These
problems can be solved by Long Short-Term Memory (LSTM) networks. As a variant of
RNN, LSTM is composed of memory units and several gates. In Figure 1, we describe the
structure of the LSTM unit.
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Figure 1. The structure of LSTM unit [27].

In time slot t, we presume that the input and the output are xt and ht, respectively.
There are three gates in each unit, called input gate i, forget gate f and output o. The values
of the three gates are calculated as follows:

ft = σ(W f · [ht−1, xt] + b f ), (5)

it = σ(Wi · [ht−1, xt] + bi), (6)

ot = σ(Wo · [ht−1, xt] + bo), (7)

where W f , Wi, Wo, b f , bi, bo are the correlative weight matrices and variable biases.
Then, the process of information updating in LSTM unit is as follows. In time slot t,

the forget gate decides which part of Ct−1 to drop, according to ft · Ct−1. The input gate
decides what information to store in the unit, according to it · C̃t, and C̃t is calculated as
follows:

C̃t = tanh(Wc · [ht−1, xt] + bc), (8)

where Wc and bc are the weight matrix and variable bias of the memory unit. In this way,
the current unit is updated as follows:

Ct = ft · Ct−1 + it · C̃t, (9)

in addition, the output data are calculated by the following:

ht = ot · tanh(Ct), (10)

after that, ht and Ct pass to the next cell in the next time slot. In conclusion, each unit works
like a state machine in which three gates have their own weights, so that LSTM can deal
with sequence problems better.

4.3. CNN-LSTM Prediction Method

As mentioned above, we use a hybrid model that consists of CNN and LSTM to
predict BP values based on PW data. After the PW data are input, the features extraction is
performed by CNN first. Then, the features are input into LSTM for further training. The
topology of proposed model is shown in Figure 2.
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LSTM

（50 units）

Input

Pooling Layer

(Pool size is 2)

LSTM

（50 units）

Dense

（1 neuron）

Output

Convolution Layer

Figure 2. The topology of the CNN-LSTM model.

In order to improve the accuracy of the BP prediction, we use the PW data of multiple
recent time slots to predict the BP values of the next time slot, which is called the windows
prediction method. As a result, we need to correlate the input data and output data to
generate a data set for training and validation.

Subsequently, we use zero-mean (z-score) normalization to standardize the PW and
BP data. Assume that the data are denoted by X = {x1, x2, . . . , xt, . . . , xT}, for each input
data xt. The idea of z-score normalization is shown in Equation (11):

zt =
xt − xt

mean
xt

std
, (11)

where xt
mean is the mean value of X and xt

std are the standard deviation of X . The mean of
the processed data is 0, and the standard deviation is 1.

Notice that there are nw data in the input of the model, which will increase the
complexity of the model. Furthermore, as nw boosts, the features in the input become
sparse and difficult to extract. Hence, we use CNN to extract features from the PW data. In
detailed, a convolutional layer with 32 filters and a kernel size of 3 is added, followed by a
pooling layer with a pool size of 2 for further subsampling, which adopts the max pooling.
At this point, the input features are successfully extracted and are more streamlined than
the original input data.

Then, the features are passed to two LSTM hidden layers for further training, and
each hidden layer has 50 units. Since the BP prediction problem is a regression problem,
we use the dense layer (i.e., fully connected layer) with one neuron to receive the tensor
from the LSTM hidden layer and output the BP value. Finally, the output is the predicted
BP values. As a result, the proposed method is more efficient for the prediction of BP, due
to the combination of the feature extraction capability of CNN with the advantage of LSTM
for the time sequence.

5. Numerical Results and Performance Analysis

In this section, we evaluate the performance of proposed CNN-LSTM prediction
method via numerical results.

5.1. Benchmarks and Parameter Settings

As mentioned above, the PW and BP data used in this work come from the Multi-
parameter Intelligent Monitoring in Intensive Care (MIMIC) data set, which collects phys-
iological data of over 90 patients in ICU. The sampling frequency of the data is 500 Hz.
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As shown in Table 1, the PW data (PLETH) are obtained by fingertip pulse oximeter, and
the unit is millivolt (mV). The BP data used in this paper are the arterial blood pressure
(ABP), and the unit is millimeter of mercury (mmHg). MIMIC also includes ECG (III) and
respiration (RESP) data, which are not used in our work. We selected the first three patients
(their numbers in the data set are 39, 41, 55) in the MIMIC data set in our work, and the
length of the data of each patient is 30,000 time slots (10 min in total).

Table 1. Data samples of the MIMIC data set.

Time and Data III (mV) ABP (mmHg) PLETH (mV) RESP (mV)

01:29:37.000 22/10/1994 −0.029 77.95 0.443 −0.464
01:29:37.002 22/10/1994 −0.032 77.95 0.443 −0.464
01:29:37.004 22/10/1994 −0.034 77.95 0.443 −0.464
01:29:37.006 22/10/1994 −0.036 77.95 0.443 −0.464
01:29:37.008 22/10/1994 −0.037 75.55 0.38 −0.467

... ... ... ... ...

In order to evaluate the performance of the proposed prediction method, we set the
following five benchmarks, which is shown in Table 2. Obviously, the proposed method
and benchmarks can be classified into two groups. Group 1 contains MLP, RNN, and LSTM,
which only uses neural networks for prediction. Group 2 contains CNN-MLP (i.e., the
classic CNN network.), CNN-RNN, and CNN-LSTM, which uses CNN to extract features
first. We use group 1 to figure out the most suitable neural networks for sequence problems,
and group 2 shows the effect of CNN on the prediction accuracy.

Table 2. Proposed prediction method and the setup of benchmarks.

Proposed Prediction Method and Benchmarks

Group 1

MLP Only use multi-layer perceptron (MLP) for prediction.
RNN Only use recurrent neural networks (RNN) for prediction.
LSTM Only use LSTM for prediction.

Group 2

CNN-MLP Combine CNN with MLP for prediction.
CNN-RNN Combine CNN with RNN for prediction.
CNN-LSTM Combine CNN with LSTM for prediction.

For parameters settings of the neural networks, we set the number of input layer
nodes to be related to the window length nw. There is one hidden layer of each method,
and the number of units of the hidden layers are all set to 50. The training epoch is set
to 100. PW and BP data are divided into the training set and validation set, according
to the order of the time series. The training set and validation set account for 70% and
30%, respectively.

5.2. Results and Analysis

In order to evaluate the performance of the proposed prediction method, we introduce
three evaluation indexes, including the mean absolute error (MAE), the mean absolute
percent error (MAPE), and the root mean square error (RMSE). The definitions of the three
evaluation indexes are as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (12)

MAPE =
100%

n

n

∑
i=1
| ŷi − yi

yi
|, (13)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)2, (14)



Electronics 2021, 10, 1664 8 of 15

where ŷi is the prediction values, and yi is the real values, respectively.
We make a decimation of the original and the predicted data with the decimation

factor of 200 in order to show the predicted performance more clearly, which is shown in
Figures 3–5. What is more, the average predicted performance of all methods is shown
in Table 3, and the evaluation indexes of all methods are shown in Tables 4–6. In general,
the predicted BP values of all methods fit the original values of data set very well, and
the evaluation is also acceptable as compared to the current methods, which proves the
effectiveness of BP prediction based on PW data. Obviously, our proposed CNN-LSTM
prediction method has the best performance among all methods, and there are some results
worth noting.

Table 3. Average predicted performance of patients.

Methods MAE (mmHg) MAPE (%) RMSE (mmHg) Training Time (s)

MLP
Train 4.61 5.76 6.43

120.92Val 5.66 6.77 7.62

RNN
Train 3.54 4.43 5.34

331.57Val 4.90 5.88 6.80

LSTM
Train 3.20 4.01 4.96

632.15Val 4.67 5.66 6.58

CNN-MLP
Train 5.00 6.34 6.73

142.87Val 5.65 6.68 7.50

CNN-RNN
Train 3.20 4.03 4.67

1006.11Val 4.78 5.80 6.37

CNN-LSTM
Train 2.37 3.04 3.53

337.15Val 4.42 5.43 6.01

As shown in Figure 3, group 1 shows that, without the help of CNN, LSTM has the
best predictive performance of all evaluation indexes, while it requires the longest training
time. Compared with MLP, LSTM can improve the training set MAE of three patients
to 32.75%, 23.79% and 49.71%, and can improve the validation set to 29.63%, 3.78% and
51.67%. The training time of LSTM is more than 5 times that of MLP. That is because LSTM
has a strong ability to deal with time sequences, but the network structure of LSTM is more
complicated than that of MLP.

When we focus on group 2 in Figure 4, CNN-LSTM still has the best performance
compared to other CNN-assisted methods. Compared with CNN-RNN, CNN-LSTM can
improve the training set MAE to 21.27%, 28.66% and 35%, and can improve the validation
set to 12.93%, 11.77% and 26.72%. Interestingly, the training time required for CNN-LSTM
is lower than that of CNN-RNN by 65.85%, 65.15% and 67.98%, respectively. The reason for
the long training time of CNN-RNN is the deterioration in learning speed, which is caused
by the unstable gradient problem, that is, the exploding gradient or vanishing gradient
problem mentioned above.

When comparing the indexes between group 1 and group 2 in Figure 5, we can clearly
find that combining neural networks with CNN can effectively improve the prediction
performance. Remember that we set the window length nw to 20, i.e., the PW data of 20 time
slots (40 ms) are entered into the network. The data are also spares, while containing useful
information. Therefore, the filters in the convolution layer first extract features from
the input data. Then, the pooling layer further subsamples the features before entering
into the LSTM layers. As a result, LSTM accounts for the time correlation of the feature,
which is better than directly considering the time correlation in the input data. That is
because the information in the features is more concise and effective than the original input
data. Specifically, compared with LSTM, CNN-LSTM can improve the training set MAE
of three patients to 25.39%, 30.41% and 10.34%, respectively. For the validation set, the
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improvements of MAE are 14.59%, 10.49% and 2.30%. Additionally, the proposed method
is a kind of end-to-end network and does not need to be trained separately. Effective
feature extraction reduces the training time of the three patients, compared to LSTM, to
48.02%, 45.36% and 47.56%. The numerical results prove the effectiveness of the proposed
CNN-LSTM prediction method.

However, combining CNN with neural networks, especially MLP and RNN, does not
necessarily improve the predicted performance. In Table 5, the performance of CNN-MLP
on the training set is worse than MLP. Combining CNN with MLP is equivalent to classic
Convolutional Neural Networks, which is usually used for image recognition rather than
data prediction. In other words, the features extracted by CNN cannot be well learned
by following MLP. In Table 6, CNN-RNN has worse performance than RNN in both the
training set and validation set, which is caused by unstable gradient problem. These results
confirm the correctness and effectiveness of the proposed CNN-LSTM method once again.

Table 4. Predicted performance of patient 39.

Methods MAE (mmHg) MAPE (%) RMSE (mmHg) Training Time (s)

MLP
Train 5.68 6.46 8.12

115.36Val 5.94 6.61 8.58

RNN
Train 4.27 4.76 7.02

321.87Val 4.54 4.95 7.44

LSTM
Train 3.82 4.30 6.49

648.72Val 4.18 4.60 6.96

CNN-MLP
Train 6.51 7.45 8.89

136.92Val 6.64 7.41 9.11

CNN-RNN
Train 3.62 4.11 5.58

1016.40Val 4.10 4.53 6.33

CNN-LSTM
Train 2.85 3.26 4.62

347.08Val 3.57 3.98 6.10

Table 5. Predicted performance of patient 41.

Methods MAE (mmHg) MAPE (%) RMSE (mmHg) Training time (s)

MLP
Train 6.43 8.91 8.88

117.94Val 9.25 11.69 11.93

RNN
Train 5.32 7.37 7.68

341.55Val 9.10 11.47 11.52

LSTM
Train 4.90 6.73 7.20

600.85Val 8.96 11.39 11.53

CNN-MLP
Train 7.00 9.85 9.38

147.11Val 8.76 10.85 11.46

CNN-RNN
Train 4.78 6.62 6.70

942.44Val 9.09 11.56 11.01

CNN-LSTM
Train 3.41 4.86 4.72

328.31Val 8.02 10.24 10.05
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Figure 3. Prediction results of group 1: MLP, RNN, and LSTM.
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Figure 4. Prediction results of Group 2: CNN-MLP, CNN-RNN, and CNN-LSTM.



Electronics 2021, 10, 1664 12 of 15

0 50 100 150

Time slot

60

70

80

90

100

110

120

130

140

A
rt

er
ia

l 
b

lo
o

d
 p

re
ss

u
re

 (
m

m
H

G
)

Dataset

LSTM

CNN-LSTM

(a) Patient 39.

0 50 100 150

Time slot

40

50

60

70

80

90

100

110

120

130

A
rt

er
ia

l 
b
lo

o
d
 p

re
ss

u
re

 (
m

m
H

G
)

Dataset

LSTM

CNN-LSTM

(b) Patient 41.

0 50 100 150

Time slot

75

80

85

90

95

100

105

110

115

120

A
rt

er
ia

l 
b
lo

o
d
 p

re
ss

u
re

 (
m

m
H

G
)

Dataset

LSTM

CNN-LSTM

(c) Patient 55.

Figure 5. Prediction results of LSTM and CNN-LSTM.
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Table 6. Predicted performance of patient 55.

Methods MAE (mmHg) MAPE (%) RMSE (mmHg) Training Time (s)

MLP
Train 1.73 1,90 2.29

129.46Val 1.80 2.00 2.34

RNN
Train 1.02 1.15 1.32

331.29Val 1.06 1.21 1.43

LSTM
Train 0.87 0.99 1.20

646.88Val 0.87 0.99 1.26

CNN-MLP
Train 1.50 1.71 1.91

144.58Val 1.54 1.77 1.93

CNN-RNN
Train 1.20 1.35 1.73

1059.49Val 1.16 1.31 1.78

CNN-LSTM
Train 0.78 0.89 1.05

339.25Val 0.85 0.97 1.23

6. Conclusions and Discussion

In this paper, we have proposed a novel CNN-LSTM predicted model of blood pres-
sure (BP) based on pulse wave (PW) data. In the CNN-LSTM model, a convolutional layer
and a pooling layer are used to extract features from PW data. Then two LSTM hidden
layers are used for further training. We set two groups of benchmarks. The experiment
results based on the MIMIC data set show that the proposed method is close to or better
than the existing BP estimation methods. In particular, the proposed method can signifi-
cantly improve the predicted accuracy by up to 30.41% while saving training time, due to
combining the advantages of CNN and LSTM.

However, we need to train multiple models to perform BP prediction on different
patients in our current work, which cannot be widely used for a large number of patients.
In the future, we will consider introducing the state-of-art technologies in the area of
AI, e.g., transfer learning, to improve the generalization ability of the model. According
to place the generalized model in portable devices which can receive PW data from the
fingertip pulse oximeter, we can provide convenient and real-time BP monitoring for a
wider range of people.
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