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Abstract: Nonintrusive load monitoring (NILM) analyzes only the main circuit load information
with an algorithm to decompose the load, which is an important way to help reduce energy usage.
Recent research shows that deep learning has become popular for this problem. However, the ability
of a neural network to extract load features depends on its structure. Therefore, more research is
required to determine the best network architecture. This study proposed two deep neural networks
based on the attention mechanism to improve the current sequence to point (s2p) learning model.
The first model employs Bahdanau style attention and RNN layers, and the second model replaces
the RNN layer with a self-attention layer. The two models are both based on a time embedding
layer. Therefore, they can be better applied in NILM. To verify the effectiveness of the algorithms, we
selected two open datasets and compared them with the original s2p model. The results show that
attention mechanisms can effectively improve the model’s performance.

Keywords: nonintrusive load decomposition; deep learning; attention mechanism

1. Introduction

Nonintrusive load monitoring (NILM) is the decomposition of the status and power
consumption of individual appliances according to the overall load information at the
user’s power supply entrance. The concept was first proposed by G. W. Hart in the 1980s [1].
NILM is of great value to power suppliers, intermediaries, and end users. With the rapid
development of smart grids and smart homes, many new opportunities have arisen for
achieving efficient energy utilization through big data and two-way controllable appliances.
In traditional load decomposition methods, appliances are identified by analyzing the
signal characteristics of the voltage and current, which are also referred to as the load
signatures. Based on the load signatures of the appliances, load decomposition can be
realized through load identification algorithms [2–5]. According to the working conditions
of appliances, load signatures can be divided into three types: steady-state, transient state,
and operating state. The various characteristics of load signatures repeatedly appear over
time. The periodic pattern is used to identify the load type [6]. A typical load decomposition
process includes five steps: data measurement, data processing, event detection, feature
extraction, and load identification [7]. By comparing the load features of an event with data
from the appliance load characteristics database, the appliances can be identified. Currently,
there are two main methods for the construction of a load characteristics database [8]. The
first is to record the load characteristics of each appliance manually, and the other is
completed via an automatic classification algorithm. The remarkable achievements of deep
learning technology in image recognition and speech recognition have inspired researchers
to apply this approach to load decomposition [9,10].

According to the acquisition frequency, data in NILM studies can be divided into
high-frequency (less than 1 s) and low-frequency (a few seconds to a few hours) data.
The sampling period of 1 s can be used as the threshold to distinguished the macroscopic
and microscopic characteristics [10]. High-frequency data preserve the entire signals and
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therefore allow us to extract the maximum information content. Nevertheless, the cost of
gathering high frequency data constitutes a major obstacle. On the other hand, the loss
in information intrinsic in low frequency features is offset by the tremendous ease with
which those data can be collected [11]. Roll-out smart meters [12] can export low frequency
data to the outside, which can be tackled using low frequency approaches. Therefore, low
frequency data will most likely be the only one available at scale in the near future [11].
According to Pereira et al. [13], NILM can be divided into two categories based on different
task purposes: event detection (ED) and energy estimation (EE). ED mainly predicts the
switch state of appliances, and EE mainly predicts the power consumption. NILM methods
based on ED are referred to as event-based solutions [9], which detect the turning-on
of a target appliance by processing the measured active power transient response and
can estimate its consumption in real-time [14]. In contrast, the methods directly perform
energy decomposition without ED are thus referred to as event-free. The event-based
methods depend on precise event characteristics; therefore, these methods are appropriate
for high-frequency data. In addition, the event-free methods without identifying the state
of appliances are more suitable for low-frequency data.

Kelly et al. [15], proposed three deep neural network architectures for NILM: long
short-term memory (LSTM), denoising autoencoders (DA), and rectangles, which were
verified using the open dataset UK-DALE [16]. Recent studies have proved that Convolu-
tional Neural Network (CNN) can also accomplish the NILM task [17], and it can be used
together with the LSTM network [18]. The results showed that the deep neural network
model was superior to the traditional combinatorial optimization (CO) and factorial hidden
Markov model (FHMM) model. However, LSTM cannot learn from equipment with long
power changing intervals, leading to a vanishing gradient [19,20]. Sequence-to-sequence
(s2s) is a general end-to-end training method that can map sequences to sequences, first
proposed to tackle text translation problems [21]. This model used the LSTM network as
an encoder to compress the input sentence into a fixed-length context vector. The context
vector information was then decoded with the encoder to generate the output sentence.
This model significantly improved translation accuracy. Kelly et al. [15] showed that the
s2s model could effectively identify the target appliances from the overall load power
signal. Xia [22] proposed an improved s2s model that reduced the difficulty of learning
long time-series data by increasing the receptive field and capturing more data through a
dilated convolution network.

The sliding window method is usually applied to the s2s model to produce the input
and output sequences. Sequence to point (s2p) different from the s2s means the network
map from an input sequence to a single output value. It is only used if the output of
the network is active power or the on/off state of an appliance [11]. Zhang et al. [23]
proposed an s2p model, in which the input is the window of the main power signal and
the output is a single point of the target appliance. If

[
X(t) ∼ X(t+w−1)

]
represents the

input window sequence of the model at time t, then the s2p model can only predict the
output at time t + (w/2), which allows the neural network to focus on the midpoint of the
window while fully utilizing the information of the front and rear adjacent areas, thereby
improving the prediction accuracy. Jia [24] proposes an s2p learning framework based
on bidirectional (non-casual) dilated convolution for NILM. Sudoso [25] proposes a deep
neural network that combines a regression subnetwork with a classification subnetwork
to solve the NILM problem. The proposed model employs s2s with a tailored attention
mechanism in the regression subnetwork to detect and assign more importance to the
turning on-off events, whereas the classification subnetwork helps the disaggregation
process by enforcing explicitly the on/off states. It is essentially an ED solution for NILM.
Both experiment results show outperforms s2p (Zhang), but they do not publish their
codes. In this study, we propose two s2p models based on the attention mechanism for
EE. The one employs the Bahdanau style attention mechanism to improve a conventional
s2p model, including two recurrent neural network (RNN) units as encoder and decoder.
The other replaces the RNN layer with the self-attention layer to shorten training time and
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improve prediction accuracy. Experiments on the public datasets show that the proposed
model performs better at NILM than existing s2p models. In addition, we also compared
the s2s and s2p learning methods based on the model structure proposed in this paper. The
results show that s2p is more suitable for solving the NILM problem.

2. Deep Neural Network Based on the Attention Mechanism
2.1. Attention Mechanism

The attention mechanism is also referred to as the attention model and is similar to
the way the human brain automatically ignores unimportant information, focusing on
important information. The core idea is to calculate and distribute the attention weight,
and the focus is placed on important content by increasing its weight. This addresses the
problem of the s2s model losing information when the input sequence is too long. Taking
a typical machine translation scenario as an example, the s2s model only uses the final
hidden state of the input sentence to calculate the context vector, while the attention model
calculates the individual context vector for each word of the input sentence, and therefore,
more information is retained for the decoder. Bahdanau et al. [26] solved the problem of the
input sentence being compressed into a fixed context vector in the s2s model by allowing
the model to automatically (soft) search for the part of the original sentence related to the
predicted target word to translate (prediction), implementing a variable context vector, and
proposing the first attention mechanism. The encoder of the new architecture calculated
the context vector relative to each word, while the attention layer converted the context
vector into weights and performed pointwise multiplication to obtain a new context vector
to send to the decoder. The input of the decoder consisted of two parts: the hidden state
of the previous moment and the context vector of the dynamic calculation. Moreover, a
bidirectional RNN was used as the encoder of the s2s model, which exhibited relatively
good performance in extracting contextual information. Figure 1 describes the working
principle of the Bahdanau attention mechanism.
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Figure 1. Bahdanau attention mechanism.

The output at time i is presented by yi = g(yi−1, si, ci), where si is the hidden state of
decoder, computed by si = f (si−1, yi−1, ci). The context vector ci which is the weighted
summation of the attention weight aij and the hidden state hj of the encoder, as shown in
Formula (1). The attention weight aij is calculated as shown in Formula (2) and represents
the correlation between the j-th position of the input sequence and the i-th position of the
output sequence. eij is referred to as the attention score, which is based on the hidden
state si−1 of the decoder and the j-th annotation hj of the input sequence as shown in
Formula (3), where v, W1 and W2 are the parameter matrices, which are determined via
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model training.The method using the previous hidden state of the decoder to compute
attention score is called Bahdanau style. In this study, we employ the Bahdanau attention
mechanism to improve the s2p learning model.

ci =
Tx

∑
j=1

aijhj (1)

αij =
exp
(
eij
)

∑Tx
k=1 exp(eik)

(2)

eij = v>tanh
(
W1si−1 + W2hj

)
(3)

The output from the attention layer contains the information required at the source
when forecasting the output. By contrast, self-attention proposed by [27], captures the
internal dependency relationship between the sequence elements at the source and the
internal dependency relationship between sequence elements at the target separately.
Therefore, self-attention is more effective than conventional attention, which neglects the
dependency relationship between the source or target elements. The working principle of
self-attention is shown in Figure 2. First, q, k, and v are obtained by linearly transforming
the input sequence x, and the attention score of x is obtained as the dot product of q and
KT . In particular, K denotes a matrix composed of k1 to km, as shown by the green solid
line. The attention weight α obtained by the softmax operation of attention score shows the
internal dependency relationship of the input sequence. The matrix c obtained from the
dot product of α and V is the context vector, whereas V denotes a matrix composed of v1 to
vm, as shown by the blue dot line. The details of computation are provided in Formula (4).
Moreover, as can be seen from Figure 2, the self-attention layer has the same input and
output as an RNN layer and can therefore replace the RNN layer.

q = WQx; k = Wkx; v = Wvx
α = so f tmax

(
KTq

)
c = Vα

(4)
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2.2. s2p Model Based on the Attention Mechanism

Depending on the length of the input and output sequences, the s2s model has three
forms: many-to-many, many-to-one and one-to-many [21]. But traditional s2s model
employs RNN as encoder and decoder, which relies on the output of the last moment
for computation. Thus, parallel computing cannot be realized, leading to a very long
model training period. The s2p model proposed by Zhang et al. [23] is different from
the conventional s2s model because 1D-CNN instead of RNN is employed. Experiments
in [23] show that the s2p method achieves the best performance compared with AFHMM
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(Kolter) [28] and s2s (Kelly) [15]. The s2p (Zhang) model is composed of five 1D-CNN
layers and two fully connected layers, as shown in Figure 3. In the present study, we
propose two attention models for s2p learning: the s2p+bahdanau attention model and the
s2p+bahdanau attention+self-attention model. The former is composed of an embedding
layer, a bi-directional GRU encoding layer, an attention layer, a one-way GRU decoding
layer, and two fully connected layers. Figure 4 shows the structure of the proposed model.
This model employs the bahdanau attention mechanism, but the model’s output is only one
point. When training the model, data have to be feed to encoder and decoder, respectively.
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The latter uses a self-attention layer to replace the RNN layer. Figure 5 shows the
structure of the proposed model. An embedding layer is used to map the input sequence
to a higher-dimension space, and the concatenate layer then connects the embedding layer
with the original input result and sends the layers to the self-attention layer. The two fully
connected layers behind the attention layer replace the decoder for forecasting. Different
from the traditional attention model, the s2p+bahdanau attention+self-attention model
proposed in this paper removed the RNN layer of decoder, and directly uses dense layer to
receive the output of the attention layer. The reason is that the model predicts only one
point, so the dense layer will not reduce the prediction accuracy of the model. However,
the new network needs to adjust the calculation method of the attention score. As shown in
Figure 6, since the decoder hidden state si−1 no longer exists, we use the hidden state in the
middle of the encoder hmid instead. The reason for that is the hmid contains the information
for predicting the power of the target appliance at the midpoint of the sequence. The
calculation of the context vector is the same as Formulas (1)–(3). In this paper, the effect of
the attention model is enhanced by using a time-embedding layer called Time2Vector to
process the input sequence [29]. This orthogonal but complementary approach develops
a general time vector representation through sine and linear activations. In addition
to automatically learning periodic and nonperiodic time features, the Time2Vector can
guarantee that these features will not be affected by the time scale. The Time2Vector can be
easily embedded in other machine learning models. Experiments on multiple tasks and
datasets have demonstrated the efficacy of this method [29].
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3. Data and Experiment
3.1. Dataset and NILMTK Toolkit

In this study, two open datasets, REDD and UK-DALE, were used for experiments.
The REDD dataset contains six households and 10 to 24 residential appliances in North
America [30]. The sampling periods for mains and appliances were 1 s and 3 s, respectively.
The UK-DALE dataset consists of over ten types of appliances in five British houses
over two years [16]. The mains and appliances were sampled at intervals of 1 s and 6 s,
respectively. For comparison, four types of appliances in REDD and five classes in UK-
DALE were selected, according to the work of s2p [23]. They are kettle (not available in
REDD), microwave, fridge, washing machine and dishwasher. In the experiment, low-
frequency active power data was used for decomposition, and the same model network
architecture was used for different appliances. In 2014, Kelly [31] developed an open-
source toolkit specifically for NILM, which provides a processing interface of mainstream
open datasets to simplify NILM data processing tasks. Additionally, the toolkit provides
a baseline model and performance metrics, which facilitates the development of state-
of-art models [31,32]. The ElecMeter object is the core of the NILM toolkit (NILMTK),
encapsulating the method for obtaining power data from the circuit. The mains and
submeters at the API interface are called to get the power data of the main electricity meter
and its subordinate appliances.

The deep learning model must be trained using data subjected to standard processing
to prevent deterioration of the gradient descent efficiency. We obtained the z-score for
the experiment by subtracting the mean value from the power of mains or appliances
and then divided the result by the standard deviation. The normalizing parameter values
according to [23] are shown in Table 1. Due to the different sampling periods of the mains
and appliances, we resampled the mains data to mean value according to the appliance’s
interval. The data interval was 3 s on REDD and 6 s on UK-DALE, respectively. The
sliding window method was applied to obtain the sequence required for model input.
Specifically, the time-series data were divided into fixed-length and overlapping windows.
One window referred to an input sequence, and the output corresponded to the output
power of the appliances to be decomposed at the middle point of the time window. The
shape of the input tensor X of the training model was [batch size, window length, 1], and
that of the output tensor Y was [batch size, 1]. For the window length and training batch
size used in the experiment, see Table 2 below.
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Table 1. Parameters for Normalizing.

Parameter Mean Std

Aggregate 522 814
Kettle 700 1000

Microwave 500 800
Refrigerator 200 400
Dishwasher 700 1000

Washing machine 400 700

Table 2. Hyperparameters for Training.

Input Window Length 599

Maximum Epochs 100

Batch Size 1000

Patience of Early-Stopping 5

Learning Rate 0.001

3.2. Model Training

In this study, we trained three models for comparison: Model 1 represents the s2p
model proposed by Zhang et al. [23]; Model 2 represents the s2p+bahdanau attention
model; Model 3 represents the s2p+Bahdanau attention+self-attention model. Figures 3–5
show the network structures of the models. The mean squared error (MSE) was used as the
loss function in both models, and the Adam algorithm was used to optimize the learning
process. The experiment platform was as follows: hardware: Intel Xeon Gold 6230 (base
frequency 2.1 GHz), 512 G DDR4 memory, and an NVIDIA Tesla V100 display card (32 GB
memory); software: an Ubuntu18.04 64-bit operating system, Python3.7, TensorFlow2.1,
cuDNN10.1, and NILMTK0.4.

In REDD, houses 2–5 served as the training set, and house 1 was used as the test
set; in UK-DALE, house 1 was the training set, while house 2 was the test set since the
data in other houses are small. To deal with the overlong training period, we applied an
early-stopping strategy with the specific experimental parameters shown in Table 2. The
training time required for five types of appliances varies due to different sample sizes.
Because Model 3 proposed herein removed the RNN, it can use graphics processing units
(GPUs) for parallel computing, which substantially increases the training speed compared
with Model 2. Table 3 shows the comparison of the total parameters and the training time
for each model.

Table 3. Total parameters and one epoch training time for three models.

Model Total Parameters Training Time (1.2 M Samples)

Model 1 30,708,249 249 s
Model 2 1,359,174 535 s
Model 3 953,643 229 s

3.3. Performance Evaluation

The NILM model can be evaluated in various ways. The mean absolute error (MAE)
and F1 score are the most applied performance measures in the case of energy estimation
and on/off state classification, respectively [11]. This study chooses MAE and signal
aggregate error (SAE) as the metrics, just like [23]. Additionally, we added another metric
called match rate (MR), which was proved the best among ten popular NILM metrics [33].
MAE is the average difference between the actual value and the predicted value at different
moments. SAE represents the relative value of the difference between the actual and
predicted power values. In particular, r is the sum of the actual power, and r̂ represents
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the sum of the predicted power. MR is robust in presenting performance across different
scenarios and the calculation is relatively simple. The specific computation method is
shown in Equaitons (5)–(7).

MAE =
1
T

T

∑
t=1
|ŷt − yt| (5)

SAE =
|r̂− r|

r
(6)

MR =
∑T

t=1 min{yt, ŷt}

∑T
t=1 max{yt, ŷt}

(7)

4. Results and Analysis
4.1. Comparison of the s2p Models

Table 4 shows the results for the three metrics On the REDD. Compared with Model 1
refers to the s2p (Zhang), our models improve performance in most cases. Model 3 shows
the best performance, the numbers of MAE were reduced by 38%, 40%, 25%, and 19%
on the microwave, washing machine, fridge, and dishwasher, respectively. On the SAE
metric, our method decreased the four appliances by 50%, 47%, 58%, and 9%, respectively.
The results of the three metrics were basically consistent. Precisely, the MAE result for the
fridge was different from the other two metrics. The match rate evaluation results showed
the best consistency, which verified the findings of Mayhorn et al. [33].

Table 4. Evaluation results on REDD.

Metrics Model Microwave Washing Machine Fridge Dishwasher

MAE
Model 1 25.26 37.40 32.66 19.44
Model 2 19.44 41.52 15.77 18.67
Model 3 15.33 22.37 24.43 15.73

SAE
Model 1 0.24 0.49 0.28 0.32
Model 2 0.16 0.31 0.18 0.66
Model 3 0.12 0.23 0.11 0.29

MR
Model 1 0.22 0.21 0.48 0.17
Model 2 0.33 0.34 0.65 0.21
Model 3 0.15 0.17 0.31 0.14

To further validate our method, we conducted another experiment on the UK-DALE
dataset. The results in Table 5 show that Model 3 performs better than the other two on the
kettle, microwave, washing machine, and fridge. Model 1 performed slightly better than
Model 3, only on the dishwasher for the MAE results. In addition, the parameters of the
models proposed in the study are much smaller than the original model, as Table 3 shows.
We also compared the training time of the models on the same number of training samples.
Compared with the traditional attention model, Model 2, the training speed of Model 3 is
greatly improved due to the removal of RNN, close to Model 1 using 1D-CNN.

Figures 7 and 8 show the decomposition results of the selected appliances from
the testing house. The decomposition results of Model 3 are closer to the real values in
most cases. The results show that the decomposition effect on the fridge was superior
to that on the microwave or dishwasher. The possible explanation is the microwave has
a short operation time and large power variations. When other appliances are running
simultaneously, the superposition of the power signals increases the difficulty of load
decomposition. In addition, the last picture in Figure 7 shows that the decomposition of
the dishwasher is difficult during the change of working stages. Model 3 proposed in this
study did much better than Model 1 in this case.
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Table 5. Evaluation results on UK-DALE.

Metrics Model Kettle Microwave Washing Machine Fridge Dishwasher

MAE
Model 1 12.22 14.62 25.03 25.18 37.12
Model 2 11.44 13.62 23.15 22.82 47.47
Model 3 7.35 7.74 15.12 17.33 38.66

SAE
Model 1 0.14 0.48 0.28 0.15 0.32
Model 2 0.21 0.50 0.31 0.11 0.35
Model 3 0.08 0.31 0.18 0.09 0.24

MR
Model 1 0.24 0.51 0.33 0.27 0.46
Model 2 0.18 0.44 0.28 0.21 0.33
Model 3 0.11 0.41 0.19 0.14 0.44
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It should be noted that the results obtained in this experiment are not entirely con-
sistent with Zhang’s paper, which may be due to some differences between the data
processing and the selected hyper-parameters. For a fair comparison, regularization tech-
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niques, such as dropout, L1 and L2 regularizations, were not included. In addition, the
hyper-parameters were not fine-tuned carefully. Therefore, there is still a risk of overfitting.

4.2. Comparison of the s2p and the s2s Model

In this study, we added another experiment to compare s2s and s2p learning methods.
Model 4 represents the s2s+bahdanau attention+self-attention model, which is entirely
consistent with Model 3, the s2p+bahdanau attention+self-attention model, except that the
last dense layer outputs a sequence instead of a point. The output sequence’s length equals
the input sequence, which indicates the power values of the target electrical appliance
within a time window. Due to the sliding window technique used in this paper, the output
sequences are overlapped each other, so it is necessary to average the overlapping parts as
the predicted values at each time point. Model 4 was trained on House 1 and tested on
House 2 in UK-DALE, and the training parameters were consistent with those of Model 3.
The experimental results are compared in Figure 9. Model 3 is superior to Model 4, except
for microwave on the SAE. The number of MAE decreased most on the microwave, by
24%, and decreased least on the washing machine, by 14%. On the SAE metric, Model 3
decreased the kettle, washing machine, fridge, dishwasher by 27%, 18%, 30%, and 25%,
respectively. The numbers of MR were also significantly reduced on all five appliances.
These experiment results support the conclusions drawn in [23]: s2p is better than s2s
for NILM.
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5. Conclusions

This study improves the sequence-to-point learning method via the attention mech-
anism in NILM. The attention mechanism has made remarkable progress in machine
translation and other fields, so many researchers have recently adopted this technology to
NILM. However, it is unclear how to combine attention mechanism with existing models
because the attention mechanism has developed many different variants. Therefore, it is
still a challenge to choose an appropriate model. In this study, two deep neural networks
based on the attention mechanism were proposed for NILM. The models employ the
Bahdanau style attention and self-attention mechanism to improve the s2p model. The
experiment results on the public datasets REDD and UK-DALE show that in most cases,
the new models have a better effect than s2p (Zhang) model. Model 3 employed with
both bahdanau attention and self-attention performs best in most evaluation metrics and
dramatically shortens the training time of Model 2. In the supplementary experiment,
Model 3 outperforms Model 4, which indicates that the s2p model is superior to the s2s
model in solving the NILM problem. Since the objective of this study was load decompo-
sition rather than ED, only low-frequency active power data were used, as the previous
studies referenced in this paper. However, multiple features should be included to improve
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the performance, such as reactive power, apparent power, current, and and voltage in
future studies.

A few recent studies have applied different network structures to solve the NILM
problem and claimed to have achieved a status of state-of-the-art [24,25,34]. However,
most of them, e.g., [24,25], have not published their codes, so it is difficult to repeat their
experimental results for comparison. Some studies use models other than s2s (s2p) learning,
e.g., CNN [34], which is not the focus of this paper. Nevertheless, all the researches show
that deep learning is a promising load decomposition technique. However, there are still
many challenges that can be summarized in terms of two aspects: data and model. For this
reason, we believe creating richer features and searching for the best network structure
is worthy of future study. In addition, because the model training takes a long time, the
utilization of the pre-trained model to perform transfer learning on a new dataset to shorten
the training time should be considered.
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