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Abstract: Continuous authentication (CA) is the process to verify the user’s identity regularly without
their active participation. CA is becoming increasingly important in the mobile environment in which
traditional one-time authentication methods are susceptible to attacks, and devices can be subject to
loss or theft. The existing literature reports CA approaches using various input data from typing
events, sensors, gestures, or other user interactions. However, there is significant diversity in the
methodology and systems used, to the point that studies differ significantly in the features used, data
acquisition, extraction, training, and evaluation. It is, therefore, difficult to establish a reliable basis to
compare CA methods. In this study, keystroke mechanics of the public HMOG dataset were used to
train seven different machine learning classifiers, including ensemble methods (RFC, ETC, and GBC),
instance-based (k-NN), hyperplane optimization (SVM), decision trees (CART), and probabilistic
methods (naïve Bayes). The results show that a small number of key events and measurements can
be used to return predictions of user identity. Ensemble algorithms outperform others regarding the
CA mobile keystroke classification problem, with GBC returning the best statistical results.

Keywords: authentication; authentication technology; mobile phone; data analytics; behavioral
biometrics; typing dynamics; keystroke analysis; keystroke patterns

1. Introduction

Mobile phones are rather pervasive today, with the prevalence of mobile phones,
devices, and mobile communications increasing continuously. The sheer numbers and
ubiquity of mobile devices tell about the necessity to establish methods that guarantee
secure operation and communication. Authentication is the process of verifying identity
of a system user. Authentication in mobile phones is commonly based on tokens like
PIN, gesture patterns, passwords, and, more recently, on biometric-based techniques like
fingerprint scans or facial recognition. However, attacks can bypass most authentication
methods. PINs and passwords are susceptible to guessing or sniffing or more sophisticated
methods like video side-channel attacks [1] or reflection reconstruction [2]. Smudge attacks
can bypass patterns [3]. Even biometric systems are susceptible to spoofing [4]. Similar
concerns arise for voice-based authentication [5]. Additionally, traditional authentication
methods are a one-time process that is usually required to log in or unlock the device.
Since mobile devices can also be taken without user permission (e.g., stolen), one-time
authentication methods may result in unauthorized use even if the user authentication was
initially legitimate.

Continuous authentication (CA) aims to mitigate all these shortcomings by running
background processes that continuously monitor the user’s interactions and characteristics
to determine if the ongoing access is legitimate. Evidence on desktop computers suggests
that even simple interactions with the keyboard feature unique individual traits [6]. Inter-
action with a mobile device is supposed to create a more detailed imprint because postural
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preferences [7] and other physiological traits like handgrip [8] come into play. CA is then
particularly promising in a mobile scenario, but it also brings additional complications for
the implementation since particularities of user interaction with mobile devices must be
considered. Machine learning (ML) provides a set of classification algorithms that can tell
apart legitimate user events from illegitimate ones, providing a backbone to build user
models that can be used to implement CA. Since mobile devices and BYOD policies also
bring new threats to organizations, threat analysis and threat intelligence efficiency rely on
machine learning approaches’ efficient application [9]. ML classifiers used in recent studies
include random forests [10], neural networks [11], or even deep learning [12]. However,
to the best of our knowledge, there is little evidence comparing and reporting classifiers’
performance under the same conditions ([13] is a notable exception). The existing studies
differ significantly in critical factors, such as the features selected, their extraction or normal-
ization. The evidence on intrusion detection suggests that feature selection and extraction
influence efficiency and effectiveness [14]. The studies also usually focus on tuning the
models to beat a given accuracy benchmark for the classifier and dataset under scrutiny.
Further, these studies usually compare their results with a small subset of different, and
sometimes unrelated, results reported in other studies.

The most common interaction method monitored for CA is keyboard input. Typing
determines a unique pattern that has been investigated for traditional keyboards [15] and
different variants of mobile keyboards [16]. Standard interaction methods are preferred
for CA because they rely on the metrics gathered unobtrusively during regular sessions.
Although biometric authentication methods like facial recognition can be used, they usu-
ally present several practical problems that designers have to face. Firstly, biometric data
demand specific protection and privacy features in systems that deal with them, although
specific legal requirements vary depending on the geographical location. Secondly, biomet-
ric authentication methods depend on the availability of resources (e.g., cameras) to capture
data. The device may deny access resulting in interruptions of the user’s regular interaction
similarly to other token-based authentication methods. In the mobile environment, modern
smartphones provide additional input sensors and can capture user gestures. All these
can be combined with keystrokes to provide a lot of data of user interactions that can be
used for CA. However, this research body tends to produce ad-hoc solutions that rely on a
complex operational process with multiple stages (data gathering, feature extraction, and
decision-making) difficult to extend or implement in broader contexts.

This research contributes to knowledge by:

• presenting the results of training and comparing ML CA models based on keystroke
mechanics that use substantially fewer features than the current state-of-the-art models
but nonetheless offer comparable results.

• showing that a small number of key events and metrics return accurate predictions of
the user’s identity.

The results are also relevant for practitioners and the broader access control community
since ML CA models can be used to implement or feed mobile agents that can respond to
incidents. In this way, communication between different agents (e.g., client–server) will be
more efficient. Further, our approach also results in user CA models that can be efficiently
built, maintained, and updated.

The rest of the paper is structured as follows. Section 2 presents the literature review
of CA and keystroke mechanics. Section 3 presents the methodology of the study. The
results are presented in Section 4. The paper closes with the discussion and conclusions.

2. Literature Review

Continuous authentication is the process of determining the legitimacy of the user’s
identity without their active participation. CA contrasts with traditional authentication
that usually relies on system credentials provided once to identify the user. CA systems
typically run as a background process that gathers information about physical or behavioral
properties to determine the identity. The first and most popular method of CA is to use
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keyboard interactions [17]. Measurements of keypresses like the down–up or up–down
time can be used to define individual patterns. They can be taken for every single key
event (usually called monograph features) or for a sequence of two (digraph features) or
more keys. The latter facilitates determining the latency of presses and releases between
different events. CA models for keystroke dynamics achieve high accuracy with a low
false acceptance ratio even for free-text input [18]. The body of study of these techniques
is usually called keystroke dynamics or keystroke behavioral biometrics. A systematic
literature review of keystroke dynamics can be found in [19].

Given the existing body of research on PC-based keystroke dynamics, it is not surpris-
ing that initial works on CA for mobile devices also focused on keyboard events. Seminal
works on mobile phone CA focused on keystroke mechanics with a hardware keypad
included in the first generations of handset devices [11]. However, with the spread of
touchscreen mobile devices, this body of work has been adapted to virtual keyboards as
they became commonly available in smartphones. Teh et al. [16] presented a literature
review of touch dynamics biometrics for virtual keyboards. They divided the operational
process into three stages: data acquisition, feature extraction, and decision-making. The
decision-making techniques reported in the literature are probabilistic modeling, cluster
analysis, decision trees, support vector machines, neural networks, distance, and other
statistical methods.

Further, smartphones provide two additional elements that can be used to capture
additional data to feed CA models and processes. Firstly, they include a set of sensors
(e.g., an accelerometer, a gyroscope), the input values whereof can be captured at any given
moment or event. Second, touchscreens provide the capability to capture user gestures. The
input associated with these interactions (e.g., position or pressure) can also be monitored
during the gesture. All this additional input provided the ground for the third generation
of mobile CA that takes advantage of sensor and gesture data. Sensor-enhanced keystroke
mechanics improve gesture-based authentication and traditional keystroke mechanics [20].
Shunwandy et al. presented a literature review on sensor-based authentication, although
they focused on healthcare [21], a special sensitive domain for authentication [22]. Experi-
mentation with touch features shows that they provide reliable short-term CA predictions
which can be effectively combined with other long-term authentication methods [23].
Hand movement, orientation, and grasp (HMOG) is a set of behavioral biometrics for
smartphones introduced by Sitová et al. [24]. It includes two types of features (resistance
and stability) that can be used on their own or combined with others (taps, keystrokes,
and sensors) for CA. Sitova et al. reported that HMOG outperforms individual sensors.
The best results come, however, when HMOG is augmented with tap and keystroke fea-
tures. Their results also show that HMOG features are particularly suited for CA during
walking sessions.

Smith-Creasey and Rajarajan [10] presented a gesture-typing method on mobile
phones that can authenticate users for each word. Gesture typing is a different input
method in which users press and slide their finger between the characters that form the
word that they want to type. Their scheme considers unique aspects of gesture typing, such
as redirections and pauses. They reported an error rate of 3.5% for a single-word gesture
and 0.8% for three-word gestures. Although this method yields the best results reported in
the literature, it relies on an unusual input method. It also requires extracting a significant
number of features from gestures and subgestures and undertaking normalization and
fusion techniques with extracted data.

However, the current literature focuses on improving CA methods’ accuracy by
applying a multistage process that usually includes data gathering, feature extraction,
normalization, model building, and testing. This process makes it difficult to compare clas-
sifiers to the extent that it is questionable whether such complexity presents a substantial
improvement. To our knowledge, the only study to approach mobile CA from a compara-
tive perspective has been carried out by Serwadda et al. [13] who reported a dataset and
a controlled experiment to compare the performance of ten classifiers for touch gestures
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on smartphones. They concluded that logistic regression outperforms other classifiers for
vertical strokes. SVM, random forests, and logistic regression returned similar results for
horizontal strokes, although they outperformed all the other methods studied.

Since current research relies on a myriad of input data and complex modeling to
continuously authenticate mobile phone users, this study sets out to study the feasibility
of using lighter CA agents based on metrics from a single input or sensor. This approach
results in more scalable CA systems than the current state-of-the-art mobile CA methods,
providing acceptable accuracy levels for user prediction. Further, this study also aims to
build authentication models that are based on one or a short sequence of events using ML
algorithms, and it also compares the accuracy of different ML classifiers.

3. Methodology

For this research, we trained and tested seven ML CA models that can return pre-
dictions of user identities for each single keypress event recorded by the soft keyboard of
mobile phones. The following subsections report the measurements used in this study, the
dataset, and the ML classifiers and metrics used to compare the performance of CA models.

3.1. Measurements of Keystroke Dynamics

The following keystroke mechanics metrics were considered for the mobile CA agent
considered for this study (Figure 1): pressingTime, timeReleaseNextPress, and timeBe-
tweenPress. PressingTime is the key hold latency between the press and the release of a
given key of the soft keyboard. This measurement is also called down–up time, and it is a
key hold feature for each key pressed. TimeReleaseNextPress (up–down time) is the time
between the key’s release and the following keypress. TimeBetweenPress (down–down
time) is the time between the press of a key and the next keypress. Down–down time
and up–down time are considered digraph features since they consider two consecutive
keypresses. Measurements of single keypresses, like pressingTime, are called unigraph fea-
tures. All the measurements were taken in milliseconds for each key pressed. Additionally,
it is also possible to record the key code of the present key (keyCode) and the key code of
the next key pressed (nextKeyCode).
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3.2. Dataset

The data used in this study come from a public HMOG dataset (http://www.cs.wm.
edu/~qyang/hmog.html; accessed on 18 December 2019) [24,25]. A HMOG dataset records
interactions of 100 users during 24 sessions (eight reading sessions, eight writing sessions,
and eight map navigation sessions). It includes sensor information, touches, gestures,
and keypresses on the virtual keyboard. The HMOG dataset recorded raw data for each
keypress event, including the timestamp, type (down or up), and key code. For this study,
the keypress event information of all the eight writing sessions of the HMOG dataset was

http://www.cs.wm.edu/~qyang/hmog.html
http://www.cs.wm.edu/~qyang/hmog.html
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transformed using a Python script that computed pressingTime, timeBetweenPress, and
timeReleaseNextPress based on the timestamps and types of keypresses reported in the
dataset. The transformed dataset used in this study includes 712,418 keypress events for
100 users (from 4306 to 11,917 events). Descriptive statistics of the variables for all the users
are presented in Table 1.

Table 1. Descriptive statistics of measurements for the transformed dataset (n = 712,418).

Measurement Mean SE of the Mean SD Median

pressingTime 92.82 0.03 28.26 91
timeBetweenPress 455.06 0.60 504.10 309

timeReleaseNextPress 362.24 0.70 504.82 212

Datasets for training ML models were subsequently built for each participant. To do
so, each dataset included the user’s keystroke events and a random sample of events from
other users. Events from the user were labeled as authorized or legitimate (positives), and
random events from other users were labeled as unauthorized or malicious (negatives).
Each dataset included approximately 50% authorized events and 50% unauthorized events.
Table 2 presents the dataset’s headers and a few data entries that provide an example to
show its structure.

Table 2. Structure of the transformed dataset: headers and a sample of data entries.

Key Code Pressing
Time

Time between
Press

Time Release
Next Press

Next Key
Code Authorized

32 112 666 554 107 1
107 110 104 403 110 1
110 82 517 435 8 1

8 103 1270 1157 99 1
99 85 935 850 115 0

115 108 17 –91 101 0
101 140 237 97 32 0

3.3. Machine Learning Classifiers

ML models for continuous authentication of users can be implemented using ML
classifiers. The second objective of this study is to compare ML algorithms for mobile CA
using keystroke dynamics. Since the CA problem is a classification problem that aims
to tell apart authorized events from unauthorized events, we focused on classification-
supervised algorithms. The algorithms tested in this study included a variety that covers
the most common and popular categories of classifiers. Ensemble methods are composed
of weaker models independently trained and combined to make an overall prediction. It is
a class of algorithms that is rather popular nowadays. This study included three ensemble
algorithms: random forest classifier (RFC) [26], extra trees classifier (ETC) [27], and gradient
boosting classifier (GBC) [28]. Instance-based algorithms make decisions based on other
known instances of the problem considered important or representative, typically using
a similarity measure. This class was represented in this study by the k-nearest neighbors
(k-NN) algorithm. Hyperplane methods like support vector machines (SVM) compute a
mathematical model using a hyperplane that consists of a set of decision boundaries used
to classify datapoints. The points are then classified according to the side of the hyperplane
in which they fall. Decision tree algorithms build a model of decisions based on the values
of attributes in the data. Classification and regression tree (CART) was included in this
study. Finally, naïve Bayes was included to represent Bayesian algorithms. For a detailed
description of classification algorithms see [29]. An ML model for each of these algorithms
was implemented in Python using the scikit-learn module [30].

Crossvalidation with five folds was used to train and test the classifiers. We used the
standard target ML metrics to compare ML algorithms’ performance: accuracy, precision,
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recall, and F1. Accuracy is the ratio between correct predictions and the size of the dataset.
Precision measures how many of the predicted positives are true positives. Recall returns
how many of the actual positives (true positives + false negatives) the model can predict.
Precision should be the target metric when the costs of a false positive are high, while recall
is preferred when a false negative is high. F1 represents a balance between precision and
recall used when there is an uneven class distribution in the dataset. A false positive may
entail a higher cost for CA since it means that an unauthorized person uses the device. A
false negative would mean blocking the device or session of authorized users requiring
that they authenticate again. The receiver operating characteristic (ROC) curve was also
produced for each participant and all classifiers. The area under the curve (AUC) is a
summary statistic of the ROC curve representing the probability of ranking a randomly
chosen positive instance higher than a randomly chosen negative one. It is representative
of how much the model is capable of distinguishing between positives and negatives. Since
ML classifiers for the CA problem are binary, we also included the Matthews correlation
coefficient (MCC). MCC returns a value between −1 and 1, representing the correlation
between the true and the predicted classes. Accuracy is sensitive to class imbalance while
the other standard metrics (precision, recall, F1) are asymmetric. MCC is a more reliable
statistical metric that produces a high score only if both classes are predicted well, even if
one class is disproportionately overrepresented [31].

4. Results

Table 3 shows the average results returned by the different ML classifiers for the
CA problem for the 100 users extracted from the HMOG dataset. The results of each
metric are also presented graphically in Figure 2. Ensemble algorithms (RFC, ETC, GBC)
performed better, with an average of over 70% for most target metrics. The results show
high variability between participants, with accuracy ranging between 0.58 and 0.91 across
users. Ensemble methods are followed by k-NN, which outperforms SVM. It returns an
average accuracy of 0.65, although variability ranges substantially (between 0.56 and 0.89)
for ensemble algorithms. SVM returns the worst performance of all classifiers with an
average accuracy of 0.59 (from 0.51 to 0.70). Four different kernels were tested (linear,
sigmoid, polynomial, and RBF). The radial basis function (RBF) returns substantially better
results than others, and it is used for testing and comparison. Naïve Bayes performs
similarly to k-NN and CART, and it also shows a considerable variability among users
with values ranging between 0.54 and 0.84. The decision tree classifier implementing the
CART algorithm returns the second-lowest accuracy measure with an average of 0.63 (from
0.55 to 0.86).

Table 3. Results of ML classifiers for the CA problem. Average of target metrics.

Classifier Accuracy Precision Recall F1 AUC MCC

- M SD M SD M SD M SD M SD M SD

RFC 0.68 0.06 0.71 0.06 0.76 0.07 0.73 0.06 0.72 0.07 0.59 0.12
ETC 0.67 0.06 0.70 0.06 0.74 0.07 0.72 0.06 0.71 0.07 0.57 0.12
GBC 0.71 0.05 0.71 0.06 0.83 0.06 0.76 0.05 0.74 0.07 0.63 0.11
k-NN 0.65 0.06 0.68 0.06 0.74 0.07 0.71 0.06 0.67 0.07 0.48 0.13
SVM 0.59 0.04 0.60 0.05 0.68 0.15 0.61 0.12 0.60 0.05 0.19 0.06
Naïve
Bayes 0.64 0.06 0.66 0.07 0.72 0.14 0.72 0.08 0.67 0.08 0.45 0.13

CART 0.63 0.05 0.68 0.06 0.66 0.06 0.67 0.06 0.61 0.06 0.41 0.11
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Figure 2. Boxplot of metrics (accuracy, precision, recall, F1, AUC) of ML classifiers for the CA problem.

We run an analysis of variance (ANOVA) to statistically compare the differences
between the 100 samples for each classifier. The results showed that the differences were
significant across all the metrics: accuracy (F = 45.41, p < 0.001), precision (F = 42.81,
p < 0.001), recall (F = 31.90, p < 0.001), F1 (F = 45.99, p < 0.001), AUC (F = 57.41, p < 0.001),
and MCC (F = 169.80, p < 0.001). The margin of error was 0.01 for a 95% confidence
interval of the means for accuracy, precision, F1, and AUC. The margin of error for recall
and MCC was 0.02. Tukey’s pairwise comparisons showed that GBC outperformed all
the other methods statistically for accuracy and recall. For F1, AUC, and MCC, there
were no statistical differences between GBC and RFC, although GBC outperformed all
the other classifiers. For precision, there were no statistical differences between the three
ensemble methods. Figure 3 presents the confidence intervals for accuracy, showing the
differences graphically. GBC performed better, while several other groupings are also
observed. Overlapping intervals (for each pair of classifiers) in Figure 3 mean that there
were no differences. Non-overlapping intervals mean that there were statistical differences
between the two methods.
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Figure 3. Interval plot of accuracy for all the classifiers (95% confidence interval of the mean).
Overlapping between pairs of intervals means that there are no statistical differences.

All the classifiers returned similar scores for all the metrics suggesting that they were
not biased towards predicting more false positives than false negatives (or vice versa).
GBC and k-NN returned substantially higher values for recall when compared with other
metrics. As the recall metric is preferred for the mobile CA problem using keystroke
dynamics, the results suggested that GBC was better for the given dataset. The other
ensemble classifiers (RFC, ETC) returned a similar result, representing a feasible option to
implement ML CA models. As for MCC (Figure 4), the results showed a strong positive
correlation (MCC > 0.5) for the three ensemble classifiers. All the other classifiers also
returned a moderate positive correlation except SVM that showed no correlation. Figure 5
presents the ROC curve of all the classifiers and the AUC values of an arbitrary user. We
can observe that GBC performs better, followed by the other two ensemble classifiers,
which perform similarly. Next comes k-NN while CART, naïve Bayes, and SVM perform
substantially worse in terms of distinguishing between positives and negatives.
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Ensemble classifiers (RFC, ETC, and GBC) and the tree classifier (CART) also return
the importance of each feature. The most important feature was found to be pressingTime,
ranging between 28% and 50% on average for all the classifiers. It was followed by
timeReleaseNextPress (14–23%), timeBetweenPress (12–22%), keyCode (12–15%), and
nextKeyCode (9–14%). This finding suggests that the three keystroke measurements play a
role, each contributing to the final prediction. Previous studies on keystroke mechanics on
desktop computers also showed that pressingTime plays a more significant role, which our
study also supports for mobile phones. The keys pressed and their sequence in a digraph
are the least important features to determine the class to which each event belongs.

The results may suggest that the prediction is not very accurate since even for the best
ML classifiers, around 29% of the cases are incorrectly classified. However, every single
event (i.e., key pressed) produces a prediction. Therefore, a few individual predictions
can be combined to produce a more reliable result, thus mitigating the number of false
positives and false negatives. Indeed, current literature suggests using a combination of
events for mobile phones or several keypresses (usually in the form of a word or short
text) for keystroke dynamics authentication [11]. For this study, the probability of having
two false negatives (or positives) in a row is around 0.084, and the probability of having
four consecutive false negatives (or positives) is under 0.007 for the best classifier (GBC).
Therefore, in the final implementation, a mobile CA agent should respond, e.g., block
the device, only if several successive unauthorized predictions or a high percentage are
found in recent events. The number of events to consider can be a parameter that can be
fine-tuned for each user.

5. Discussion

This paper implemented and compared different ML agent models for CA in mobile
environments. Although specific, scalable architectures have been presented [32], to the
best of our knowledge, this is the first implementation and testing with specific models
for keystroke dynamics using different classifiers on the same dataset. The results suggest
that ensemble classifiers (RFC, ETC, and GBC) work better for the problem at hand than
instance-based algorithms (k-NN), hyperplane methods (SVM), Bayesian models (naïve
Bayes), and decision trees (CART). Notably, GBC outperformed all the other classifiers
with statistically significant differences. Ensemble decision classifiers use multiple learning
algorithms, typically multiple decision trees, reporting the class that is the mode of all
(RFC, ETC). GBC also combines several weak decision trees but using gradient boosting.
CART is based on a single strong decision tree classifier that maximizes the information
gain at each node. Therefore, we argue that the combination of several weak decision trees
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works better for the CA problem and the sample given. Individual decision trees like CART
usually face overfitting problems resulting in poorer results for the evaluation set, as we
could observe here.

All in all, the difference was around 7–8% for all the target metrics when CART was
compared with GBC. Instance-based algorithms (k-NN) make a decision based on individ-
ual instances like the majority of a given number of neighbors; k-NN is comparable with
ETC and only performs worse than GBC and ETC, suggesting that distance to neighbors
can also be a good estimator of the legitimacy of individual key events. This may be
particularly useful in environments that require fast response times or have to work with
limited training samples since k-NN algorithms are easy to implement, fast, and require
fewer data. The drawback of a potential 5% decrease in accuracy can be mitigated by
increasing the number of keypresses necessary to make a decision by a mobile agent. Hy-
perplane methods (SVM) compute the mathematical model that separates most instances
when represented as individual points in a hyperspace. SVM returns poor results for
the CA problem suggesting that this problem is difficult to model using hyperplanes to
classify instances. Our study considered one probabilistic classifier, and we can see that it
performed worse than all the ensemble classifiers, although its results were comparable to
k-NN and CART. Since Bayesian classifiers consider features to be independent, we argue
that this may not be the case for the CA problem using the keystroke measures considered
in this study.

When comparing the three ensemble classifiers, we found that GBC outperformed the
two others, while no significant differences were found between RFC and ETC. Previous
evidence suggests that GBC usually outperforms random forests for classification problems,
and our findings suggest that this is also the case for the mobile CA problem with keystroke
mechanics. All in all, differences in target metrics were around 4%, and the statistical
difference reported here may be caused by sample size. This suggests that gradient
boosting with weak decision trees provides a small benefit over ensembles of tree classifiers
that return the mode of the forest. The reason may lie in the nature of data, particularly
with low dimensionality, since boosting algorithms usually benefit from a large number
of features. Differences for the target metrics studied between random forests (RFC) and
extra trees (ETC) were marginal and not significant. Extra trees differ from random forests
in two aspects. Firstly, random forests select the optimal cutpoint in the splitting process
of the tree for each feature, while in extra trees, the point is randomly selected from a
uniform distribution of the feature’s range. Secondly, ETC uses the whole learning sample
to train each tree while RFC uses a sample bootstrap. As results do not return significant
differences between RFC and ETC, we argue that the random nature of the splitting point
and the set used for training each tree do not yield a substantial benefit in terms of classifier
performance. The CA problem and dataset gathered are not affected by the variations
coming from the implementation of different ensemble algorithms.

As for the previous studies comparing classifiers, Serwadda et al. found that logistic
regression, SVM, and random forest outperformed other classifiers for touch-based CA.
They reported error rates ranging between 10% and 21% under different conditions: device
orientation (portrait, landscape) and stroke orientation (vertical, horizontal) [13]. Their
results contrast with our findings, which suggest that ensemble algorithms perform better,
followed by k-NN. In our tests, SVM performed poorly. In Serwadda’s results, decision
trees and k-NN performed poorly. We did not train a logistic regression classifier. Their
approach sampled touch-based CA events at regular intervals, extracting and deriving fea-
tures from the data acquired, which were subsequently used to train the models. Keystroke
dynamics produces data from events that can feed training algorithms directly or after a
relatively simple extraction. Such differences can explain why statistical methods work
better for touch-based strokes while k-NN works better for keystroke dynamics. Ensemble
methods performed well in both cases (although Serwadda et al. only reported the random
forest), returning promising results to guide future investigations.
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The results also suggest that a small number of keystroke measurements is sufficient to
provide accurate predictions of user identity. Our results are comparable to the state-of-the-
art studies on PC keystroke dynamics [18]. Clarke and Furnell [11] reported error rates of
8% and 9% for inputs of eleven digits and four digits on mobile phones’ hardware keypads.
Studies on gesture typing return error rates around 3.5% for one word and under 1% for
three words [10]. Our findings also suggest that similar results can be obtained using the
soft keyboard’s measurements with only a few characters when the user model is trained.
This also mitigates the possible effects that typing bursts may have for mobile CA. CA
mobile agents can make decisions and take actions even if user interaction takes the form
of short bursts. As for training, agents may gather data during users’ regular interactions
independently of their typing form to get enough interactions to train their models. The
effect of fatigue and typing bursts is also an interesting line of future development for
mobile CA.

Several previous studies about keystroke dynamics consider additional measurements
like the time between releases (also called up–up time) or the total time between the press
of the first key and the release of the second key [16]. However, these are just linear
combinations of pressingTime and timeReleaseNextPress. We tested this and other linear
combinations of the measurements used in this study and did not find any substantial
difference. This result suggests that the measurements selected are sufficient to profile
most users and that ML methods can handle possible collinearity between variables, thus
not benefiting from features that are just linear combinations of others for the CA problem.
A possible issue, however, is the high variability returned by all the classifiers. It suggests
that there are users for whom no accurate fingerprint can be learned with a given method,
as reported in previous studies [33]. This stresses the necessity of combining several inputs
and classification methods to authenticate the majority of participants successfully.

The results of the body of work that uses gestures and/or sensors for CA in mobile
phones are difficult to compare with our findings given the fundamental differences in the
procedure and features used. However, HMOG [24] also considers key events, so stressing
the differences can provide additional insights pointing to the benefits of combining both.
HMOG uses fewer key events, focusing only on features of single key events (unigraph).
Our study uses the HMOG dataset extracting the digraph features that represent the
interaction between a keypress and the following. Provided that the lowest error rates
in the original HMOG study were found when HMOG was combined with key and tap
events, feeding CA models with additional keypress features may improve the accuracy.

A major drawback of our study is that decisions were based on a single key event
resulting in relatively low performance, although comparable with the current state of
the art as discussed in this section. In the final part of the results, we suggested that
several decisions can be combined to get a better insight. Here, we provide an outline
of a workable application. Practical implementation can adopt a voting system that can
generate a combined trust value and a decision for a given user. The final CA system can
use an API that trains and implements several ML models. Each model can still employ
different user measurements (e.g., keystroke dynamics) and have a different weight in the
final decision. When the CA system collects sufficient information, each model generates a
trust value. The trust value can be based on any ML metrics for a sequence of events or
a combination of them. Then, the voting takes place. The weight of each vote should be
based on the accuracy of the model. For instance, a model with an accuracy of 96% will
have more weight on the final decision and trust than a model with an accuracy of 90%.
For each user, given the trust (Ti) and the accuracy (Pi), we can use the following weight
sum to compute the final trust:

T =
∑i(Ti × Pi)

∑i Pi

The voting system outlined here is an ensemble system. Systems based on complemen-
tary methods already showed their potential in practical applications, like recommender
systems [34], which also describe how to evaluate them.
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This study presents other limitations. The participants’ representativity and sample
size may be a threat to validity since data come from a public dataset of 100 volunteers over
eight writing sessions. The original HMOG dataset did not provide substantial information
of participants besides gender. We could not assess the effect of possible unbalances in the
sample like age, language, or experience with mobile phones, limiting the generalization of
our findings. The reduced number of sessions is somehow mitigated by a large number of
participants and of events per participant, which facilitate a good statistical representation.
Representativity of the sessions is also a limitation since the creators of the HMOG dataset
designed these to represent everyday interactions. Research on attack detection shows
that unknown attacks are difficult to learn from [35], and as CA usually models impostors
as the action of others, CA systems may respond poorly to new attack vectors. Several
studies also analyzed the environmental conditions of the interaction, such as posture
(e.g., walking, sitting), which our study did not address. Other studies also included
device orientation (portrait, landscape), which our study did not analyze either since
we considered all the key events of the writing sessions of the original HMOG dataset
as equally representative of users’ typing interactions. Besides all these limitations, this
study establishes the experimental conditions required to make the results of machine
learning classifiers comparable, establishing a testbench that can guide future research and
practitioners of mobile CA systems.

6. Conclusions

This paper presented an agent model that facilitates the integration and development
of CA in mobile devices. Seven different classifiers were then trained and tested using
keystroke dynamics captured from mobile devices’ soft keyboard events from the HMOG
dataset. The results show that all the digraph features used in this study (down–up, up–
down, and down–down time) were relevant for the CA classification problem. Ensemble
algorithms (RFC, ETC, GBC) performed better, with an average accuracy of around 0.70 for
every single key event. GBC outperformed all the other classifiers, and the differences were
statistically significant. Naïve Bayes and k-NN returned an accuracy of around 0.65. SVM
performed substantially worse than all the other algorithms, suggesting that hyperplane-
based classifiers are less appropriate for CA based on keystroke mechanics. The results
are relevant to researchers and practitioners aiming to design and implement effective and
scalable CA systems.

We plan to analyze energy and resource usage as future work and compare them
with the existing studies [24,36]. Other studies also present novel classifiers like artificial
immune systems [37] or deep learning models [12], providing additional opportunities for
comparison. Evidence on intrusion detection also showed that two-stage systems increase
accuracy without compromising efficiency [38]. Keystroke mechanics can also be compared
or complemented with other biometric data like facial recognition, fingerprint, or even
novel ones like electrocardiogram-based authentication [39]. Similarly, intrasession features
(e.g., user’s clothes) can be considered as well as other behavioral data gathered from the
mobile phone (e.g., apps running). Privacy is also a concern that can be mitigated with
pseudonymization and anonymization approaches [40]. Finally, additional research into
the number of keystroke events required to train accurate user models can also provide
additional insights to researchers and practitioners. From a practical perspective, it may
be necessary to deploy mobile CA systems avoiding the cold start problems inherent to
ML solutions. There is also the possibility of users having different models under different
conditions or devices, so intersession CA is also a promising research area.
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