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Abstract: This work investigates the different sensitivities of an ion-sensitive field-effect transistor
(ISFET) based on fully depleted silicon-on-insulator (FDSOI). Using computer-aided design (TCAD)
tools, the sensitivity of a single-gate FDSOI based ISFET (FDSOI-ISFET) at different temperatures
and the effects of the planar dual-gate structure on the sensitivity are determined. It is found that
the sensitivity increases linearly with increasing temperature, reaching 890 mV/pH at 75 ◦C. By
using a dual-gate structure and adjusting the control gate voltage, the sensitivity can be reduced
from 750 mV/pH at 0 V control gate voltage to 540 mV/pH at 1 V control gate voltage. The above
sensitivity changes are produced because the Nernst limit changes with temperature or the electric
field generated by different control gate voltages causes changes in the carrier movement. It is proved
that a single FDSOI-ISFET can have adjustable sensitivity by adjusting the operating temperature or
the control gate voltage of the dual-gate device.

Keywords: ISFETs; FDSOIs; sensitivity; dual-gate; TCAD simulation

1. Introduction

Since the ISFET was firstly proposed by P. Bergveld [1], the ISFET has been widely
acknowledged as a sensor in biological and chemical detection systems [2–4] to detect pH,
DNA, multi-ions, etc. [5–7]. Due to the existence of the Nernst limit of 59.6 mV/pH at room
temperature [8], determining how to improve the sensitivity of ISFETs has been a major
concern for researchers. Many methods have been explored to improve the sensitivity
of ISFETs. These methods can be categorized into two types: changing the material and
changing the structure.

For material changes, the AlGaN/GaN heterojunction [9] and Si3N4 [10] are used to
replace silicon substrate, while Si3N4 [10], Al2O3 [11], Ta2O5 [12,13] and many other metal
oxides are used to replace SiO2 as the sensitive layer of ISFETs. At the same time, many
structures have been utilized to increase the sensitivity of ISFETs, which are compatible
with the CMOS process [14]. Examples include using an ultrathin body and buried oxide
(UTBB) FDSOI ISFET, in which the sensing area and the control gate are integrated into the
backend of the line (BEOL) [8,15–17], or using a planar dual-gate high-electron-mobility
transistor (HEMT) as an ISFET [5].

It has been found that an ISFET based on FDSOI can achieve a sensitivity of more
than 10 times the Nernst limit [8,15–17] (more than 596 mV/pH) by adjusting the thickness
of the gate oxide and the buried oxide, which is better than the conventional MOSFET-
based ISFET. It can be seen in many works that the sensitivity can be improved by using
the double-gate coupling in FDSOI-ISFET [18]. The sensitivity can even reach 75 times
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the Nernst limit by replacing the solid-state front gate with a room-temperature ionic
liquid [19].

However, there is still a problem in that each FDSOI-ISFET can only obtain a fixed
sensitivity value that is based on the electrostatic coupling factor (γ), which cannot be
adapted to the different sensitivity measuring ranges. A cascode amplifier circuit can
be formed using a planar dual-gate HEMT [5], which showed a tunable sensitivity for
different sensitivity measurement ranges. Moreover, adjustable-sensitivity ISFETs can be
obtained by adjusting the operating temperature [20].

In this paper, two ways are proposed with the use of TCAD tools for adjusting the
pH sensitivity of an individual FDSOI-ISFET. One is adjusting the operating temperature
with the single-gate FDSOI-ISFET, while the other is using a planar dual-gate FDSOI-ISFET
structure at room temperature. Section 2 introduces the theory of the coupling between
the FDSOI front gate and back gate and the device model setups. Section 3 shows the
sensitivity change of the device at different temperatures with the single-gate device and
control gate voltages with the dual-gate structure. The physical mechanisms are analyzed
in detail. Finally, the conclusion is given.

2. FDSOI ISFET Principle and Simulation Setup
2.1. Devices and Models

Both single- and dual-gate FDSOI-ISFETs are based on 100 nm n-type FDSOI with an
undoped channel, which is shown in Figure 1a. The structure of dual-gate FDSOI-ISFET
is shown schematically in Figure 1b; the right half of the channel is set as a sensitive area
for contact with the solution to be measured. The control gate voltage is applied to the
left half of the channel, the reference voltage is set as 0 V and other physical parameters
are shown in Table 1. The device models are established by using the Synopsys Sentaurus
Device tool [21].
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Table 1. Physical parameters of FDSOI-ISFET for TCAD simulations.

Parameters Values

Top Silicon Thickness 6 nm
Buried Oxide Thickness 25 nm
Length of Sensing Area 50 nm

Doping Concentration of Source and Drain
Area 1 × 1020 cm−3

During the simulation, there are two challenges. One is determining how to define
the solution under different pH conditions. In the simulation, the electrolyte is described
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as intrinsic silicon [3,22] in which the conduction band and the valence band are calcu-
lated [3,23]. The parameters such as carrier mobility and permittivity are modified to the
corresponding values of water. The charge distribution in the solution is described by
the Poisson–Boltzmann equation to simulate an electrical double layer [24]. The Poisson–
Boltzmann equation can be described as (1) [24]

∂2ϕ

∂x2 = − q
ε

{
c+0 e−

qϕ
kBT − c−0 e

qϕ
kBT

}
, (1)

where x is the distance from the surface of the solution to a specific point described, ϕ
is the potential in the solution, q is the elementary charge, ε is the permittivity of water,
c0

+ and c−0 are the concentrations of cation and anion in the solution, kB is the Boltzmann
constant and T is the temperature.

Another challenge is determining how to deal with the quantum confinement effects
(QCEs). As the top silicon layer is only 6 nm, the QCEs have strong influences. According to
previous research, QCEs will affect the threshold voltage and effective mobility of carriers
in a thin layer [25,26]. In this way, the device cannot be described accurately using the
classical transport model, so it is necessary to use a quantization model to describe the
carrier’s transportation in the device. There are five different quantization models that can
be used to describe QCEs under different situations. To balance both the speed and the
accuracy of simulation [27,28], we choose the density gradient quantization model as the
quantum correction model.

2.2. FDSOI ISFET Principle

There is a strong electrostatic coupling between the front gate and the back gate in
FDSOI devices. When there is a change of front gate voltage, an amplified voltage shift of
the back gate can be observed. The ratio of the change with the front gate and the back gate
is defined as the coupling factor (γ) which is given by Equation (2) below. The relationship
between ∆Vbg and ∆Vfg can be deduced as (3)

γ = −
∆Vbg

∆Vfg
=

Cox

CBOX
, (2)

∆Vbg= − Cox

CBOX
∆Vfg, (3)

where ∆Vfg is the change of the front gate, ∆Vbg is the voltage shift of the back gate, Cox is
the capacitance of gate oxide and CBOX is the capacitance of buried oxide. The coupling
factor γ can be adjusted by changing the thickness of the buried oxide while the thickness
of the gate oxide is kept constant. According to the theoretical calculation, the γ value
varies linearly with different thicknesses of the buried oxide layer. Figure 2a shows the
variation of γ value with different thicknesses of the buried oxide layer (TBOX), confirming
the mathematical model in Equation (2).

Figure 2b illustrates the ID-Vbg characteristics of the FDSOI device, as the front gate
voltage increased from −200 mV to 200 mV with 25 nm TBOX. The fitting results prove the
mathematical model of Equation (3).

As described in [17], the relationship between the proton concentration on the surface
and the bulk of solution is described by Equation (4):

[H+
]

S
= [H+]B exp

(
−qϕ
kBT

)
, (4)

where [H+]S is the proton concentration on the surface of the solution and [H+]B is the
proton concentration in the bulk of the solution.
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Figure 2. (a) Different γ values and the linear fitting curve with different TBOX; (b) ID-Vbg curves of FDSOI device with
different front gate voltages.

The pH of the solution is determined by [H+]B and can be described by Equation (5):

pH = −10 log
[
H+
]

B, (5)

ϕ can be derived from Equation (4) as Equation (6):

ϕ =
kBT

q
ln

 [H+
]

B

[H+
]

S

, (6)

For FDSOI-ISFETs, the changes in pH value introduce a change in the front gate
potential, resulting in a shift of the back gate voltage. When the pH of the solution changes
by dpH, a potential shift of dϕ is presented at the front gate. The ratio can be expressed as
the Nernst limit. The value of the Nernst limit is given by Equation (7):

dϕ
dpH

= −2.3 (
kBT

q
) α, (7)

where q is the elementary charge and α is the proton buffer capacity (0 < α < 1). This value
is usually considered to be 59.6 mV/pH at room temperature.

3. Results and Discussion
3.1. Influence of Temperature

The electrical characteristics and the sensitivity of the device at different operating
temperatures were investigated. The corresponding γ values were calculated and are
shown in Figure 3. The γ increases linearly with temperature from 25 to 125 °C.

For choosing a more general case for solution measurement, the pH measurement
sensitivity is discussed under 25 and 75 ◦C. As is shown in Figure 4a,c, at 25 ◦C (T = 25 ◦C),
a voltage shift of 1.27 V can be seen at the back gate for every 100 mV change at the front
gate, which means that the device has a maximum sensitivity of 12.7 times the Nernst
limit (about 757 mV/pH), which is proved in Figure 4c. As is shown in Figure 4b, at 75 ◦C
(T = 75 ◦C), the Nernst limit will change to 69.6 mV/pH according to (3); ∆Vbg can reach
1.34V for every 100mV change at the front gate, and this gives a maximum sensitivity of
13.4 times the Nernst limit (about 933 mV/pH) theoretically. However, as is shown in
Figure 4d, the sensitivity can only reach a maximum of 890 mV/pH (nearly 12.8 times the
Nernst limit), which is somewhat attenuated compared to the theoretical value, but still
increases about 140 mV/pH in sensitivity compared to the situation at 25 ◦C.
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Figure 4. ID-Vbg curves of single-gate FDSOI-ISFET under different temperatures and pH: (a) ID-Vbg curves at different
front gate voltages when T = 25 ◦C; (b) ID-Vbg curves at different front gate voltages when T = 75 ◦C; (c) ID-Vbg curves at
different pH when T = 25 ◦C; (d) ID-Vbg curves at different pH when T = 75 ◦C.

3.2. Influence of Dual-Gate Structure

The electrical characteristics and the sensitivity of the dual-gate FDSOI-ISFET under
room temperature were obtained by simulation. The ID-Vbg curves with different control
gate voltages (Vcg) are shown in Figure 5, from which the γ value of dual-gate FDSOI is
12.7, which is correspondent to the single-gate FDSOI discussed in Section 3.1.
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The ID-Vbg curves of the device under different pH values are shown in Figure 6,
while Vcg of Figure 6a, b and c is 0, 0.5 and 1 V respectively. When Vcg increases, the
sensitivity of the device decreases gradually.
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As is shown in Figure 6a, when Vcg = 0 V, the device has the maximum sensitivity
of 750 mV/pH (12.5 times the Nernst limit under room temperature), and this is almost
the same as the single-gate FDSOI-ISFET. When Vcg = 0.5 V, which is shown in Figure 6b,
the sensitivity of the device drops to 624 mV/pH (10.4 times the Nernst limit under room
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temperature). When Vcg = 1V, which is shown in Figure 6c, the sensitivity of the device
drops to 540 mV/pH (9 times the Nernst limit under room temperature).

3.3. Discussion

In practical application, the pH value is calculated through the change of threshold
voltage, which is calculated through the change of drain current. Therefore, theoretically,
changing the sensitivity of the device is actually modulating the change of the current.
There are two ways to change the current in a semiconductor: changing the carrier mobility
and changing the number of carriers.

For the single-gate FDSOI-ISFET, according to Equation (7), the absolute value of
the Nernst limit increases with the increase of temperature, the coupling factor γ does
not change, so the sensitivity value of the device increases. Although the carrier mobility
decreases as the temperature increases, as shown in Figure 7, the result is the change of
threshold voltage rather than the sensitivity [20].
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The absolute value of the Nernst limit increases with the increase of temperature, the
coupling factor γ does not change, so the sensitivity value of the device increases. Although
the carrier mobility decreases as the temperature increases, as shown in Figure 7, the result
is the change of threshold voltage rather than the sensitivity [20].

For the dual-gate FDSOI-ISFET, when the solution pH is 7, the electrostatic potential
and the electron density of the device under different Vcg are shown in Figures 8 and 9,
respectively.

When the control gate voltage is the same as the reference voltage as 0 V, there is no
electric field induced by the applied voltage, the sensitivity reaches the maximum.

However, when Vcg gradually rises, the electron density and electrostatic potential
are affected by the control gate. As shown in Figure 8, the electrostatic potential under
the control gate rises when Vcg rises. Because of the difference of the potential under the
control gate and the solution, there is an electric field generated in the middle of the channel
with a direction from control gate to the side of the solution. Therefore, the carriers move
under the influence of the electric field. The electrons generated by the change of pH were
supposed to move directly in the channel covered by solution, but they are concentrated
near the side of the control gate under the affection of the electric field, which is shown
in Figure 9. In this way, the number of electrons that should transfer the electric signal
produced by pH change decreases, which leads to the decrease in sensitivity.
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In summary, when Vcg increases, there is a potential difference between the control
gate and solution, which leads to the generation of the electric field, causing carriers to
move with the electric field to the side of the control gate. In this way, the influence of pH
change of solution decreases and so does the sensitivity of the device.
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Therefore, changing temperature is an effective way to change the sensitivity of a
single-gate FDSOI-ISFET, because the sensitivity can be easily controlled by using the
dual-gate structure. Since the sensitivity can be changed only by changing Vcg during
use, the dual-gate structure may be used to obtain a FDSOI-ISFET with tunable sensitivity.
However, it should be noted that the maximum sensitivity is still determined by γ, and
changing Vcg can only reduce the sensitivity.

4. Conclusions

This work investigates the effects of temperature and dual-gate structure on the
sensitivity of FDSOI-ISFET. By using a planar dual-gate structure, the sensitivity of a single
FDSOI-ISFET on the chip can be adjusted independently by changing the control gate
voltage rather than adjusting the back-gate voltage, which may infect the whole chip.
The simulation revealed that the increase in operating temperature could enhance the
sensitivity of the device. From 25 to 75 ◦C, the sensitivity increased by about 140 mV/pH.
The electrical performance of the FDSOI using the dual gate is the same as that of the
FDSOI using the single gate. Although the maximum sensitivity is determined by one
factor of the FDSOI itself, the coupling factor γ, the sensitivity can be reduced by about 210
mV/pH by making Vcg greater than the reference voltage so that the device can be applied
to a wide range of pH measurement.

This work provides guidance for obtaining FDSOI-ISFETs with adjustable sensitivity.
The appropriate working temperatures and device structures can be chosen to obtain the
devices suitable for their measuring sensitivity range.
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