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Abstract: In this paper, we propose an FPGA-based enhanced-SIFT with feature matching for stereo 

vision. Gaussian blur and difference of Gaussian pyramids are realized in parallel to accelerate the 

processing time required for multiple convolutions. As for the feature descriptor, a simple triangu-

lar identification approach with a look-up table is proposed to efficiently determine the direction 

and gradient of the feature points. Thus, the dimension of the feature descriptor in this paper is 

reduced by half compared to conventional approaches. As far as feature detection is concerned, the 

condition for high-contrast detection is simplified by moderately changing a threshold value, which 

also benefits the reduction of the resulting hardware in realization. The proposed enhanced-SIFT 

not only accelerates the operational speed but also reduces the hardware cost. The experiment re-

sults show that the proposed enhanced-SIFT reaches a frame rate of 205 fps for 640 × 480 images. 

Integrated with two enhanced-SIFT, a finite-area parallel checking is also proposed without the aid 

of external memory to improve the efficiency of feature matching. The resulting frame rate by the 

proposed stereo vision matching can be as high as 181 fps with good matching accuracy as demon-

strated in the experimental results. 

Keywords: SIFT; FPGA; feature detection; feature descriptor; feature matching; stereo vision;  

Epipolar 

 

1. Introduction 

Recently, vision-based simultaneous localization and mapping (V-SLAM) tech-

niques have become more and more popular due to the need for the autonomous naviga-

tion of mobile robots [1,2]. The front-end feature point detection and feature matching are 

especially important because their accuracy will significantly influence the performance 

of back-end visual odometry, mapping, and pose estimation [3,4]. In the front-end 

schemes, although speed-up robust features (SURF) exhibit a faster operational speed, its 

accuracy is worse than scale-invariant feature transform (SIFT) [5,6]. Nevertheless, the 

high accuracy of SIFT is achieved at the cost of a time-consuming process. Although 

CUDA implementations on GPUs for parallel programming can be used for various fea-

ture detection and matching [7,8], the software-based approaches generally require a 

larger power consumption which is not desired for mobile robot vision applications. 

Thus, this paper aims to improve the operational speed of SIFT by hardware implemen-

tation without sacrificing its accuracy. Over the past years, many researchers were de-

voted to improving the operational efficiency of SIFT [9]. Among them, a pipelined FPGA-

based architecture was proposed in [10] to process images with double speed at the price 

of a higher hardware cost. A hardware implemented SIFT was also proposed in [11] to 

reduce the number of internal registers. However, the resulting image frame rate is not 

high enough because of finite bandwidth due to external memory. As a result, the effi-

ciency of the subsequent mapping process could be limited. In [12], multiple levels of 
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Gaussian-blurred images were simultaneously generated by adequately modifying 

Gaussian kernels to shorten the processing time, resulting in a frame rate of 150 fps for 

640 × 480 images. Although a few dividers were only used by the modified approach for 

feature detection, the resulting hardware cost is difficult to reduce because of the square 

function in the design. Besides, the coordinate rotation digital computer (CORDIC) algo-

rithm adopted in finding phases and gradients of the feature descriptor often requires 

considerable hardware resources and a long latency period due to the needs of multiple 

iterations, thus significantly preventing the approach from being applied for real-world 

applications. 

As far as feature matching is concerned, one feature point of an image needs to com-

pare with all feature points of the other image to find the matching pairs [13] in conven-

tional exhaustion methods. A large number of feature points would incur extra memory 

access time. Moreover, the realization of feature matching often consumes a large number 

of hardware resources. Although the random sample consensus (RANSAC) algorithm 

[14] can improve the accuracy of feature matching, the resulting frame rate is only 40 fps. 

Therefore, it has brought a great challenge to improve the operational speed of the SIFT 

for use with feature matching.  

In this paper, we propose an enhanced-SIFT (E-SIFT) to reduce the hardware re-

sources required and accelerate the operational speed without sacrificing accuracy. 

Gaussian-blurred images and difference of Gaussian (DoG) pyramids can be simultane-

ously obtained by meticulous design of a realizing structure. We also propose a simple 

triangular identification (TI) with a look-up table (LUT) to easily and quickly decide the 

direction and gradient of a pixel point. The resulting dimension of feature points can thus 

be effectively reduced by half. This is not only beneficial to the operational speed of the 

proposed E-SIFT and the following feature matching but also helpful to reduce the hard-

ware cost. In the feature detection, the condition of high-contrast detection is also modi-

fied by slightly adjusting a threshold value without substantial change, thus considerably 

reducing the required logic elements and processing time. 

For stereo vision, we also propose a finite-area parallel (FAP) feature matching ap-

proach integrated with two E-SIFTs. According to the position of the feature point of the 

right image, a fixed number of feature points in the corresponding area of the left image 

will be chosen and stored first. Then, feature matching proceeds in parallel to efficiently 

and accurately find the matching pairs without using any external memory. Based on the 

Epipolar geometry, a minimum threshold is assigned during feature comparison to avoid 

matching errors caused by the visual angle difference between the two cameras [15]. Be-

sides, a valid signal is designed in the system to prevent the finite bandwidth of external 

SDRAM or discontinuous image data transmission from corrupting the matching accu-

racy. In the experiments, we use Altera FPGA hardware platform to evaluate the feasibil-

ity of the proposed TI with LUT scheme and test the flexibility of the proposed E-SIFT and 

double E-SIFT with FAP feature matching. 

2. Proposed E-SIFT and Fap Feature Matching for Stereo Vision 

Figure 1 shows the proposed FPGA-based E-SIFT architecture, where an initial image 

is convoluted by a meticulous design of Gaussian filters to simultaneously generate a 

Gaussian-blurred image and DoG pyramid. Through a definite mask in the Gaussian-

blurred image, the direction and gradient of each detection point can be determined by 

the proposed TI with LUT method. The results in each local area are then summed and 

collected to form a feature descriptor. Since the summations among different partition 

areas present large differences, values in the feature descriptors will be normalized to ac-

ceptable ones by a simple scheme without considerably altering the original character of 

distribution. At the same time, on the right side in Figure 1, the corresponding detection 

point in the DoG images will pass through extrema, high contrast, and corner detections 

to decide whether feature points exist. If the result is positive, a confirmed signal and the 

corresponding feature descriptor will be delivered to the feature matching module. 
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Figure 1. Building blocks of the proposed E-SIFT. 

2.1. Image Pyramid 

The purpose of building the image pyramid is to find out feature points from the 

differences of consecutive scale-spaces. Multi-level Gaussian-blurred images are created 

one by one through a series of Gaussian functions. The speckles and interfering noises in 

the original image can therefore be reduced [9]. Then, the contour of objects in the original 

image is vaguely outlined by the differences between the consecutive Gaussian-blurred 

images. Thus, the image feature can be reserved to be the basis for subsequent feature 

detection. In general, long latency is expected in constructing the multi-level Gaussian-

blurred pyramids. Thus, as shown in Figure 2a, a more efficient structure had been pro-

posed by simultaneously convoluting all the Gaussian functions, where suitable Gaussian 

kernels can be found by training the system with different images [12]. To further accel-

erate the construction of the DoG pyramid, a simplified structure is proposed in this pa-

per, where new kernels for convolution are first derived by subtraction of two adjacent 

ones as shown in Figure 2b. Then, the nth level DoG image, Dn(x, y), can be obtained by 

directly convoluting the original image with the new kernel: 

1 1( , ) ( , ) ( , ) [ ( , ) ( , )] ( , )n n n n nD x y L x y L x y G x y G x y I x y+ += − = −  , (1) 

where Ln(x, y) and Gn(x, y) are the nth level Gaussian-blurred image and Gaussian kernel, 

respectively, and I(x, y) is the initial image. In the proposed structure, the DoG pyramid 

and the required Gaussian-blurred image can be directly created at the same time. Here, 

only the 2nd level Gaussian-blurred image is reserved to be the basis of the feature de-

scriptor. 

Since a 7 × 7 mask is adopted mainly for the convolution in the image pyramid, 49 

general-purpose 8-bit registers will be required to store the pixel data. For an image width 

of 640 pixels, a large number of 8-bit registers needs be aligned row by row for the serial 

input of pixel data. To dramatically reduce the number of internal registers, we propose a 

buffer structure as shown in Figure 3. We utilize Altera optimized RAM-based shift reg-

isters to form a six-row buffer array, where each row includes 633 registers. Once the pixel 

data reaches the last one, i.e., reg. 49, the 7 × 7 convolution can be accomplished in one 

clock cycle. A similar buffer structure with different sizes for the following building blocks 
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requiring a mask can also be adopted to efficiently reduce the register number as well as 

shorten the buffer delay. 

 

 

(a) (b) 

Figure 2. (a) Conventional structure and (b) the proposed structure in realizing image pyramids. 

 

Figure 3. 8-bit input buffers for 7 × 7 mask. 

2.2. Feature Descriptor 

To accelerate the generating speed of feature descriptors, the direction and gradient 

of the detection point need to be quickly determined. Thus, in this paper, the TI method 

is proposed to promptly determine the direction of the detection point. Combined with a 

look-up table, the gradient of the detection point can be easily estimated. In general, eight 

different directions need to be determined to reduce the complexity of the phase of the 

detection point [9,16]. In this paper, the eight directions with unsigned gradients for the 

detection point have been simplified to four with signed ones to reduce the hardware cost. 

Although the resulting gradient size increases by one bit, the dimension of the feature 

descriptor can be effectively reduced by half. It is also helpful to the FAP feature matching 

for implementation. 

Figure 4 shows the block diagram of the feature descriptor. First, a 3 × 3 mask is ap-

plied to the 2nd level Gaussian-blurred image to find the differences between adjacent 

pixels in x and y axes to the center. The direction and gradient of the center point will then 
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be determined respectively by the proposed TI with LUT method. Finally, the feature de-

scriptor of the detection point can be synthesized by finding and collecting gradient sums 

of the four directions in each 4 × 4 partition area of a 16 × 16 mask. 

 

Figure 4. Function blocks of the feature descriptor. 

2.2.1. Triangular Identification and Look-Up Table 

In conventional approaches, the center point, i.e., L2(x, y), of every 3 × 3 mask shifting 

in the 2nd level Gaussian-blurred image is the detection point. The variations of the de-

tection point on x and y axes, i.e., Δp and Δq, are defined by the differences between two 

adjacent pixel values, as shown in Figure 5. 

2 2( 1, ) ( 1, )p L x y L x y = + − −  (2) 

2 2( , 1) ( , 1)q L x y L x y = + − −  (3) 

 

Figure 5. Variations of the detection point on x and y axes in a 3 × 3 mask. 

Since these two variations are perpendicular to each other, the resulting phase and 

magnitude which define the direction and gradient of the detection point can be easily 

determined by the following equations [9]. 
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( , ) arctan
q

x y
p

 
=  

 
  (4) 

2 2( , )m x y p q=  +  (5) 

Conventional approaches generally utilize the CORDIC algorithm to derive the re-

sults of Equations (4) and (5) [17]. However, time-consuming and tedious procedures 

would ensue due to a large number of iterations. In this paper, we propose a simple TI 

method to determine the phase of detection points. Since only eight directions exist in the 

original definition, the direction of the detection point can be easily determined by the 

value of Δp and Δq, which are two legs of a right-angled triangle. For example, if Δp is 

larger than Δq, and both are greater than zero, then the hypotenuse will be located in 

direction 0, as shown in Figure 6a. Thus, the direction of the detection point is classified 

as phase 0 directly. Conversely, the direction of the detection point is classified as phase 1 

if Δp is smaller than Δq. In a similar way, we can easily recognize other different directions 

by using Table 1. The required conditions are also devised to distinguish different direc-

tions. Absolute values are considered in reality because the lengths of both legs cannot be 

negative. 

For a right-angled triangle, if there is a big difference between the length of the two 

legs, the hypotenuse length can be approximated as the longer one. If two legs have equal 

lengths, i.e., Δp = Δq, the hypotenuse length will be 2  times leg one, as shown in Figure 

6b. Thus, the gradient of the detection point cannot be directly estimated only by the com-

parison of the two legs. Here, a look-up table is proposed for the estimation of the gradient 

of the detection point, as listed in Table 2. First, the ratio, h, of variations in two axes is 

evaluated for choosing the correction factor, K, as shown in the table. The gradient of the 

detection point, m, will then be approximated by the length of the longer leg multiplied 

by a chosen correction factor. 

  

(a) (b) 

Figure 6. (a) The proposed TI algorithm for direction recognition; (b) The ratio of hypotenuse to the 

leg has maximum value when Δp = Δq. 

Table 1. Angle range condition and direction distribution. 

Direction Conditions Pixel Phase θ 

0 Δp > 0, Δq ≥ 0  &  |Δp| > |Δq| 0° ≤ ∠θ ˂ 45°  

1 Δp > 0, Δq > 0  &  |Δp| ≤ |Δq| 45° ≤ ∠θ ˂ 90° 

2 Δp ≤ 0, Δq > 0  &  |Δp| < |Δq| 90° ≤ ∠θ ˂ 135° 

3 Δp < 0, Δq > 0  &  |Δp| ≥ |Δq| 135° ≤ ∠θ ˂ 180° 

4 Δp < 0, Δq ≥ 0  &  |Δp| > |Δq| 180° ≤ ∠θ ˂ 225° 

5 Δp < 0, Δq < 0  &  |Δp| ≤ |Δq| 225° ≤ ∠θ ˂ 270° 

6 Δp ≥ 0, Δq < 0  &  |Δp| < |Δq| 270° ≤ ∠θ ˂ 315° 

7 Δp > 0, Δq < 0  &  |Δp| ≥ |Δq| 315° ≤ ∠θ ˂ 360° 
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Note that the feature descriptor requires eight dimensions to express different gradi-

ents of the eight directions. To reduce hardware resources, a representation having fewer 

dimensions is discussed in this paper. From the observation of Figure 6, phase 4 has an 

opposite direction to phase 0. Similarly, phase 5 has an opposite direction to phase 1, and 

so on. Thus, the eight-direction representation can be simplified to a four-direction one to 

reduce the resulting dimensions. For example, if the detection point has an unsigned gra-

dient in phase 4, it will be changed to have a negative one in phase 0. As shown in Figure 

7, the proposed TI with LUT approach for detecting the direction and gradient of the de-

tection point is processed in parallel to accelerate the operational speed. The presented 

structure is simpler than the CORDIC, so that the hardware resources for implementation 

can be effectively reduced. 

Table 2. Look-up table for gradient correction. 

h = |Δp/Δq| Correction Factor (K) Pixel Gradient (m) 

h ≤ 0.25 1.00 

Max(|Δp| or |Δq|) × K 

0.25 < h ≤ 0.52 1.08 

0.52 < h ≤ 0.65 1.17 

0.65 < h ≤ 0.75 1.22 

0.75 < h ≤ 0.85 1.28 

0.85 < h ≤ 0.95 1.35 

0.95 < h ≤ 1.05 1.414 

1.05 < h ≤ 1.15 1.35 

1.15 < h ≤ 1.35 1.28 

1.35 < h ≤ 1.50 1.22 

1.50 < h ≤ 1.95 1.17 

1.95 < h ≤ 3.50 1.08 

3.50 < h 1.00 

 

Figure 7. Function blocks of the proposed TI and look-up table approach for determining the direc-

tion and gradient of the detection point. 

2.2.2. Feature Descriptor 
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The feature descriptor consists of the gradient sums in four directions for each 4 × 4 

partition area in a 16 × 16 mask, as shown in Figure 8a. Since one 16 × 16 mask area can 

contain sixteen 4 × 4 partitions, the feature descriptor with a four-direction representation 

will possess 64 dimensions, which are half of that by conventional methods, as shown in 

Figure 8b. It not only reduces the required devices in implementation but also accelerates 

the producing speed of feature descriptors. These benefits are also helpful to the subse-

quent feature matching. 

  

(a) (b) 

Figure 8. (a) Sixteen 4 × 4 partitions in a 16 × 16 mask for the feature descriptor and (b) the corresponding gradient sum in 

each 4 × 4 partitions. 

2.2.3. Normalization 

For general images, large differences usually exist among the gradient sums, result-

ing in different dimensions of the feature descriptor. Consequently, the feature descriptor, 

OF = (o1, o2, …, o64), needs to be normalized to decrease the scale without significantly 

altering the distribution among gradient sums. The normalization of the feature de-

scriptor is achieved in this paper by: 

1 2 64( ,  ,  ,  )
OF

F f f f R
W

= =   (6) 

where W is the sum of all gradient sums in all dimensions of the feature descriptor. 

64

1

i

i

W o
=

=  (7) 

A scaling factor, R = 255, is chosen here for better discrimination. That is, the resulting 

gradient sums of the feature descriptor lie between ±255. Thus, the required bit number 

of the gradient sum is reduced from 13 bits to 9 bits in the normalization of the feature 

descriptor. In the implementation of the presented normalization, we introduce an addi-

tional multiplier having the power of 2 approximating the sum of all gradients for achiev-

ing a simple operation. Thus, the normalized feature descriptor F can be easily obtained 

by only shifting bits of the feature descriptor. The realized block diagram of the normali-

zation is shown in Figure 9. 

2 1

2

j

j

R
F OF

W


=    (8) 
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Figure 9. Function blocks of the normalization of the feature descriptor. 

2.3. Feature Detection 

In the beginning, we use three levels of DoG images to establish a 3D space. A 3 × 3 

mask will then be applied to the three DoG images to define 27-pixel data for feature de-

tection, as shown in Figure 10. Thus, center pixel of the 3 × 3 mask in the 2nd level DoG 

image, D2, is regarded as the detection point. Three kinds of detections, including extrema 

detection, high contrast detection, and corner detection, are adopted and processed in 

parallel, as shown in Figure 11. 

Once the results of the three detections are all positive, the detection point becomes 

a feature point, and a detected signal will be sent to the feature descriptor and feature 

matching blocks for further processing. 

To evaluate the variation of the pixel values around the detection point, 3D and 2D 

Hessian matrix, H3×3 and H2×2, respectively, will be used in the high contrast and corner 

detections. 

2 2

xx xy

xy yy

D D
H

D D


 
=  
  

 (9) 

3 3

xx xy xz

xy yy yz

xz yz zz

D D D

H D D D

D D D



 
 

=  
 
 

, 
(10) 

where the definitions of the elements are listed as follows. 

2 2 2( 1, ) ( 1, ) 2 ( , )xxD D x y D x y D x y + + − −  (11) 

2 2 2( , 1) ( , 1) 2 ( , )yyD D x y D x y D x y + + − −  (12) 

3 1 2( , ) ( , ) 2 ( , )zzD D x y D x y D x y + −  (13) 

2 2 2 2( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)

4 4
xy

D x y D x y D x y D x y
D

+ + − + − − + − − −
 −  (14) 

3 1 3 1( 1, ) ( 1, ) ( 1, ) ( 1, )

4 4
xz

D x y D x y D x y D x y
D

+ − + − − −
 −  (15) 
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3 1 3 1( , 1) ( , 1) ( , 1) ( , 1)

4 4
yz

D x y D x y D x y D x y
D

+ − + − − −
 −  (16) 

 

Figure 10. The detection range includes 27 pixels in three DoG images under a 3 × 3 mask, where 

the orange pixel is regarded as the detection point. 

 

Figure 11. Building blocks of the feature detection. 

Since both the matrices are symmetric, only six elements need to be determined. Fig-

ure 12 shows the realized structure, where pixel inputs come from the corresponding po-

sitions shown in Figure 10. 

2.3.1. Extreme Detection 

In extreme detection, the detection point is compared with the other 26 pixels in the 

3D mask range. If the pixel value of the detection point is the maximum or the minimum 

one, the detection point will be a possible feature point [18]. 
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Figure 12. Hardware structure of the elements in 2D and 3D Hessian matrices. 

2.3.2. High Contrast Detection 

In conventional approaches, when the variation of the pixel values in three-dimen-

sion space around the detection point is greater than a threshold of 0.03, the high contrast 

feature can be assured [11]. Here, to simplify the derivations and subsequent hardware 

design, an approximated value of 1/32 is chosen to be the threshold value. That is, the 

resulting pixel variation criterion is modified as: 

1
( )

32
D S  , (17) 

where S = [x y z]T denotes the 3D coordinate vector. The pixel variation can be expressed 

as the Maclaurin series and approximated by: 

2

2

(0) 1 (0)
( ) (0)

2

T
TD D

D S D S S S
S S

 
 +  +  

 
 (18) 

where D(0) represents the pixel value of the detection point. The transpose of the partial 

derivative of D(0) with respect to S will be: 

(0) (0)
[ ]

T T

x y z

D D
D D D

S S

  
= =   

, (19) 

where 

2 2 2 2( 1, ) ( 1, ) d f

( 1) ( 1) 2
x

D x y D x y D D
D

x x

+ − − −
 =

+ − −
 (20) 

2 2 2 2( , 1) ( , 1) b h

( 1) ( 1) 2
y

D x y D x y D D
D

y y

+ − − −
 =

+ − −
 (21) 

and 3 1 3 1( , ) ( , ) e e

3 1 2
z

D x y D x y D D
D

− −
 =

−
. (22) 

Figure 13 shows the realized hardware of the partial derivative. The second partial 

derivative of D(0) is the same as the 3D Hessian matrix. 

2

3 32

(0)D
H

S



=


 (23) 
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Figure 13. Hardware architecture of partial derivative of D(0). 

Let the first derivative of Equation (18) with respect to S equals zero. 

( ) 0D S =  (24) 

The most variation of the pixel values around the detection point can be found at: 

( )
1

3 3

(0)D
S H

S

−




= − 


 (25) 

Substituting Equation (25) into Equation (18), we obtain: 

( )D S  ( ) ( ) ( )
1 1 1

3 3 3 3 3 3 3 3

(0) (0) 1 (0) (0)
(0)

2

TTD D D D
D H H H H

S S S S

− − −

   

    
= −   +         

  

 ( )
1

3 3

1 (0) (0)
(0)

2

TD D
D H

S S

−



 
= −  

 
. (26) 

Substituting Equation (26) into Equation (17), we have: 

( )
1

3 3

1 (0) (0) 1
(0)

2 32

TD D
D H

S S

−



 
−   

 
  

 ( )
1

3 3

(0) (0)
16 2 (0) 1

TD D
D H

S S

−



 
 −   

 
 (27) 

Since the matrix inversion, (H3×3)−1, requires lots of dividers in implementation, the 

resulting hardware cost would be high. Thus, the adjugate matrix, Adj(H3×3), and the de-

terminant, det(H3×3), are utilized here to accomplish the matrix inversion instead of using 

dividers. 

( )
( )

( )
1 3 3

3 3
3 3det

Adj H
H

H

− 




= , (28) 

where 

3 3( )

yy yz xy xz xy xs

yz zz yz zz yy yz

xy yz xx xzxx xz

xy yzxz zzxz zz

xy yy xx xy xx xy

xz yz xz yz xy yy

D D D D D D

D D D D D D

D D D DD D
Adj H

D DD DD D

D D D D D D

D D D D D D



 
+ − + 
 
 
 

= − + − 
 
 
 + − +
 
 

 
(29) 

and 

( )3 3det

xx xy xz

xy yy yz

xz yz zz

D D D

H D D D

D D D

 =
 

(30) 
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Figure 14 shows the realized architecture of the determinant and adjugate matrices. 

Since the adjugate matrix is symmetric, only six elements need to be processed in the im-

plementation. The determinant of H3×3 can be obtained by repeatedly using the first row 

of the adjugate matrix combined with elements in the first column of the determinant to 

reduce the hardware cost. Thus, Equation (27) can be rewritten as: 

3 3

3 3

( )(0) (0)
16 2 (0) 1

det( )

T Adj HD D
D

S H S





 
 −   

 
 

(31) 

 ( ) ( )3 3 3 316 2 (0) det detD H Mul H   −  , 

where 

 ( )3 3

(0) (0)TD D
Mul Adj H

S S


 
=  

 
 (32) 

That is, the detection point will have a high-contrast feature and could be regarded 

as a possible feature point when Equation (31) is satisfied. Since the condition for the high-

contrast feature detection is less complicated than the conventional ones, the resulting 

hardware circuits will be simpler for achieving a higher operating speed [12]. 

 

Figure 14. Hardware architecture of the determinant and adjugate matrices. 

2.3.3. Corner Detection 

In this paper, the Harris corner detection is adopted [19], 

2 2
2 2 2 2( ) ( 1) det( )r tr H r H   +   (33) 

where the parameter r is the ratio of two eigenvalues of H2×2 and r > 1, and tr(H2×2) and 

det(H2×2) respectively represent the trace and the determinant of H2×2, which are given by: 

( )2 2 xx yytr H D D = +  (34) 

and ( ) 2
2 2det

xx xy

xx yy xy
xy yy

D D
H D D D

D D
 = = −  (35) 

That is, the detection point has a corner feature if the inequality Equation (33) is sat-

isfied. An empirical value, r = 10, is chosen here for acquiring a better result. Figure 15 

shows the hardware architecture of the corner detection. 

Once the results of the three detections are all positive, the detection point will be 

logically regarded as a feature point. During the serial input of pixels, the production of 

the feature descriptor and the feature point detection proceeds until no image pixel re-

mains. 
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Figure 15. Hardware structure of the corner detection. 

3. Finite-Area Parallel Matching for Stereo Vision 

A double E-SIFT with FAP feature matching system is proposed for use in stereo 

vision, as shown in Figure 16. The stereo vision captures images by parallel cameras for 

the left and right E-SIFTs respectively to find the feature points and the corresponding 

feature descriptors, FL and FR. At the same moment, the corresponding coordinates will 

be output by a counter triggered by the detected signals, dtcL and dtcR, from the two E-

SIFTs. Then, the stereo matching points, MXL, MYL, MXR, and MYR, will be found out and 

recorded by the proposed FAP feature matching. Since the image transmission could be 

interrupted due to the finite bandwidth of SDRAM or noise coupling, a data valid signal 

is added to alarm all building blocks to prevent abnormal termination or any discontinu-

ous situation from corrupting correct output messages. 

 

Figure 16. Building blocks of the proposed E-SIFT and FAP feature matching for stereo vision. 
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3.1. Finite-Area Parallel Feature Matching 

Suppose two cameras, CL and CR, are set up in parallel at the same height without 

any tilt angle difference, and three objects, P1, P2, P3, are placed in line with the right cam-

era, as shown in the top view in Figure 17a [20]. In theory, the projections of the same 

object onto two image planes will be on the same row. However, based on Epipolar ge-

ometry [15], the imaging of P2 and P3 in the right image could disappear due to the shading 

effect caused by P1. As shown in Figure 17b, three imagings, P1L, P2L, and P3L, appear in 

the left image, but only one projection, P1R, in the right one. Therefore, to avoid the feature 

points of the left and right images from error matching, a minimum threshold value for 

comparison will be chosen in the proposed FAP feature matching. 

  

(a) (b) 

Figure 17. (a) Top view and (b) front view of stereo vision with Epipolar phenomenon. 

In reality, the object projections on two cameras cannot be on the same row due to a 

slight difference in the tilt angle between the two cameras. The resulting feature point 

matching would be inaccurate. However, too many feature points would consume a large 

number of resources. On the other hand, matching accuracy will decrease if there are not 

sufficient feature points. 

3.2. Hardware Design 

3.2.1. Parallel Arrangement for Feature Data 

In stereo vision, the scenery of the left camera is shifted toward the left slightly com-

pared to the right camera. Some objects would not be captured in the right camera and 

vice versa, as shown in the pink and blue areas of Figure 18. Thus, while pixels, which 

begin from the top left of the image, are entered into the system, mismatch could occur 

due to the visual angle difference between two the cameras. Therefore, a little delay will 

be added in the right-image input path to ensure the feature points found from the left 

image can be matched with the ones from the right image, as shown in the green area of 

the figure. 

Figure 19 shows the building blocks of the proposed FAP feature matching. A de-

multiplexer transfers the serial feature point data into a parallel form by the left detected 

signal, dtcL. The feature descriptors and the corresponding coordinates will be stored into 

registers. Then, sixteen feature points data of the left image will be compared with the 

feature point of the right image simultaneously when the right detected signal, dtcR, is 

received. 
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Figure 18. Different scenes are captured in stereo vision due to the visual angle difference between two cameras. 

 

Figure 19. Building blocks of the proposed finite-area parallel (FAP) feature matching for stereo vision. 

3.2.2. Feature Matching Algorithm 

For a street view image of 640 × 480 pixels, about 2500 feature points can be detected. 

Every row of the image may include 5.2 feature points in average. Thus, to improve the 

accuracy of feature matching, 16 feature points, which are equivalent to an area of approx-

imately three rows of pixels, will be chosen for feature matching in this paper.  

In general, for the same object, the projection in the left image will be located in a 

little more to the right position than the corresponding one in the right. An exception is 

that if the object is far away from the cameras, the resulting x coordinates of the projections 

on two images will be almost equal. Thus, the comparison will proceed only the following 

condition is satisfied: 

R Lx x , (36) 

where xR and xL represent the right-image and left-image x-coordinates, respectively. To 

quickly find out the matching points, the 16 feature descriptors of the left image will be 

simultaneously subtracted from the feature descriptor of the right one. The resulting dif-

ferences in 64 dimensions between each two feature descriptors are then summed together 

for comparison. 

64

_

1

,   0,  1,  2,  ...,  15k k Li Ri

i

f f k
=

= − = , (37) 
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where fk_Li, i = 1, 2, …, 64, is the element of the k-th feature descriptor in the left image, and 

fRi is the element of the feature descriptor of the right one. If the minimum sum is smaller 

than the half of the second minimum one, the feature points causing the minimum sum 

will be the matching pairs. The corresponding coordinates, MXR, MYR, MXL, and MYL, on 

the respective images will be the output. 

4. Experiment Results 

In this paper, we use Altera development board, DE2i-150, to verify the feasibility of 

the proposed E-SIFT and FAP feature matching. The core of DE2i-150 is Cyclone IV GX: 

EP4CGX150DF31C7 and the system clock is 50 MHz. Three types of experiments are con-

ducted in the following. In the first one, the same functions are synthesized for two dis-

tinct SIFTs by the proposed TI with LUT approach and the CORDIC. Then, a comparison 

between the two SIFTs proceeds after measurements. In the second one, the performance 

of the proposed E-SIFT is evaluated and compared with other hardware-implemented 

SIFTs. In the final one, the system of the proposed double E-SIFT with FAP feature match-

ing for stereo vision is evaluated and compared with the state-of-the-art approaches. 

4.1. Proposed TI with LUT and CORDIC Algorithm 

In the beginning, the proposed TI with LUT and the CORDIC algorithms are respec-

tively realized into two distinct SIFTs. Next, we arbitrarily choose seven 640 × 480 images 

having different sceneries as samples for testing to acquire an objective evaluation from 

the comparison of the two distinct SIFTs. 

In each experiment, both the original and skewed images are applied to the same 

SIFT to detect the feature points. Then, the matching pairs are determined by a conven-

tional exhaustion method via C++ and Visual Studio. Each of the feature points on the 

original image will be compared with all feature points on the skewed ones to find the 

matching pairs. Based on the matching results, the resulting accuracy can be estimated.  

Table 3 shows the performance and hardware resources required by the two ap-

proaches. Note that the accuracy between the proposed TI with LUT and CORDIC is very 

close. However, their consumed hardware sources are quite different. The quantities of 

LE and register in the proposed TI with the LUT approach are significantly reduced by 

89.18% and 96.08% compared with the CORDIC algorithm. 

Table 3. Accuracy and hardware comparison for proposed TI with LUT and CORDIC algorithm. 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 

       

Image 
Accuracy (%) 

LEs Reg. DSP/Mult. RAM (kbits) 
1 2 3 4 5 6 7 

CORDIC [12] 69.23 93.33 100.0 78.37 88.09 96.0 88.64 934 562 0 0.03 

Proposed TI 

with LUT 
70.37 94.44 100.0 76.31 86.66 95.65 91.30 101 22 0 0 

4.2. Performance of Proposed E-SIFT 

To verify the performance of the proposed E-SIFT, a 640 × 480 image having a static 

object, as shown in Figure 20a, is processed by a single E-SIFT to extract the feature points 

indicated by red points in Figure 20b, where 283 feature points are detected. Then, the 

image is shifted toward the bottom right direction for matching with the original one by 

a software-based feature matching, as shown in Figure 21. There are 290 feature points 

detected in the shifted image, resulting in 83 matching pairs. No matching error occurred 
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in these matching pairs. The resulting accuracy of the feature matching based on the pro-

posed E-SIFT is 100%. 

When the original image is rotated and skewed, 272 and 235 feature points are de-

rived, respectively, as shown in Figure 22a,b. Through the proposed E-SIFT and the soft-

ware-based feature matching, 13 and 11 matching pairs are obtained between the original 

image and the rotated and skewed images, respectively. The resulting accuracy of the fea-

ture matching based on the proposed E-SIFT is 100%. 

To test the flexibility of the proposed E-SIFT, outdoor and indoor images are also 

skewed for feature matching with the original one, as shown in Figure 23a,b, respectively, 

where the matching accuracy reaches 88.89% and 92.39%, respectively, for these two im-

ages. The experimental results have shown that the proposed E-SIFT exhibits good per-

formance even for images having cluttering scenery. 

 

(a) (b) 

Figure 20. (a) A 640 × 480 image for evaluating the proposed E-SIFT; (b) feature points detected. 

 

Figure 21. Feature matching results of the original image with the shifted one. 

  

(a) (b) 

Figure 22. Feature matching results of the original image with (a) the rotated and (b) the skewed image. 



Electronics 2021, 10, 1632 19 of 25 
 

 

  

(a) (b) 

Figure 23. (a) Matching accuracy for a skewed outdoor image is 92.39%, where 85 out of 92 feature points are successfully 

matched; (b) Matching accuracy for a skewed indoor image is 88.89%, where 48 out of 54 feature points are successfully 

matched. 

Table 4 shows a performance comparison and hardware resources required by the 

proposed E-SIFT and other published papers. The processing time of one image, including 

detection of the feature points and generation of the feature descriptor, is 4.865 ms, reach-

ing a corresponding frame rate of 205 fps. As shown in Table 4, the proposed E-SIFT is the 

fastest among the hardware-implemented SIFTs published in the literature. The resources 

required for the proposed E-SIFT includes 54,911 LEs, 36,153 registers, 297 DSP, and 267.9 

kbits RAM. Although the SIFT in [11] utilized a similar quantity of devices, the resulting 

frame rate is 58 fps only. Compared with other published SIFTs, the proposed E-SIFT ex-

hibits a faster response while using a relatively small quantity of hardware devices. 

Table 4. Performance comparison of proposed E-SIFT with other published papers. 

Mono 

SIFT 
Resolution 

Operating 

Frequency 
Devices 

Frame Rate 

(fps) 
LEs Registers DSP/Multi. 

RAM 

(kbits) 

Proposed 

E-SIFT 

640 × 480 

50 MHz Altera Cyclone IV GX >205 54,911 36,153 297 267.9 

[10] 21.7 MHz Altera Cyclone IV GX ≈70 125,644 8,372 77 406 

[11] 170 MHz Xilinx Virtex-6 ≈58 60,837 34,166 377 N/A 

[12] 50 MHz Altera Cyclone IV GX <150 65,560 39,482 642 319 

[16] 100 MHz TSMC 0.18µm CMOS 30 1,320,000 N/A N/A 5729 

[21] 190 MHz DC Ultra 130nm 20 548,000 N/A N/A 448.7 

[22] 40.355 MHz Xilinx Zynq-7020 131.36 47,255 42,267 136 128 

[23] N/A Xilinx Virtex-5 30 57,598 24,988 8 1206 

4.3. Proposed Double E-SIFTs with FAP Feature Matching for Stereo Vision 

In this paper, a stereo vison architecture of double E-SIFT integrated with FAP fea-

ture matching is proposed, as shown in Figure 24, where stereo images from the KITTI 

dataset are firstly written into SDRAM of Altera DE2i-150 by Nios II. When the system is 

activated, the stereo images in the SDRAM will be delivered to the proposed stereo vision 

system through the Avalon bus. An end signal and coordinates of the matching pairs will 

be sent back to a PC through buffers after finding the feature points. In the following ex-

periments, we use 1226 × 370 images from the KITTI dataset for the proposed double E-

SIFT and FAP feature matching system [24]. To be able to compare with other published 

papers, the KITTI stereo images are tailored symmetrically with respect to the center to 

form an image having 640 × 370 pixels, as shown in Figure 25. 

As shown in Figure 26a, through the proposed double E-SIFT, 1748 and 1664 feature 

points are detected in the left and right images 05 000000.png from the KITTI dataset, 

respectively. After the proposed FAP feature matchings, 497 matching pairs are obtained. 
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Figure 24. Architecture of the proposed stereo vison system. 

 

Figure 25. Image tailored from KITTI dataset. 

When stereo images 00 02566.png from KITTI dataset having a car in the street are 

applied respectively to the left and right E-SIFTs, more feature points, i.e., 2162 and 1972 

in the left and right images, can be detected, as shown in Figure 26b. Note that there are 

102 and 110 feature points around the car in the left and right images, respectively. After 

the FAP feature matching, we obtain 560 matching pairs where 44 are for the car. Both the 

above-mentioned experiments of stereo visions present sufficient matching points for the 

purpose of mapping or object tracking. To evaluate the accuracy of the proposed double 

E-SIFT with FAP feature matching, the stereo images are aligned vertically, where green 

matching lines are depicted with the same procedure, as shown in Figure 27a,b. The ac-

curacy of the proposed double E-SIFT with FAP feature matching presents good results 

because there are no apparent skewed matching lines existed in the images. 

Table 5 shows the consumed hardware resources of the proposed double E-SIFT with 

FAP feature matching for stereo vision. The usage ratios of LEs, registers, RAM, and 

DSP/Multiplier in the DE2i-150 development board are 93.6%, 52.4%, 82.5%, and 8.9%, 

respectively. For the whole system, the double E-SIFT and the FAP feature matching oc-

cupy 76% and 24% of LEs, respectively, as shown in Figure 28a. Most of the registers, 

about 90%, are used by the E-SIFTs. Only 10% of the total register devices are used by the 

FAP feature matching, as shown in Figure 28b. The usage ratio of the coordinate counter 

is very low and can be neglected. 

The total power consumption of the FPGA when it hosts the proposed architecture 

including the double E-SIFT and the FAP feature matching is less than 1168.33 mW. This 

value is estimated using the Power Analyzer from Intel [25]. It is difficult to directly meas-

ure the power consumption because the DE2i-150 development board that we used to 
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conduct the experiments does not come with a circuit for power estimation similar to the 

one used in [26].  

 

(a) 

 

(b) 

Figure 26. (a) Stereo vision images, 05 000000.png from KITTI dataset, are applied to the proposed double E-SIFT with 

FAP feature matching, resulting in 497 matching pairs between the left and right images; (b) Stereo vision images, 00 

02566.png from KITTI dataset, are applied to the proposed double E-SIFT with FAP feature matching, resulting in 560 

matching pairs between the left and right images. 

Table 6 lists the performance comparison and hardware resources usage of the pro-

posed system with other published papers. The resulting frame rate of the proposed dou-

ble E-SIFT with FAP feature matching is 181 fps, which is faster than most of the ap-

proaches. Although reference [27] implementing SURF detector and BRIEF descriptor has 

the fastest frame rate [27], the required hardware resource is much higher than the pro-

posed method in this paper. The quantities of LEs in [14] and [28] are close to the proposed 

stereo vision system, but the resulting frame rates are only about 40 fps. The stereo vision 

system proposed by [29] uses many hardware resources, but the resulting frame rate is 

only half of the proposed approach. In summary, the proposed double E-SIFT with FAP 

feature matching has a satisfactory frame rate with an acceptable hardware cost. 
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Table 5. Hardware resources utilized in the proposed system. 

Module Name LEs Registers DSP/Multi. RAM (kbits) 

E-SIFTs for 

Stereo vision 

107,481 

(71.7%) 

71,182 

(47.5%) 

594 

(82.5%) 

550.8 

(8.3%) 

Coordinate 

Counter 

84 

(0.006%) 

39 

(0.003%) 

0 

(0.0%) 

0 

(0.0%) 

FAP Feature Matching 
32,738 

(21.8%) 

7368 

(4.9%) 

0 

(0.0%) 

35.6 

(0.54%) 

Overall structure 
140,303 

(93.6%) 

78,589 

(52.4%) 

594 

(82.5%) 

588.8 

(8.9%) 

 

  

(a) (b) 

Figure 27. The same stereo visions as (a) Figure 26a, and (b) Figure 26b are aligned vertically to verify the accuracy. There 

is no apparent skewed matching line existed in the images. 

  

(a) (b) 

Figure 28. Usage ratio of (a) LE used and (b) registers used for the proposed E-SIFTs and FAP feature 

matching. 
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Table 6. Performance comparison of proposed stereo E-SIFTs and FAP feature matching with other published papers. 

 Resolution 
Operating 

Frequency 
Devices Approach 

Frame Rate 

(fps) 
LEs Registers DSP/Multi. 

RAM 

(kbits) 

Proposed 

Architecture 
640 × 370 50 MHz 

Altera Cyclone 

IV GX 
E-SIFT × 2 + FAP-FM >180 140,303 78,589 594 588.8 

[14] 640 × 480 
12.5 MHz 1 

15 MHz 2 

Altera Cyclone 

IV  
SIFT + FM + R 40 141,394 25,076 528 1743 

[27] 512 × 512 1070 MHz Xilinx Virtex-7 SURF + BRIEF 380 267,095 298,864 144 11 

[28] 640 × 480 12.5 MHz 
Altera Cyclone 

IV GX 
SIFT + FM >36 138,944 24,079 169 2860 

[29] 640 × 480 25 MHz Altera Stratix IV SIFT + FM + R >81 494,201 105,423 960 1886 

FM: Feature Matching; R: Random sample consensus (RANSAC). SURF: Speed Up Robust Features; BRIEF: Binary Robust 

Independent Elementary Features. 1 Frequency of SIFT and FM; 2 Frequency of RANSAC. 

5. Conclusions 

In this paper, we propose an FPGA-implemented double E-SIFT with FAP feature 

matching for stereo vision. With the improved architecture for the Gaussian pyramid, the 

Gaussian-blurred image and DoG pyramid can be produced simultaneously in only one 

clock cycle. As for the feature descriptor, we propose a simple TI with LUT method to 

simplify the decision of direction and gradient of detection points. The dimension of the 

feature descriptor is also decreased by half so that the hardware cost is significantly re-

duced. In the feature decision part, in comparison with the conventional approaches, a 

simple condition for high-contrast detection is derived by approximating the threshold 

value to the power of two. Thanks to the proposed double E-SIFT integrated with FAP 

feature matching, matching pairs between two images can be efficiently determined. 

Based on the position of the feature point in the right image, the corresponding area in the 

left image can be chosen for feature matching without external memory. 

Since the simplification of the structures and approaches adopted in the proposed E-

SIFT, the quantity of hardware devices required in the implementation can be significantly 

reduced than that by other published papers. It also effectively improves the operating 

speed of the proposed system. From the experimental results, a frame rate of 205 fps can 

be reached by the proposed E-SIFT at a system clock of 50 MHz. For stereo vision from 

the KITTI dataset, a frame rate of 181 fps is also achieved by the proposed double E-SIFT 

with FAP feature matching system. Besides, a data valid signal is added in the system to 

synchronize all the functional blocks to prevent the proposed circuitries from ceasing 

transmission due to the finite bandwidth of SDRAM or the noise interference. 
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