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Abstract: Localization for the indoor aerial robot remains a challenging issue because global posi-
tioning system (GPS) signals often cannot reach several buildings. In previous studies, navigation of
mobile robots without the GPS required the registration of building maps beforehand. This paper
proposes a novel framework for addressing indoor positioning for unmanned aerial vehicles (UAV)
in unknown environments using a camera. First, the UAV attitude is estimated to determine whether
the robot is moving forward. Then, the camera position is estimated based on optical flow and the
Kalman filter. Semantic segmentation using deep learning is carried out to get the position of the
wall in front of the robot. The UAV distance is measured using the comparison of the image size
ratio based on the corresponding feature points between the current and the reference of the wall
images. The UAV is equipped with ultrasonic sensors to measure the distance of the UAV from
the surrounded wall. The ground station receives information from the UAV to show the obstacles
around the UAV and its current location. The algorithm is verified by capture the images with
distance information and compared with the current image and UAV position. The experimental
results show that the proposed method achieves an accuracy of 91.7% and a computation time of
8 frames per second (fps).

Keywords: distance measurement; localization; mapping; robotics; segmentation; UAV; vision-based

1. Introduction

Nowadays, there has been an increase in unmanned aerial vehicles (UAV) to be used
in various fields for different applications of indoor [1] and outdoor [2,3] surveillance
investigation. Aerial surveillance [4] has the advantages of avoiding some obstacles and
uneven surfaces on the land, where the positioning of the UAV mostly relies on the global
positioning system (GPS) [2]. However, GPS signals can be easily disturbed and cannot
reach some places, such as urban areas, mountains, forests, and buildings [5]. This situation
makes localization of UAVs without the GPS remain a challenging task.

In simultaneous localization and mapping (SLAM) [6], the mapping system is a
crucial component for UAV localization and navigation, such as point cloud maps [7] and
occupancy maps [8]. Point cloud maps can be obtained by combining point measurements.
However, this type of map is only suitable for high-precision sensors in static environments,
because in the new environment, object mapping cannot be accessed and modified. The
main limitation of occupancy maps is the fixed-size voxel grid that requires a map size that

Electronics 2021, 10, 1647. https://doi.org/10.3390/electronics10141647 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6902-5455
https://orcid.org/0000-0002-9784-4204
https://orcid.org/0000-0003-0546-7083
https://orcid.org/0000-0002-8162-0011
https://orcid.org/0000-0001-6436-1110
https://orcid.org/0000-0003-4161-6875
https://doi.org/10.3390/electronics10141647
https://doi.org/10.3390/electronics10141647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10141647
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10141647?type=check_update&version=2


Electronics 2021, 10, 1647 2 of 14

is known in advance and cannot be changed dynamically. Thus, these mapping methods
cannot be used in a new and unknown environment. So, one of the more precise ways to
find out the current position of the robot in a building is to calculate its current distance
from the entrance.

Several methods have been proposed to determine the location of mobile robots by
measuring distances using radio frequency (RF) and sensors. Ni et al. [9] and Guerrieri
et al. [10] presented an indoor localization system using radio frequency identification
(RFID). RFID-based localization uses RF tags placed on buildings as navigation waypoints
and tracking tags that are attached to moving objects, so readers can track the objects in
different locations. However, these methods require many expensive RFID readers, and the
detection capability of each tag only works for about 6 m. A localization method based on
the laser finder was proposed by Subramanian et al. [11] and Barawid et al. [12], mounted
on a vehicle as a navigation sensor. The laser finder was used to obtain distance information
to explore the surrounding environment and avoid obstacles. However, these methods
have high hardware costs and a heavy load that is not suitable for UAVs. A Zigbee-based
system for obtaining the location of the user and tracking them inside a building was
introduced by Lin et al. [13]. Zigbee devices are set up beforehand in the building, and
the target movement is assumed to be constant. Cheok et al. [14] developed a method for
indoor positioning and navigation using light sensors. Still, this method requires installing
fluorescent lamps in buildings and hardware for use by users or moving objects. Nakahira
et al. [15] proposed the concept of distance measurement using the ultrasonic system to
determine the position and orientation of mobile robots in a room. This method measures
distance by processing the signal from the returning echoes of the acoustic pulse emitted
into space. It is not suitable for long-distance measurement and is only used to avoid
obstacles near the robots.

Previous studies on indoor positioning used a vision-based system to solve the local-
ization problem of mobile robots. By using visual sensors, environmental information in
the form of color, texture, and other visual information can be obtained more easily and
accurately compared to the GPS, laser flashes, ultrasonic sensors, and other traditional
sensors. In addition, visual sensors are also cheaper and easier to use, so vision-based
navigation is one of the techniques that has continued to be developed recently. Kim
et al. [16] used an augmented reality technology to provide location information in indoor
environments. However, this method only recognizes a particular location by a marker
that has a characteristic pattern. Li et al. [17] presented a localization method by distance
measurement using a webcam placed inside a building. Due to the low-quality lens and
brightness changes in the structure, the images taken had low quality. So, the camera
needed calibration to avoid image distortion problems [18]. In [17], a mobile robot was
first detected to determine its coordinates on the image. Then, the location of the robot
was estimated based on the distance between the camera and the position of the wall near
the robot. Shim et al.’s [19] approach used coordinate mapping to recognize robots in a
building using multiple cameras at the same time. Lan et al. [20] conducted research on
vision-based navigation schemes for UAVs based on mapped landmarks, where absolute
positions of the landmark points are known.

The main purpose of this paper is to create a new framework to determine the location
of a UAV based on distance measurements using a single camera. In this study, the camera
mounted on the UAV transmits the image wirelessly to the ground station. This method is
proposed as a solution for positioning and navigation of UAVs in indoor environments
where the location map is not registered and without devices installed beforehand. The
distance is measured by a size comparison between reference and current images. Then,
the UAV movement is mapped in the user interface.

The remainder of this paper is organized as follows. Section 2 provides an explanation
of the proposed material and the main algorithms. Section 3 provides performance results
using videos captured from the UAV, supplemented by a discussion. Next, Section 4
summarizes the conclusions.
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2. Materials and Methods
2.1. Materials

The experiments were carried out using Visual Studio as the software program in a
3.40 GHz CPU with 8 GB RAM. Aerial image sequences with a resolution of 720 × 480
were taken to implement the proposed method. Figure 1 shows an overview system of the
UAV and the ground station. The type of UAV used in this system is a quadrotor consisting
of four rotors where the radio receiver receives flight commands. Each rotor speed is
controlled via an electronic speed controller (ESC) that receives a signal from the processor.
The XBee module on the onboard system has the function to send UAV flight data to the
ground station. An ultrasonic sensor is installed on each side of the quadrotor frame to
detect obstacles when the quadrotor flies, and one sensor is mounted with the camera.
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Figure 1. The UAV and ground station system.

2.2. The Proposed Methods

The algorithm consists of several steps: UAV attitude estimation, camera position
correction, semantic segmentation, and distance measurement. First, when the UAV moves
around 3 m from the starting point, the reference image I is captured. The distance of
the UAV from the starting point is measured using ultrasonic sensors mounted with the
camera. The UAV attitude is estimated to determine the current pitch angle of the UAV. If
the pitch angle is positive, it means that the UAV is moving forward. Figure 2 shows an
overview of the system proposed in this paper.
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Figure 2. System overview.

Then, for every 100 ms, the current image is captured and aligned based on the camera
position estimation. The semantic segmentation is performed to determine the location of
the wall in front of the UAV as a current image. The first wall frame is saved as a reference
frame. Then, the feature points in the reference and current images are found to obtain an
affine transformation of the current image. So, a size comparison between the reference and
current images can be obtained. If the reference image size is less than 55% of the current
image, then it is assumed that the UAV has moved 1 m forward. Then, the reference image
is updated every 1 m. In this work, the UAV moves with a speed of around 1–1.5 m/s, and
we assume that the UAV moves at a constant altitude and speed.
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2.3. UAV Attitude Estimation

Figure 3 shows that the front and rear rotors rotate clockwise, and the others rotate
counter-clockwise. A force Fi is generated by each rotor i and is used to calculate the Euler
angles: roll φ, pitch θ, and yaw ψ. The main thrust FN and control input, which depends
on the rotor profile, can be calculated as follows [21]:

FN =
4

∑
i=1
|Fi| = Cth

(
4

∑
i=1

ω2
i

)
(1)


U1 = F1 + F3 + F2 + F4

U2 = F4 − F2
U3 = F3 − F1

U4 = Cd(F1 + F3 − F2 − F4)

(2)

FN is applied to the airframe, where Cth is the thrust coefficient of each rotor, ωi is the
angular velocity of rotor I, and Cd is the drag coefficient.
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Figure 3. UAV configuration.

The gyroscope and accelerometer measure three angular rates and two angular posi-
tions (φ and θ) where the magnetometer measures ψ. A nonlinear complementary filter on
the SO(3) [22] is used on each axis of the accelerometer and gyroscope to estimate the UAV
attitude. Figure 4 shows the position and orientation of the UAV, where {E} is an arbitrary
point of the space with a fixed inertial frame x, y, and z axes; l is the arm length of the UAV;
m is mass; and g is the gravitational acceleration. Then, the dynamic model of the UAV is
computed as follows [23,24]:

..
φ =

(
Jy−Jz

Jx

) .
θ

.
ψ + l

Jx
U2

..
θ =

(
Jz−Jx

Jy

) .
φ

.
θ + l

Jy
U3

..
ψ =

(
Jx−Jy

Jz

) .
φ

.
θ + 1

Jz
U4

..
x = 1

m (cos φ sin θ cos ψ + sin φ sin ψ)U1
..
y = 1

m (cos φ sin θ sin ψ− sin φ cos ψ)U1
..
z = g− 1

m (cos φ cos θ)U1

(3)

where Jx, Jy, and Jz indicate the moments of inertia on the x, y, and z axes, respectively.
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2.4. Camera Position Correction

This step estimates the camera position to align the current image. Figure 5 shows
an illustration of UAV movement that affects the camera motion. The image motion
corresponds to camera motion on the yaw, pitch, and roll axes of the UAV movement. The
affine transformation is used to handle the rotation and translation of the images.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 15 
 

 

 

 

 

2

3

4

1

1

1

1

1
cos sin cos sin sin

1
cos sin sin sin cos

1
cos cos

y z

x x

z x

y y

x y

z z

J J l
U

J J

J J l
U

J J

J J
U

J J

x U
m

y U
m

z g U
m

 

 

 

    

    

 


 


 


 

 

 

 

  
  

 
    
  


 
  
  









  

  

 







 (3)

where ,  ,  and x y zJ J J  indicate the moments of inertia on the x, y, and z axes, respec-
tively. 

 
Figure 4. The UAV model. 

2.4. Camera Position Correction 
This step estimates the camera position to align the current image. Figure 5 shows an 

illustration of UAV movement that affects the camera motion. The image motion corre-
sponds to camera motion on the yaw, pitch, and roll axes of the UAV movement. The 
affine transformation is used to handle the rotation and translation of the images. 

 
Figure 5. UAV movement modeling [25]. 

The optical flow method in [26] is used in this step to calculate the motion vectors of 
two consecutive frames. For each 10 × 10 sub-window, the flow of each pixel in the win-
dow is estimated by a polynomial in the local coordinate system (LCS) at I  as follows: 

Figure 5. UAV movement modeling [25].

The optical flow method in [26] is used in this step to calculate the motion vectors
of two consecutive frames. For each 10 × 10 sub-window, the flow of each pixel in the
window is estimated by a polynomial in the local coordinate system (LCS) at I as follows:

Ip
LCS = pT Ap + bT p + c (4)

where p is a vector, A is a symmetric matrix, b is a vector, and c is a scalar. The LCS at I(t)
can be defined by

Ip
LCS(t) = pT A(t)p + bT(t)p + c(t) (5)

Based on Equations (4) and (5), a new signal can be built at I(t) by a global displace-
ment ∆(t) as Ip

LCS(t) = Ip−∆(t)
LCS , so the relation between the LCS of two input images can be

calculated by
Ip
LCS(t) = (p− ∆(t))T A(p− ∆(t)) + bT(p− ∆(t)) + c (6)

The coefficients of b in Equations (5) and (6) can be equated by

b(t) = b− 2A∆(t) (7)

So, the total displacement of the motion vectors in I(t) is computed as follows:

∆(t) = −1
2

A−1(b(t)− b) (8)
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The displacement value in Equation (8) is the translation of the motion vectors con-
taining of the x axis (∆x(t)) and y axis

(
∆y(t)

)
, so its angular value can be calculated by

∆θ(t) = tan−1

(
∆(y)(t)
∆(x)(t)

)
× 180

π
(9)

Then, the translation Tx,y(t) and rotation θ(t) of I(t) are obtained as the most frequent
value of the motion vectors as follows:

Tx,y(t) = l∆(t) +
(

f1∆(t)− f2∆(t)
2 f1∆(t)− f0∆(t)− f2∆(t)

)
× τ (10)

and

θ(t) = l∆θ(t) +
(

f1∆θ(t)− f2∆θ(t)
2 f1∆θ(t)− f0∆θ(t)− f2∆θ(t)

)
× τ (11)

where l is the lower motion vector value, τ is the size of the motion vector class interval,
f1 is the frequency of the modal class, f0 is the frequency of the class preceding the modal
class, and f2 is the frequency of the class succeeding the modal class.

In the next step, the translation and rotation obtained are compensated using the
Kalman filter consisting of prediction and measurement parts. The initial state in the
prediction step is defined by s(0) = [0, 0, 0], and then the state of the trajectory ŝ(t) =[
T̂x(t), T̂y(t), θ̂(t)

]
at I(t) can be estimated by

ŝ(t) = s(t− 1) (12)

The initial error covariance in the prediction step is defined by e(0) = [1, 1, 1], where
the error covariance computed by

ê(t) = e(t− 1) + Qp (13)

where Qp is the process’s noise covariance set to 0.004. A Kalman gain can be calculated by

K(t) =
ê(t)

ê(t) + Qm
, (14)

where Qm is the measurement’s noise covariance set to 0.25. The error covariance compen-
sation is calculated as follows:

e(t) = (1− K(t))ê(t) (15)

Then, the trajectory is compensated in the new state by s(t) =
[
T′x(t), T′y(t), θ′(t)

]
,

where the trajectory state at I(t) is calculated as follows:

s(t) = ŝ(t) + K(t)(R(t)− ŝ(t)) (16)

The accumulation of the trajectory from each frame can be measured by

R(t) =
t−1

∑
r=1

[(
Tx(r) + Tx(t)

)
,
(
Tx(r) + Tx(t)

)
,
(
θ(r) + θ(t)

)]
=
[
Rx(t), Ry(t), Rθ(t)

]
(17)

So, a new trajectory can be obtained as follows:[
Tx(t), Ty(t), θ(t)

]
=
[
Tx(t), Ty(t), θ(t)

]
+
[
dx(t), dy(t), dθ(t)

]
(18)

where the difference between x, y, and θ can be obtained as dx(t) = T′x(t)− Rx(t), dy(t) =
T′y(t)− R(t), and dθ(t) = θ′(t)− Rθ(t), respectively.
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Finally, a new image plane is produced to apply the new trajectory in Equation (18) to
align I(t) with the transformation as follows:

I(t) = I(t)×
[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
+

[
Tx(t)
Ty(t)

]
(19)

2.5. Semantic Segmentation

We implemented a deep convolutional neural network (DCNN) [27] with ResNet-
101 [28] for segmenting indoor scenes on ade20 k datasets. The model used is shown in
Figure 6. To double the spatial density, feature responses are computed in the ResNet-101
network, then the last pooling or convolution layer is found to lower resolution. To deter-
mine the area of floors, walls, roofs, and other furniture in the room, we created labels for
27 classes in order to easily classify obstacles and roads in front of the robot. Fully con-
nected layers are transformed into convolutional layers with increased feature resolution
so that the feature response can be computed for every 8 pixels. Bi-linear interpolation is
performed to resize the score map to the original image resolution. Then, the input image
is forwarded to a fully connected CRF [29] to fine-tune the segmentation results.
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2.6. Distance Measurement

This step estimates the position and size comparison of I at I(t) based on affine
transformation [25,30]. The position of features that have similarities between I and
I(t) is found using scale-invariant features transform (SIFT) [31]. SIFT is used as the
feature extractor and descriptor in this method because it provides more invariance in the
illumination changes compared with SURF [32,33].

First, the image color is changed into a gray-scale, and a median filter [34] is ap-
plied. Then, interesting points are approximated using Laplacian of Gaussian (LoG) in
the scale space images. The difference between two consecutive scales is calculated as the
convolution of the scale space with the Gaussian function as follows:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (20)

where G(x, y, σ) is a scale-variable Gaussian defined as

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
(21)

where (x, y) are the spatial coordinates and σ is the scale space factor.
The key points are found as the maxima and minima in the difference of Gaussian

(DoG) between two images to make it a scale-invariant. This is done by comparing eight
neighbor pixels in the current scale and nine corresponding neighbors at neighboring scales.
Two such extrema images are generated, which need 4 DoG images with 5 Gaussian blurred
images, hence the five levels of blurs in each octave. The DoG function with adjacent scales
k can be computed by

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ) (22)
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The bad key points on the edges and low-contrast regions are rejects using second-
order Taylor expansion of the D(x, y, σ) at sample point X by

D(X) = D +
∂DT

∂X
X +

1
2

XT ∂2D
∂X2 X (23)

The location of the extreme point can be calculated by taking the derivative of Equation
(23) with respect to X as follows:

X′ = −
(

∂2D−1

∂X2

)
∂D
∂X

(24)

Then, the low-contrast key points can be obtained by

D(X′) = D +
1
2

∂DT

∂X
X′ (25)

The key points are eliminated when |D(X′)| < D0 makes the algorithm efficient and
robust. Then, the key points along with the edge are filtered out by the Hessian matrix
as follows:

Hm =

[
Dxx Dxy
Dxy Dyy

]
(26)

The magnitude and orientation of each key point are calculated to cancel out the effect
of orientation to make it rotation-invariant by

MD(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (27)

and

θD(x, y) = tan−1
(
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2

)
(28)

SIFT features are generated with scale and rotation invariance in place. A SIFT
descriptor is a characterization of a key point in the spatial histogram of the image gradients.
The gradient at each pixel consists of the location of the pixel and the orientation of the
gradient. The orientation is quantized into eight spatial coordinates for each cell in a
16 × 16 window. Then, a histogram consisting of 128 bins (16 cells × 8 orientations) is
stacked as a single 128-dimensional vector.

The feature point pairs between I and I(t) are selected using the Fast Library for
Approximate Nearest Neighbor (FLANN) [35]. Each distance of the pair is calculated using
the Euclidean distance. The feature point is classified as a match if the distance is less than
0.6. Four feature points near the boundary in I(t) that are similar to the feature point in I
are selected. These feature points are used to estimate the image size comparison. If the
matching feature points are less than four, the feature points of the previous I(t) are used.

In the homogenous coordinates, the relationship between four matching feature points
between I and I(t) can be estimated by

[
I(t)x
I(t)y

]
= H

 Ix
Iy
1

 (29)

where H is the homogeneous affine matrix that can be defined by

H =

[
1 + a11 a12 Thx
a21 1 + a22 Thy

]
(30)
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where aij is the parameter of the rotation angular θh, and Thx and Thy are the translation
on the x and y axis on the image plane, respectively. Then, the least-squares problem is
used to solve the affine matrix. In addition, the Random Sample Consensus (RANSAC)
algorithm [36] is used to filter the outliers to find the correct affine transformation.

As a result of the affine matrix, we can obtain the comparison of I in I(t) with the scale
factor Ω(t) as follows:

Ω(t) =
cos θh(t)

cos
(

tan−1
(

sin θh(t)
cos θh(t)

))
(t)

(31)

2.7. Sensor Specifications

An ultrasonic sensor is used to provide information about the distance of nearby
objects. The ultrasonic sensor used is HC-SR04 [37], as shown in Figure 7a, which includes
a transmitter, a receiver, and control circuits (Vcc, trigger, echo, and GND). HC-SR04 uses
an I/O trigger for 10 µs high-level signals by a pulse input from the processor and then
sends eight 40 kHz cycle signals and detects returning pulse signals. If the signal returns
through a high level, then the distance (in cm) is calculated as

distance = 2×
(

high level time
340 m/s

)
(32)

There are five ultrasonic sensors used in this system connected to a pin connector
on an additional board. The trigger and echo pins are connected to analog pins on the
processor, switched alternately using ULN 2803A [38].
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The XBee pro s2b module [39], as shown in Figure 7b, provides a UART interface to
transmit (TX) and receive (RX) data that are connected to the UART pins on the mainboard.
The XBee module operates using the Zigbee protocol with a low-power wireless sensor
network that requires minimal power and provides reliable data transmission between
remote devices.

The video transmitter, as shown in Figure 7c, used is a 2.4 GHz color CMOS camera
to sends aerial images to the radio receiver at the ground station. The power supply for
the camera requires 9–12 V DC obtained directly from the battery. Table 1 summarizes the
component specifications that are used to support the surveillance system.

Table 1. Sensor specifications.

Component Name Output Supply (V) Power (mA) Range

HC-SR04 I2C 5 15 200–400 cm
XBee pro s2b UART 2.7–3.6 295 1600 m

Wireless camera Audio and video 9–12 250 100 m

3. Results
3.1. The User Interface

Visual Basic Net 2017 is used for user interface (UI) software programming, as shown
in Figure 8. The proposed user interface is used to save and display aerial images, estimate
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the attitude of the UAV, receive obstacle information, and map the UAV’s estimated distance.
Arduino is used for mainboard software programming.
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Figure 8. User interfaces for UAV monitoring.

First, the COM port and baud rate used to access serial communication are selected.
The UI displays the attitude data of the UAV, i.e., yaw, pitch, and roll, and simulates the
current position of the UAV. The UAV is equipped with a small motor to move the camera
forward and down. In the UI, there are settings for turning the camera on or off, as well as
moving the camera up or down. The UI also displays a simulation of the current travel path
of the UAV and the number of obstacles around the UAV detected by the ultrasonic sensors.

3.2. Frame Size Comparison

We collected images for around 2 m from the starting point in several locations where
the first frame was a reference frame, and for every 50 ms, the reference frame’s size was
compared with the current frame’s size. Figure 9 shows the steps for pre-processing images
to obtain the average size of a reference in the current frame. The current frame is enhanced
using a median filter and aligns based on the correction of the camera position, as described
in Section 2.4. The features in the reference and current frames are extracted and described
to find the match features, as explained in Section 2.6.
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Figure 10 shows the results of the frame size comparison of around 2 m. Based on our
experiments, the average size of the reference frame in the current frame for a 1 m distance
is about 55%. The best distance measurement using the estimated frame size ratio is for
every 1 m going forward. In Figure 10, we can see that after the 25th frame, in which the
distance is more than 1 m, the frame size ratio does not significantly differ. The influence
of our image quality can cause this result.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 15 
 

 

Figure 10 shows the results of the frame size comparison of around 2 m. Based on 
our experiments, the average size of the reference frame in the current frame for a 1 m 
distance is about 55%. The best distance measurement using the estimated frame size ratio 
is for every 1 m going forward. In Figure 10, we can see that after the 25th frame, in which 
the distance is more than 1 m, the frame size ratio does not significantly differ. The influ-
ence of our image quality can cause this result. 

 
Figure 10. Frame size ratio in the n-th frame. 

3.3. Segmentation 

Figure 11 shows the semantic segmentation results for the indoor environment. The 
walls, floors, roofs, and furniture or other objects in the room are displayed in peach, 
green, gray, and blue colors, respectively. The wall area is chosen as an area other than 
the floor or in green. Selecting only the wall area improves accuracy in feature detection 
and recognition at the next step. Because the floor area is too plain for feature detection, it 
can cause feature recognition errors and increase computation time. 

      
(a) 

     
(b) 

Figure 11. Segmentation results: (a) RGB images and (b) segmentation images. 

3.4. Distance Measurement 
Figure 12 shows the UAV used in this experiment that is equipped with a camera 

and ultrasonic sensors. The resulting distance measured using the proposed algorithm is 
compared with the actual distance, as shown in Figure 13. The results of the distance 
measurement indicate that the proposed algorithm achieves an accuracy rate of 91.7%. 
Because the current frame is saved for every 100 ms, the computation time is around 8 fps. 
Although we have low image quality, the proposed algorithm results are good enough to 

0

20

40

60

80

100

120

0 10 20 30 40 50

Fr
am

e 
Si

ze
 R

at
io

n-th Frame

Figure 10. Frame size ratio in the n-th frame.

3.3. Segmentation

Figure 11 shows the semantic segmentation results for the indoor environment. The
walls, floors, roofs, and furniture or other objects in the room are displayed in peach,
green, gray, and blue colors, respectively. The wall area is chosen as an area other than the
floor or in green. Selecting only the wall area improves accuracy in feature detection and
recognition at the next step. Because the floor area is too plain for feature detection, it can
cause feature recognition errors and increase computation time.
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3.4. Distance Measurement

Figure 12 shows the UAV used in this experiment that is equipped with a camera
and ultrasonic sensors. The resulting distance measured using the proposed algorithm
is compared with the actual distance, as shown in Figure 13. The results of the distance
measurement indicate that the proposed algorithm achieves an accuracy rate of 91.7%.
Because the current frame is saved for every 100 ms, the computation time is around 8 fps.
Although we have low image quality, the proposed algorithm results are good enough to
measure the UAV distance from the starting point. So, we can estimate the UAV’s current
location in the building.
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The proposed algorithm has the best result for distances less than 12 m. After 12 m,
because the starting point is too far away, the result of the frame size ratio is less accurate.
Maybe this situation occurs due to the low quality of our images. We believe that the
proposed algorithm can be used for longer distances using a high-quality camera.

4. Conclusions

A new method for UAV distance measurement using a vision-based system in an
unknown environment is presented in this work. The proposed method has a major con-
tribution in measuring the current UAV distance from the starting point to estimate its
location in an indoor environment where the GPS cannot be used. The UAV is equipped
with several ultrasonic sensors to avoid obstacles. Unwanted motion in aerial images is
handled using the image stabilization method. Semantic segmentation based on deep
learning is used to obtain the wall position in front of the UAV. The first wall frame is
saved as a reference frame to compare its size ratio in the current frame to determine the
current distance of the UAV. The reference frame is updated if the distance is detected as
1 m forward. Comparing the results with actual distances, the proposed method can be
used to determine the location of mobile robots, especially UAVs, based on distance mea-
surements in buildings or places that cannot use the GPS without prior place registration.
The proposed method provides more than 90% accurate results for short UAV mileage
measurements in the building. The addition of physical sensors and more accurate feature
detection can be done so that better detection can be carried out for longer distances of
the UAV.
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