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Abstract: In this study, sol–gel-processed Li-doped SnO2-based thin-film transistors (TFTs) were
fabricated on SiO2/p+ Si substrates. The influence of Li dopant (wt%) on the structural, chemical,
optical, and electrical characteristics was investigated. By adding 0.5 wt% Li dopant, the oxygen
vacancy formation process was successfully suppressed. Its smaller ionic size and strong bonding
strength made it possible for Li to work as an oxygen vacancy suppressor. The fabricated TFTs
consisting of 0.5 wt% Li-doped SnO2 semiconductor films delivered the field-effect mobility in a
2.0 cm2/Vs saturation regime and Ion/Ioff value of 1× 108 and showed enhancement mode operation.
The decreased oxygen vacancy inside SnO2 TFTs with 0.5 wt% Li dopant improved the negative bias
stability of TFTs.

Keywords: sol–gel; Li doping; thin-film transistor; SnO2; negative bias stability

1. Introduction

Recently, the demand for oxide semiconductors has been increased due to their high
usability. Oxide semiconductor-based thin-film transistors (TFTs) show higher mobility
than amorphous phase Si and can achieve higher stability than low-temperature polysilicon
material-based transistors [1–5]. In addition, their wide bandgap properties are critical
factors to realize transparent electronics. These advantages are being used not only for
large-area displays but also for several devices that require transparent features. The
most commercially available oxide semiconductors are the indium gallium zinc oxide
(IGZO) semiconductors for channel materials of TFTs. However, IGZO contains indium,
which has low price competitiveness because it is a rare-earth element [6]. Therefore,
many studies have been conducted to fabricate inexpensive oxide TFTs to replace IGZO,
which is expensive, and ZnO, ZnSnO, and SnO2, excluding indium, have shown excellent
performance as substitutes [7–9].

SnO2 is a promising material for use as an active channel layer of high-performance
oxide TFT (high intrinsic Hall mobility, transparency because of a wide bandgap, and
a low melting point, which determines the sintering temperature for achieving high-
quality crystalline thin films [10–12]. To date, the expensive and time costly vacuum-based
deposition technique has been used for fabricating metal–oxide-based thin films. To
overcome this issue, the sol–gel process has been recently employed [13–16]. The sol–
gel route process is cost-effective, eco-friendly, and adaptable for large area applications.
Moreover, because the starting materials used in this process are in the liquid phase,
they have been considered promising inks for various printing systems [17]. Although
the abovementioned sol–gel process-based electronics have shown high performance,
one critical disadvantage is their chemical or bias stress instability, originating from the
absorbed molecules or oxygen vacancy inside metal–oxide semiconductors (MOSs), which
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leads to threshold voltage instability. To solve this issue, an oxygen vacancy suppressor has
been used [18,19]. In this study, by producing SnCl2·2H2O and ethanol-based precursors
with a Li dopant, Li-doped SnO2 TFTs are realized by the sol–gel process. The optimized
Li dopant works as a promising oxygen vacancy suppressor to reduce oxygen vacancy
formation inside SnO2 active channel layers. First, the structural, chemical component,
and optical characteristics of Li-doped SnO2 thin films are investigated. The electrical
characteristics of Li-doped SnO2-based TFTs are also investigated.

2. Materials and Methods

Tin (II) chloride dehydrate (SnCl2·2H2O, Sigma Aldrich, St. Louis, MO, USA) was
used as a precursor. Tin (II) chloride dehydrate was dissolved into ethanol in an air ambient
and at room temperature. The three precursor solutions were made by mixing SnCl2 with
ethanol at 0.030 M (0.0677 g per 10-mL ethanol). One solution was made for reference, and
the other two were mixed with 0.5- and 1.0-wt% Li. Lithium acetate dehydrate (C2H3LiO2
2H2O, Sigma Aldrich) was used as a source of a Li dopant. A coplanar structure (bottom
gate and bottom source/drain) was fabricated with Si/SiO2 substrates. Highly doped
p-type Si was used as a gate electrode. Thermally grown 100 nm-thick SiO2 was used as an
insulator, and Au was used for the source/drain electrode. The Au source/drain electrodes
were formed by e-beam evaporation and using the lift-off fabrication process. The length
and width of the channel were 100 and 1000 um, respectively. The substrates were cleaned
for 1 h in ultraviolet (UV)/O3 (SENLights SSP16-110) to eliminate organic impurities and
improve adhesion properties. The prepared precursors were coated onto the UV-cleaned
substrates at 3000 rpm for 50 s. To evaporate ethanol, the coated substrates were baked
at 150 ◦C on a hot plate (CORNING PC-420D) for 10 min. After prebaking, the substrates
were immediately placed in a furnace tube (U1Tech PTF-1203) and the temperature was
gradually increased 500 ◦C. Thereafter, the substrates were annealed for 2 h. The phase
and structural properties of the TFTs were analyzed by measuring Grazing Incidence
X-ray Diffraction (GIXRD, A Philips X’pert Pro, Philips, Amsterdam, The Netherlands).
Ultraviolet–visible spectroscopy (UV–vis, LAMBDA 265) was used to obtain the optical
properties of the fabricated TFTs. The film thickness of the film was measured using a
scanning probe microscope (Park NX20, tapping mode). The chemical properties of the
TFTs were analyzed using X-ray photoelectron spectroscopy (XPS: ULVAC-PHI), and their
electrical properties were measured using a Keithley 2636B semiconductor parameter
analyzer (Keithley Instruments, Cleveland, OH, USA) and a probe station (MST T-4000A).

3. Results and Discussion

Figure 1 shows the GIXRD spectra of the sol–gel-processed SnO2 films with various
Li contents. All the deposited TFTs showed the polycrystalline tetragonal SnO2 phase.
The diffraction peaks at 26.6, 33.8, 37.95, and 51.8 corresponded to the crystal planes of
(110), (101), (200), and (211) (JCPDS card number: 41-1445), respectively. The peak at
31.7 corresponded to Sn (JCPDS card number: 82-2958), indicating that Sn was partially
oxidized. The full width at half-maximum (FWHM) of each diffraction peak was associated
with the crystalline size of the films. The (110) plane was primarily the direction of growth
of SnO2 films. The crystalline size of the films under the (110) crystal plane was calculated
using the Scherrer equation:

D =
0.9λ

β cos θ
, (1)

where D, λ, β, and θ indicate the crystalline size, CuKα wavelength (1.54 Å), FWHM of
the peak, and peak position, respectively. The obtained crystalline sizes of the SnO2 TFTs
from the (110) plane were 1.33 nm, 1.47 nm, and 1.47 nm for Li-doped SnO2 films with Li
contents of 0.0 wt%, 0.5 wt%, and 1.0 wt%, respectively. The Li-doped SnO2 flims exhibited
larger crystalline sizes than the undoped SnO2 films. The added Li could accelerate the
growth process during the sol–gel process [20].
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Figure 2a–c show the representative O 1s XPS spectra of Li-doped SnO2 as a function
of Li (wt%). The O 1s peak was divided into three types of peaks [21]. One peak is for the
O2
− combined with the adjacent ion in Lattice (OLattice), another for the Oxygen bonds

related to the oxygen vacancy (OVacancy), and the other for the amount of OH. Figure 2d
shows that the variation in the composition ratio of OVacancy, OLattice, and –OH groups
as a function of Li (wt%). When a 0.5 wt% Li dopant was added, the relative percentage
of OVacancy gradually decreased from 27.5% to 21.7%, whereas the relative percentage
of OLattice gradually increased from 65.7% to 68.1%, which meant that a small amount
of Li dopant could work as a carrier inhibitor. Several factors, such as electronegativity,
standard electrode potential (SEP), and ion radius, need to be assessed for dopants to be
used as carrier inhibitors [22,23]. The electronegativity of dopants and oxygen should
significantly differ from each other. When the SEP of the dopant is lower than that of the
host, the dopant–oxygen bond becomes stronger. The electronegativity and SEP of Sn
hosts and Li dopants were 1.96 and −0.14 V and 0.98 and −3.04 V, respectively. Based on
the aforementioned theory, the Li dopant could work as a carrier inhibitor successfully.
Moreover, the radius of the dopant and host ions should not differ considerably to avoid
the breakdown of the structure; the radii of Sn4+ and Li+ were 74 and 68 pm, respectively,
making Li+ suitable as the dopant. However, when 1.0-wt% Li was added, the relative
percentage of OVacancy increased from 21.2% to 23.3%, while the relative percentage of
OLattice decreased from 68.1% to 66.6%.
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To elucidate the effect of the Li dopant amount on the optical bandgap of SnO2 films,
the transmittance plots of the SnO2 films as a function of Li dopant amounts were obtained
using a UV–vis spectrophotometer. Regardless of the Li dopant amount all the fabricated
SnO2 films showed a transmittance of >97.5% in the visible range (380–900 nm) (Figure 3a).
However, at less than 350 nm, all the SnO2 films showed a drastic decrease in the bandgap
absorption, corresponding to the optical bandgap of SnO2 films. The optical bandgap can be
obtained by extrapolating the line segment in Figure 3b and using the following equation:

(αhν)1/n = A
(
hν− Eg

)
, (2)

where α is the absorption coefficient, A is a constant, and Eg is the optical bandgap of SnO2

films. For direct bandgap transition, the n value is 1
2 . Using Equation (2), the estimated

optical bandgaps of each film were 3.79 eV, 3.87 eV, and 3.93 eV. As a function of Li
concentration, the optical bandgap of SnO2 films increased. Regardless of the Li dopant
amount, the obtained optical bandgap of the fabricated SnO2 films was larger than that
of bulk SnO2 (3.60 eV). If the film thickness was close to the Bohr radius owing to the
quantum confinement effect, the optical bandgap could increase. The change in the optical
bandgap can be calculated using the following equation [24,25]:

∆Eg =
h2

8t2

(
1

m∗e
+

1
m∗h

)
, (3)

where h is the Plank’s constant, t is the thickness of SnO2 films, me
* and mh

* are the effective
masses of electrons and holes, respectively (for SnO2, me

* = 0.275m0, m0 = 9.1 × 10−31 kg).
Because me

* << mh
*, 1/mh

* term can be ignored [24]. Regardless of Li dopant amount,
the film thickness was approximately 5.5 nm, and the calculated optical bandgap was
3.90 eV. An additional change in the optical bandgap could be attributed to the free
carrier concentration. Figure 3c presents the valence band (VB) spectra of Li-doped SnO2
films using XPS. The VB offset values between the maximum VB value and the Fermi
level were extrapolated by linear fitting and the values were 3.65 eV, 3.46 eV, and 3.65 eV,
respectively [26]. Using the obtained bandgap and VB offset values, the conduction band
(CB) offset values between the minimum of CB value and Fermi level could be calculated.
The calculated CB offset values were 0.14 eV, 0.41 eV, and 0.28 eV, respectively, and they
were proportional to the carrier concentration. The CB offset value of the 0.5 wt% Li
dopant was the lowest, implying the lowest carrier concentration among the three cases
by suppressing OVacancy formation, determines the free carrier concentration in the MOS
system [27].
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Figure 4 shows the electrical characteristics of the fabricated Li-doped SnO2 based
TFTs represented by output and transfer curves. The output curve (Figure 4a–c) was probed
every 10 V between the gate voltage−30.0 and 30.0 V. Regardless of the Li dopant amounts,
all the fabricated SnO2 TFTs showed the conventional n-type semiconductor properties and
exhibited a high on/off current ratio (over 107). The relatively large work function of an Au
source and a drain electrode on n-type semiconductor results in the formation of Schottky
contacts. The nonlinear relationship between drain currents and voltages originates from
the abovementioned energy barrier between electrodes and semiconductors [14]. The
TFT fabricated using pure SnO2 showed the depletion-mode operation with a negative
threshold voltage (Vth). This device, which is in the depletion mode, could easily form a
channel at a gate voltage of 0.0 V owing to the presence of excessive free carriers in the SnO2
TFT. However, 0.5- and 1.0-wt% Li-doped TFTs showed the enhancement-mode operation
with a positive Vth. Compared with pure SnO2, the reduced OVacancy generated less free
carriers, leading to a late turn on. Field effect mobility (FEM) in the saturation regime and
Vth were obtained by linear fitting to the (ID)0.5–VG plot using the following equation:

ID = µCi
W
2L

(VG −Vth)
2 (4)

where Ci (insulator capacitance) = 3.45 × 10−8 F/cm2, W (channel width) = 1000 µm,
L (channel length) = 100 µm. The FEM in the saturation regime of the SnO2 TFT was
5.91 cm2/Vs. The FEM values of the TFTs consisting of 0.5- and 1.0 wt% Li doped SnO2
TFTs were 2.0 and 4.42 cm2/Vs, respectively. Grain boundary scattering, related to the
grain boundary number, inside the channel material was strongly affected the FEM of
TFTs. For example, a transistor, consisting of channel material, having large crystallinity,
showed increased FEM by suppressing the grain boundary scattering [28]. Although based
on the GIXRD data, the calculated crystalline size of the pure SnO2 films was smaller
than those of the Li-doped SnO2 films, the FEM in saturation regime of pure SnO2 TFTs
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showed the highest values. For the MOS system, the main transportation mechanism
was the percolation conduction mechanism. Based on this mechanism, the FEM could
be improved by filling trap sites at high carrier concentrations [29]. The number of free
carriers could be increased by forming OVacancy inside MOSs. OVacancy worked as donor
levels and generated carriers using the following equation:

Ox
O →

1
2

O2(g) + V..
O
+ 2e− (5)

The decreased FEM value of 0.5-wt% Li-doped SnO2-based TFT attributed to the
decrease in the number of OVacancy, which was confirmed using XPS data. This is a critical
factor, compared with grain boundary scattering effects in this system. Additionally, The
reduced number of OVacancy was the reason for the low FEM value of the 0.5-wt% Li-doped
SnO2-based TFT show compared with that of pure SnO2-based TFTs [16]. The 1.0 wt%
Li-doped SnO2 based TFTs again showed increased OVacancy again, and which increased the
FEM and induced a negative shift of Vth compared with the 0.5 wt% Li-doped based SnO2
TFTs. It was already reported that Li can be located at the interstitial site and substitutional
site in the SnO2 matrix. If Li is located at the interstitial site, this can increase carrier
concentration by generating on electron. The increased carrier concentration results in the
enhanced FEM, based on aforementioned the percolation conduction mechanism. However,
if Li is located at a substitutional site in the SnO2 matrix, it can neutralize the electrons,
which are the system’s main carriers; because of fewer electrons, FEM decreases.
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Figure 5a–c show the transfer curves of the representative TFT as a function of the
negative bias stress (NBS) time with a drain voltage of +5.0 V. During the NBS test, −30.0 V
was biased to gate electrodes for 1000 s. Under these NBS conditions, Vth shifts –10.5,
1.32, and 3.81 V, respectively. The extracted ∆Vth (5 devices) is plotted in Figure 5d to
check the statistical distribution. The 0.5 wt% Li-doped based SnO2 based TFT exhibited
the lowest Vth shift among the three cases. Based on XPS data, 0.5 wt% Li-doped SnO2
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based TFT showed the lowest OVacancy concentration. Based on the percolation conduction
mechanism, the lowest OVacancy leads to the lowest FEM and improved NBS properties.
This negatively shifted Vth originated from the tapping of positive charges at the interface
between semiconductors and insulators. OVacancy could form VO

2+ and 2e−. VO
2+ could

move to the interface between semiconductors and insulators during the NBS test. By
adding the optimal amount Li dopant, the OVacancy could be decreased by the formation of
Li–OVacancy pairs, leading to improved NBS properties [18,19,30]. In addition, compared
with sol–gel-processed Mg- and Ti-doped based SnO2, Li-doped SnO2 based TFTs show
more stable NBS properties [19,30]. Comparing to the previous results, Li-doped SnO2
TFTs show similar or higher field effect mobility and comparable negative bias stability.
The reported Si- and Ga-doped SnO2 based TFTs show higher FEM and the Si-doped SnO2
based TFTs show the better NBS properties [31]. Corresponding to deposition method, the
crystallinity, chemical composition, and carrier concentration were changed. In this paper,
the sol–gel-processed SnO2-based thin film transistors show lower field effect mobility,
compared to reported SnO2 semiconductors deposited by the vacuum-based deposition
technique. However, sol–gel-processed Li doping can be applied to other types of the
solution-processed oxide TFTs.
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4. Conclusions

In this study, sol–gel-processed Li-doped SnO2-based TFTs were fabricated on SiO2/p+
Si substrates. The influence of the Li dopant amount on the structural, chemical, optical,
and electrical characteristics of the fabricated Li-doped SnO2-based TFTs was investigated.
By adding 0.5-wt% Li, the oxygen vacancy formation process was successfully suppressed.
The TFTs fabricated using 0.5-wt% Li-doped SnO2 semiconductor films exhibited FEM in
the saturation regime of 2.0 cm2/Vs and showed the enhancement-mode operation. The
decreased OVacancy inside the SnO2-based TFTs fabricated using 0.5-wt% Li improved the
negative bias stability of TFTs.
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