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Abstract: In this paper, we consider decision trees that use two types of queries: queries based on one
attribute each and queries based on hypotheses about values of all attributes. Such decision trees are
similar to the ones studied in exact learning, where membership and equivalence queries are allowed.
We present dynamic programming algorithms for minimization of the depth and number of nodes of
above decision trees and discuss results of computer experiments on various data sets and randomly
generated Boolean functions. Decision trees with hypotheses generally have less complexity, i.e.,
they are more understandable and more suitable as a means for knowledge representation.
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1. Introduction

Decision trees are used in many areas of computer science as a means for knowledge
representation, as classifiers, and as algorithms to solve different problems of combinatorial
optimization, computational geometry, etc. [1–3]. They are studied, in particular, in test
theory initiated by Chegis and Yablonskii [4], rough set theory initiated by Pawlak [5–7],
and exact learning initiated by Angluin [8,9]. These theories are closely related: attributes
from rough set theory and test theory correspond to membership queries from exact
learning. Exact learning studies additionally the so-called equivalence queries. The notion
of “minimally adequate teacher” that allows both membership and equivalence queries
was discussed by Angluin in Reference [10]. Relations between exact learning and PAC
learning proposed by Valiant [11] are discussed in Reference [8].

In this paper, which is an extension of two conference papers [12,13], we add the
notion of a hypothesis to the model that has been considered in rough set theory, as well as
in test theory. This model allows us to use an analog of equivalence queries. Our goal is to
check whether it is possible to reduce the time and space complexity of decision trees if we
use additionally hypotheses. Decision trees with less complexity are more understandable
and more suitable as a means for knowledge representation. Note that, to improve the
understandability, we should not only try to minimize the number of nodes in a decision
tree but also its depth that is the unimprovable upper bound on the number of conditions
describing objects accepted by a path from the root to a terminal node of the tree. In this
paper, we concentrate only on the consideration of complexity of decision trees and do not
study many recent problems considered in machine learning [14–17].

Let T be a decision table with n conditional attributes f1, . . . , fn having values from
the set ω = {0, 1, 2, . . .} in which rows are pairwise different, and each row is labeled with
a decision from ω. For a given row of T, we should recognize the decision attached to
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this row. To this end, we can use decision trees based on two types of queries. We can ask
about the value of an attribute fi ∈ { f1, . . . , fn} on the given row. We will obtain an answer
of the kind fi = δ, where δ is the number in the intersection of the given row and the
column fi. We can also ask if a hypothesis f1 = δ1, . . . , fn = δn is true, where δ1, . . . , δn are
numbers from the columns f1, . . . , fn, respectively. Either this hypothesis will be confirmed
or we obtain a counterexample in the form fi = σ, where fi ∈ { f1, . . . , fn}, and σ is a
number from the column fi different from δi. The considered hypothesis is called proper if
(δ1, . . . , δn) is a row of the table T.

In this paper, we study four cost functions that characterize the complexity of decision
trees: the depth, the number of realizable nodes relative to T, the number of realizable
terminal nodes relative to T, and the number of working nodes. We consider the depth of
a decision tree as its time complexity, which is equal to the maximum number of queries
in a path from the root to a terminal node of the tree. The remaining three cost functions
characterize the space complexity of decision trees. A node is called realizable relative to
T if, for a row of T and some choice of counterexamples, the computation in the tree will
pass through this node. Note that, in the considered trees, all working nodes are realizable.

Decision trees using hypotheses can be essentially more efficient than the decision
trees using only attributes. Let us consider an example, the problem of computation of
the conjunction x1 ∧ · · · ∧ xn. The minimum depth of a decision tree solving this problem
using the attributes x1, . . . , xn is equal to n. The minimum number of realizable nodes in
such decision trees is equal to 2n + 1, the minimum number of working nodes is equal to
n, and the minimum number of realizable terminal nodes is equal to n + 1. However, the
minimum depth of a decision tree solving this problem using proper hypotheses is equal
to 1: it is enough to ask only about the hypothesis x1 = 1, . . . , xn = 1. If it is true, then the
considered conjunction is equal to 1. Otherwise, it is equal to 0. The obtained decision tree
contains one working node and n + 1 realizable terminal nodes, altogether n + 2 realizable
nodes.

We study the following five types of decision trees:

1. Decision trees that use only attributes.
2. Decision trees that use only hypotheses.
3. Decision trees that use both attributes and hypotheses.
4. Decision trees that use only proper hypotheses.
5. Decision trees that use both attributes and proper hypotheses.

For each cost function, we propose a dynamic programming algorithm that, for a
given decision table and given type of decision trees, finds the minimum cost of a decision
tree of the considered type for this table. Note that dynamic programming algorithms
for the optimization of decision trees of the type 1 were studied in Reference [18] for
decision tables with one-valued decisions and in Reference [19] for decision tables with
many-valued decisions. The dynamic programming algorithms for the optimization of
decision trees of all five types were studied in Reference [12,13] for the depth and for the
number of realizable nodes.

It is interesting to consider not only specially chosen examples as the conjunction of n
variables. For each cost function, we compute the minimum cost of a decision tree for each
of the considered five types for eight decision tables from the UCI ML Repository [20]. We
do the same for randomly generated Boolean functions with n variables, where n = 3, . . . , 6.

From the obtained experimental results, it follows that, generally, the decision trees of
the types 3 and 5 have less complexity than the decision trees of the type 1. Therefore, such
decision trees can be useful as a means for knowledge representation. Decision trees of the
types 2 and 4 have, generally, too many nodes.

Based on the experimental results, we formulate and prove the following hypothesis:
for any decision table, we can construct a decision tree with the minimum number of
realizable terminal nodes using only attributes.

The motivation for the work is related to the use of decision trees to represent knowl-
edge: we try to reduce the complexity of decision trees (and improve their understandabil-
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ity) by using hypotheses. The main achievements of the work are the following: (i) we have
proposed dynamic programming algorithms for optimizing five types of decision trees
relative to four cost functions, and (ii) we have shown cases, when the use of hypotheses
leads to the decrease in the complexity of decision trees.

The rest of the paper is organized as follows. In Sections 2 and 3, we consider main
notions. In Sections 4–8, we describe dynamic programming algorithms for the decision
tree optimization. In Section 9, we prove the above hypothesis. Section 10 contains results
of computer experiments, and Section 11 gives short conclusions.

2. Decision Tables

A decision table is a table T with n ≥ 1 columns filled with numbers from the set
ω = {0, 1, 2, . . .}. Columns of this table are labeled with conditional attributes f1, . . . , fn.
Rows of the table are pairwise different. Each row is labeled with a number from ω that
is interpreted as a decision. Rows of the table are interpreted as tuples of values of the
conditional attributes.

Each decision table can be represented by a word (sequence) over the alphabet
{0, 1, ; , |}: numbers from ω are in binary representation, we use the symbol “;” to separate
two numbers from ω, and we use the symbol “|” to separate two rows (for each row, we
add corresponding decision as the last number in the row). The length of this word is
called the size of the decision table.

A decision table T is called empty if it has no rows. The table T is called degenerate if
it is empty or all rows of T are labeled with the same decision.

We denote F(T) = { f1, . . . , fn} and denote by D(T) the set of decisions attached to
the rows of T. For any conditional attribute fi ∈ F(T), we denote by E(T, fi) the set of
values of the attribute fi in the table T. We denote by E(T) the set of conditional attributes
of T for which |E(T, fi)| ≥ 2.

A system of equations over T is an arbitrary equation system of the kind

{ fi1 = δ1, . . . , fim = δm},

where m ∈ ω, fi1 , . . . , fim ∈ F(T), and δ1 ∈ E(T, fi1), . . . , δm ∈ E(T, fim) (if m = 0, then the
considered equation system is empty).

Let T be a nonempty table. A subtable of T is a table obtained from T by removal of
some rows. We correspond to each equation system S over T a subtable TS of the table T.
If the system S is empty, then TS = T. Let S be nonempty and S = { fi1 = δ1, . . . , fim = δm}.
Then, TS is the subtable of the table T containing the rows from T that, in the intersection
with columns, fi1 , . . . , fim have numbers δ1, . . . , δm, respectively. Such nonempty subtables,
including the table T, are called separable subtables of T. We denote by SEP(T) the set of
separable subtables of the table T.

3. Decision Trees

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn. We consider
the decision trees with two types of queries. We can choose an attribute fi ∈ F(T) =
{ f1, . . . , fn} and ask about its value. This query has the set of answers A( fi) = {{ fi = δ} :
δ ∈ E(T, fi)}. We can formulate a hypothesis over T in the form of H = { f1 = δ1, . . . , fn =
δn}, where δ1 ∈ E(T, f1), . . . , δn ∈ E(T, fn), and ask about this hypothesis. This query has
the set of answers A(H) = {H, { f1 = σ1}, . . . , { fn = σn} : σ1 ∈ E(T, f1) \ {δ1}, ..., σn ∈
E(T, fn) \ {δn}}. The answer H means that the hypothesis is true. Other answers are
counterexamples. The hypothesis H is called proper for T if (δ1, . . . , δn) is a row of the
table T.

A decision tree over T is a marked finite directed tree with the root in which:

• Each terminal node is labeled with a number from the set D(T) ∪ {0}.
• Each node, which is not terminal (such nodes are called working), is labeled with an

attribute from the set F(T) or with a hypothesis over T.
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• If a working node is labeled with an attribute fi from F(T), then, for each answer from
the set A( fi), there is exactly one edge labeled with this answer, which leave this node
and there are no any other edges leaving this node.

• If a working node is labeled with a hypothesis H = { f1 = δ1, . . . , fn = δn} over T,
then, for each answer from the set A(H), there is exactly one edge labeled with this
answer, which leaves this node and there are no any other edges leaving this node.

Let Γ be a decision tree over T and v be a node of Γ. We now define an equation system
S(Γ, v) over T associated with the node v. We denote by ξ the directed path from the root
of Γ to the node v. If there are no working nodes in ξ, then S(Γ, v) is the empty system.
Otherwise, S(Γ, v) is the union of equation systems attached to the edges of the path ξ.

A decision tree Γ over T is called a decision tree for T if, for any node v of Γ,

• The node v is terminal if and only if the subtable TS(Γ, v) is degenerate.
• If v is a terminal node and the subtable TS(Γ, v) is empty, then the node v is labeled

with the decision 0.
• If v is a terminal node and the subtable TS(Γ, v) is nonempty, then the node v is

labeled with the decision attached to all rows of TS(Γ, v).

A complete path in Γ is an arbitrary directed path from the root to a terminal node in
Γ. As the time complexity of a decision tree, we consider its depth that is the maximum
number of working nodes in a complete path in the tree or, which is the same, the maximum
length of a complete path in the tree. We denote by h(Γ) the depth of a decision tree Γ.

As the space complexity of the decision tree Γ, we consider the number of its realizable
relative to T nodes. A node v of Γ is called realizable relative to T if and only if the subtable
TS(Γ, v) is nonempty. We denote by L(T, Γ) the number of nodes in Γ that are realizable
relative to T. We also consider two more cost functions relative to the space complexity:
Lt(T, Γ) — the number of terminal nodes in Γ that are realizable relative to T and Lw(T, Γ)
— the number of working nodes in Γ. Note that all working nodes of Γ are realizable relative
to T.

We will use the following notation:

• For k = 1, . . . , 5, h(k)(T) is the minimum depth of a decision tree of the type k for T.
• For k = 1, . . . , 5, L(k)(T) is the minimum number of nodes realizable relative to T in a

decision tree of the type k for T.
• For k = 1, . . . , 5, L(k)

t (T) is the minimum number of terminal nodes realizable relative
to T in a decision tree of the type k for T.

• For k = 1, . . . , 5, L(k)
w (T) is the minimum number of working nodes in a decision tree

of the type k for T.

4. Construction of Directed Acyclic Graph ∆(T)

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn. We now
describe an algorithm ADAG for the construction of a directed acyclic graph (DAG) ∆(T)
that will be used for the study of decision trees. Nodes of this graph are separable subtables
of the table T. During each iteration we process one node. We start with the graph that
consists of one node T, which is not processed and finish when all nodes of the graph are
processed. This algorithm can be considered as a special case of the algorithm for DAG
construction considered in Reference [18].
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Algorithm ADAG (construction of DAG ∆(T)).

Input: A nonempty decision table T with n conditional attributes f1, . . . , fn.

Output: Directed acyclic graph ∆(T).

1. Construct the graph that consists of one node T, which is not marked as processed.
2. If all nodes of the graph are processed, then the algorithm halts and returns the

resulting graph as ∆(T). Otherwise, choose a node (table) Θ that has not been
processed yet.

3. If Θ is degenerate, then mark the node Θ as processed and proceed to step 2.
4. If Θ is not degenerate, then, for each fi ∈ E(Θ), draw a bundle of edges from

the node Θ. Let E(Θ, fi) = {a1, . . . , ak}. Then, draw k edges from Θ and label
these edges with systems of equations { fi = a1}, . . . , { fi = ak}. These edges
enter nodes Θ{ fi = a1}, . . . , Θ{ fi = ak}, respectively. If some of the nodes
Θ{ fi = a1}, . . . , Θ{ fi = ak} are not present in the graph, then add these nodes to
the graph. Mark the node Θ as processed and return to step 2.

The following statement about time complexity of the algorithm ADAG follows imme-
diately from Proposition 3.3 [18].

Proposition 1. The time complexity of the algorithmADAG is bounded from above by a polynomial
on the size of the input table T and the number |SEP(T)| of different separable subtables of T.

Generally, the time complexity of the algorithm ADAG is exponential, depending on
the size of the input decision tables. Note that, in Section 3.4 of the book [18], classes
of decision tables are described for each of which the number of separable subtables of
decision tables from the class is bounded from above by a polynomial on the number of
columns in the tables. For each of these classes, the time complexity of the algorithmADAG
is polynomial depending on the size of the input decision tables.

Note that similar results can be obtained for the space complexity of the consid-
ered algorithm.

5. Minimizing the Depth

In this section, we consider some results obtained in Reference [12]. Let T be a
nonempty decision table with n conditional attributes f1, . . . , fn. We can use the DAG ∆(T)
to compute values h(1)(T), . . . , h(5)(T). Let k ∈ {1, . . . , 5}. To find the value h(k)(T), for
each node Θ of the DAG ∆(T), we compute the value h(k)(Θ). It will be convenient for us
to consider not only subtables that are nodes of ∆(T) but also empty subtable Λ of T and
subtables Tr that contain only one row r of T and are not nodes of ∆(T). We begin with
these special subtables and terminal nodes of ∆(T) (nodes without leaving edges) that are
degenerate separable subtables of T and step-by-step move to the table T.

Let Θ be a terminal node of ∆(T) or Θ = Tr for some row r of T. Then, h(k)(Θ) = 0:
the decision tree that contains only one node labeled with the decision attached to all rows
of Θ is a decision tree for Θ. If Θ = Λ, then h(k)(Θ) = 0: the decision tree that contains
only one node labeled with 0 will be considered as a decision tree for Λ.

Let Θ be a nonterminal node of ∆(T) such that, for each child Θ′ of Θ, we already
know the value h(k)(Θ′). Based on this information, we can find the minimum depth of a
decision tree for Θ, which uses for the subtables corresponding to the children of the root
decision trees of the type k and in which the root is labeled:

• With an attribute from F(T) (we denote by h(k)a (Θ) the minimum depth of such a
decision tree).

• With a hypothesis over T (we denote by h(k)h (Θ) the minimum depth of such a deci-
sion tree).
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• With a proper hypothesis over T (we denote by h(k)p (Θ) the minimum depth of such a
decision tree).

Since Θ is nondegenerate, the set E(Θ) is nonempty. We now describe three procedures
for computing the values h(k)a (Θ), h(k)h (Θ), and h(k)p (Θ), respectively.

Let us consider a decision tree Γ( fi) for Θ in which the root is labeled with an attribute
fi ∈ E(Θ). For each δ ∈ E(T, fi), there is an edge that leaves the root and enters a node
v(δ). This edge is labeled with the equation system { fi = δ}. The node v(δ) is the root of a
decision tree of the type k for Θ{ fi = δ} for which the depth is equal to h(k)(Θ{ fi = δ}). It
is clear that

h(Γ( fi)) = 1 + max{h(k)(Θ{ fi = δ}) : δ ∈ E(T, fi)}.

Since h(k)(Θ{ fi = δ}) = h(k)(Λ) = 0 for any δ ∈ E(T, fi) \ E(Θ, fi),

h(Γ( fi)) = 1 + max{h(k)(Θ{ fi = δ}) : δ ∈ E(Θ, fi)}. (1)

Evidently, for any δ ∈ E(Θ, fi), the subtable Θ{ fi = δ} is a child of Θ in the DAG
∆(T), i.e., we know the value h(k)(Θ{ fi = δ}).

One can show that h(Γ( fi)) is the minimum depth of a decision tree for Θ in which
the root is labeled with the attribute fi and which uses for the subtables corresponding to
the children of the root decision trees of the type k.

We should not consider attributes fi ∈ F(T) \ E(Θ) since, for each such attribute, there
is δ ∈ E(T, fi) with Θ{ fi = δ} = Θ, i.e., based on this attribute, we cannot construct an
optimal decision tree for Θ. As a result, we have

h(k)a (Θ) = min{h(Γ( fi)) : fi ∈ E(Θ)}. (2)

Computation of h(k)a (Θ). Construct the set of attributes E(Θ). For each attribute fi ∈ E(Θ),
compute the value h(Γ( fi)) using (1). Compute the value h(k)a (Θ) using (2).

Remark 2. Let Θ be a nonterminal node of the DAG ∆(T) such that, for each child Θ′ of Θ, we
already know the value h(k)(Θ′). Then, the procedure of computation of the value h(k)a (Θ) has
polynomial time complexity depending on the size of decision table T.

A hypothesis H = { f1 = δ1, . . . , fn = δn} over T is called admissible for Θ and an
attribute fi ∈ F(T) = { f1, . . . , fn} if, for any σ ∈ E(T, fi) \ {δi}, Θ{ fi = σ} 6= Θ. The
hypothesis H is not admissible for Θ and an attribute fi ∈ F(T) if and only if |E(Θ, fi)| = 1
and δi /∈ E(Θ, fi). The hypothesis H is called admissible for Θ if it is admissible for Θ and
any attribute fi ∈ F(T).

Let us consider a decision tree Γ(H) for Θ in which the root is labeled with an ad-
missible for Θ hypothesis H = { f1 = δ1, . . . , fn = δn}. The set of answers for the query
corresponding to the hypothesis H is equal to A(H) = {H, { f1 = σ1}, . . . , { fn = σn} : σ1 ∈
E(T, f1) \ {δ1}, ..., σn ∈ E(T, fn) \ {δn}}. For each S ∈ A(H), there is an edge that leaves
the root of Γ(H) and enters a node v(S). This edge is labeled with the equation system S.
The node v(S) is the root of a decision tree of the type k for ΘS, which depth is equal to
h(k)(ΘS). It is clear that

h(Γ(H)) = 1 + max{h(k)(ΘS) : S ∈ A(H)}.

We have ΘH = Λ or ΘH = Tr for some row r of T. Therefore, h(k)(ΘH) = 0. Since
H is admissible for Θ, E(Θ, fi) \ {δi} = ∅ for any attribute f ∈ F(T) \ E(Θ). It is clear
that Θ{ fi = σ} = Λ and h(k)(Θ{ fi = σ}) = 0 for any attribute fi ∈ E(Θ) and any
σ ∈ E(T, fi) \ {δi} such that σ /∈ E(Θ, fi). Therefore,

h(Γ(H)) = 1 + max{h(k)(Θ{ fi = σ}) : fi ∈ E(Θ), σ ∈ E(Θ, fi) \ {δi}}. (3)
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It is clear that, for any fi ∈ E(Θ) and any σ ∈ E(Θ, fi) \ {δi}, the subtable Θ{ fi = σ} is a
child of Θ in the DAG ∆(T), i.e., we know the value h(k)(Θ{ fi = σ}).

One can show that h(Γ(H)) is the minimum depth of a decision tree for Θ in which
the root is labeled with the hypothesis H and which uses for the subtables corresponding
to the children of the root decision trees of the type k.

We should not consider hypotheses that are not admissible for Θ since, for each such
hypothesis H for corresponding query, there is an answer S ∈ A(H) with ΘS = Θ, i.e.,
based on this hypothesis, we cannot construct an optimal decision tree for Θ.

Computation of h(k)h (Θ). First, we construct a hypothesis:

HΘ = { f1 = δ1, . . . , fn = δn}

for Θ. Let fi ∈ F(T) \ E(Θ). Then, δi is equal to the only number in the set E(Θ, fi). Let
fi ∈ E(Θ). Then, δi is the minimum number from E(Θ, fi) for which h(k)(Θ{ fi = δi}) =
max{h(k)(Θ{ fi = σ}) : σ ∈ E(Θ, fi)}. It is clear that HΘ is admissible for Θ. Compute the
value h(Γ(HΘ)) using (3). Simple analysis of (3) shows that h(Γ(HΘ)) = h(k)h (Θ).

Remark 3. Let Θ be a nonterminal node of the DAG ∆(T) such that, for each child Θ′ of Θ, we
already know the value h(k)(Θ′). Then, the procedure of computation of the value h(k)h (Θ) has
polynomial time complexity depending on the size of decision table T.

Computation of h(k)p (Θ). For each row r = (δ1, . . . , δn) of the decision table T, we check
if the corresponding proper hypothesis Hr = { f1 = δ1, . . . , fn = δn} is admissible for Θ.
For each admissible for Θ proper hypothesis Hr = { f1 = δ1, . . . , fn = δn}, we compute the
value h(Γ(Hr)) using (3). One can show that the minimum among the obtained numbers is
equal to h(k)p (Θ).

Remark 4. Let Θ be a nonterminal node of the DAG ∆(T) such that, for each child Θ′ of Θ, we
already know the value h(k)(Θ′). Then, the procedure of computation of the value h(k)p (Θ) has
polynomial time complexity depending on the size of decision table T.

We describe an algorithm Ah that, for a given nonempty decision table T and given
k ∈ {1, . . . , 5}, calculates the value h(k)(T), which is the minimum depth of a decision tree
of the type k for the table T. During the work of this algorithm, we find for each node Θ of
the DAG ∆(T) the value h(k)(Θ).
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Algorithm Ah (computation of h(k)(T)).

Input: A nonempty decision table T, the directed acyclic graph ∆(T), and number
k ∈ {1, . . . , 5}.

Output: The value h(k)(T).

1. If a number is attached to each node of the DAG ∆(T), then return the number
attached to the node T as h(k)(T) and halt the algorithm. Otherwise, choose a
node Θ of the graph ∆(T) without attached number, which is either a terminal
node of ∆(T) or a nonterminal node of ∆(T) for which all children have attached
numbers.

2. If Θ is a terminal node, then attach to it the number h(k)(Θ) = 0 and proceed to
step 1.

3. If Θ is not a terminal node, then, depending on the value k, do the following:

• In the case k = 1, compute the value h(1)a (Θ) and attach to Θ the value

h(1)(Θ) = h(1)a (Θ).
• In the case k = 2, compute the value h(2)h (Θ) and attach to Θ the value

h(2)(Θ) = h(2)h (Θ).

• In the case k = 3, compute the values h(3)a (Θ) and h(3)h (Θ), and attach to Θ

the value h(3)(Θ) = min{h(3)a (Θ), h(3)h (Θ)}.
• In the case k = 4, compute the value h(4)p (Θ) and attach to Θ the value

h(4)(Θ) = h(4)p (Θ).

• In the case k = 5, compute the values h(5)a (Θ) and h(5)p (Θ), and attach to Θ

the value h(5)(Θ) = min{h(5)a (Θ), h(5)p (Θ)}.
Proceed to step 1.

Using Remarks 2–4, one can prove the following statement.

Proposition 5. The time complexity of the algorithm Ah is bounded from above by a polynomial
on the size of the input table T and the number |SEP(T)| of different separable subtables of T.

A similar bound can be obtained for the space complexity of the considered algorithm.

6. Minimizing the Number of Realizable Nodes

In this section, we consider some results obtained in Reference [13]. Let T be a
nonempty decision table with n conditional attributes f1, . . . , fn. We can use the DAG
∆(T) to compute values L(1)(T), . . . , L(5)(T). Let k ∈ {1, . . . , 5}. To find the value L(k)(T),
we compute the value L(k)(Θ) for each node Θ of the DAG ∆(T). We will consider not
only subtables that are nodes of ∆(T) but also empty subtable Λ of T and subtables Tr
that contain only one row r of T and are not nodes of ∆(T). We begin with these special
subtables and terminal nodes of ∆(T) (nodes without leaving edges) that are degenerate
separable subtables of T and step-by-step move to the table T.

Let Θ be a terminal node of ∆(T) or Θ = Tr for some row r of T. Then, L(k)(Θ) = 1:
the decision tree that contains only one node labeled with the decision attached to all rows
of Θ is a decision tree for Θ. The only node of this tree is realizable relative to Θ. If Θ = Λ,
then L(k)(Θ) = 0: the decision tree that contains only one node labeled with 0 will be
considered as a decision tree for Λ. The only node of this tree is not realizable relative to Λ.

Let Θ be a nonterminal node of ∆(T) such that, for each child Θ′ of Θ, we already
know the value L(k)(Θ′). Based on this information, we can find the minimum number
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of realizable relative to Θ nodes in a decision tree for Θ, which uses for the subtables
corresponding to the children of the root decision trees of the type k and in which the root
is labeled

• With an attribute from F(T) (we denote by L(k)
a (Θ) the minimum number of realizable

relative to Θ nodes in such a decision tree).
• With a hypothesis over T (we denote by L(k)

h (Θ) the minimum number of realizable
relative to Θ nodes in such a decision tree).

• With a proper hypothesis over T (we denote by L(k)
p (Θ) the minimum number of

realizable relative to Θ nodes in such a decision tree).

We now describe three procedures for computing the values L(k)
a (Θ), L(k)

h (Θ), and

L(k)
p (Θ), respectively. Since Θ is nondegenerate, the set E(Θ) is nonempty.

Let us consider a decision tree Γ( fi) for Θ in which the root is labeled with an attribute
fi ∈ E(Θ). For each δ ∈ E(T, fi), there is an edge that leaves the root and enters a
node v(δ). This edge is labeled with the equation system { fi = δ}. The node v(δ) is the
root of a decision tree of the type k for Θ{ fi = δ} for which the number of realizable
relative to Θ{ fi = δ} nodes is equal to L(k)(Θ{ fi = δ}). It is clear that L(Θ, Γ( fi)) =
1 + ∑δ∈E(T, fi)

L(k)(Θ{ fi = δ}). Since L(k)(Θ{ fi = δ}) = L(k)(Λ) = 0 for any δ ∈ E(T, fi) \
E(Θ, fi),

L(Θ, Γ( fi)) = 1 + ∑
δ∈E(Θ, fi)

L(k)(Θ{ fi = δ}). (4)

Evidently, for any δ ∈ E(Θ, fi), the subtable Θ{ fi = δ} is a child of Θ in the DAG
∆(T), i.e., we know the value L(k)(Θ{ fi = δ}). One can show that L(Θ, Γ( fi)) is the
minimum number of realizable relative to Θ nodes in a decision tree for Θ, which uses for
the subtables corresponding to the children of the root decision trees of the type k and in
which the root is labeled with the attribute fi.

We should not consider attributes fi ∈ F(T) \ E(Θ) since, for each such attribute, there
is δ ∈ E(T, fi) with Θ{ fi = δ} = Θ, i.e., based on this attribute, we cannot construct an
optimal decision tree for Θ. As a result, we have

L(k)
a (Θ) = min{L(Θ, Γ( fi)) : fi ∈ E(Θ)}. (5)

Computation of L(k)
a (Θ). Construct the set of attributes E(Θ). For each attribute fi ∈ E(Θ),

compute the value L(Θ, Γ( fi)) using (4). Compute the value L(k)
a (Θ) using (5).

Let us consider a decision tree Γ(H) for Θ in which the root is labeled with an ad-
missible for Θ hypothesis H = { f1 = δ1, . . . , fn = δn}. For each S ∈ A(H), there is an
edge that leaves the root of Γ(H) and enters a node v(S). This edge is labeled with the
equation system S. The node v(S) is the root of a decision tree of the type k for ΘS, for
which the number of realizable relative to ΘS nodes is equal to L(k)(ΘS). It is clear that
L(Θ, Γ(H)) = 1 + ∑S∈A(H) L(k)(ΘS).

Denote r = (δ1, . . . , δn). It is easy to show that ΘH = Λ if r is not a row of Θ and
ΘH = Tr if r is a row of Θ. Therefore,

L(k)(ΘH) =

{
0, if r is not a row of Θ,
1, if r is a row of Θ.

(6)

Since H is admissible for Θ, E(Θ, fi) \ {δi} = ∅ for any attribute fi ∈ F(T) \ E(Θ). It
is clear that Θ{ fi = σ} = Λ and L(k)(Θ{ fi = σ}) = 0 for any attribute fi ∈ E(Θ) and any
σ ∈ E(T, fi) \ {δi} such that σ /∈ E(Θ, fi). Therefore,

L(Θ, Γ(H)) = L(k)(ΘH) + K(Θ, H), (7)
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where
K(Θ, H) = 1 + ∑

fi∈E(Θ),σ∈E(Θ, fi)\{δi}
L(k)(Θ{ fi = σ}). (8)

Evidently, for any fi ∈ E(Θ) and any σ ∈ E(Θ, fi) \ {δi}, the subtable Θ{ fi = σ} is a
child of Θ in the DAG ∆(T), i.e., we know the value L(k)(Θ{ fi = σ}). It is easy to show
that L(Θ, Γ(H)) is the minimum number of realizable relative to Θ nodes in a decision tree
for Θ, which uses for the subtables corresponding to the children of the root decision trees
of the type k and in which the root is labeled with the admissible for Θ hypothesis H.

We should not consider hypotheses that are not admissible for Θ since, for each such
hypothesis H for corresponding query, there is an answer S ∈ A(H) with ΘS = Θ, i.e.,
based on this hypothesis, we cannot construct an optimal decision tree for Θ. As a result,
we have

L(k)
h (Θ) = min{L(Θ, Γ(H)) : H ∈ Adm(Θ)}, (9)

where Adm(Θ) is the set of admissible hypotheses for Θ.
For each fi ∈ { f1, . . . , fn}, denote ai(Θ) = max{L(k)(Θ{ fi = σ}) : σ ∈ E(Θ, fi)}

and C(Θ, fi) = {σ ∈ E(Θ, fi) : L(k)(Θ{ fi = σ}) = ai(Θ)}. Set C(Θ) = C(Θ, f1) ×
· · · × C(Θ, fn). It is clear that, for each δ̄ = (δ1, . . . , δn) ∈ C(Θ), the hypothesis Hδ̄ =
{ f1 = δ1, . . . , fn = δn} is admissible for Θ. Simple analysis of (8) shows that the set
{Hδ̄ : δ̄ ∈ C(Θ)} coincides with the set of admissible for Θ hypotheses H that minimize
the value K(Θ, H). Denote Kmin = K(Θ, Hδ̄), where δ̄ ∈ C(Θ).

Let there be a tuple δ̄ ∈ C(Θ), which is not a row of Θ. Then, L(k)(ΘHδ̄) = 0 and

L(k)
h (Θ) = Kmin. Let all tuples from C(Θ) be rows of Θ. We now show that L(k)

h (Θ) = 1 +

Kmin. For any δ̄ ∈ C(Θ), we have L(Θ, Γ(Hδ̄)) = 1 + Kmin. Therefore, L(k)
h (Θ) ≤ 1 + Kmin.

Let us assume that L(k)
h (Θ) < 1 + Kmin. Then, by (9), there exists an admissible for Θ

hypothesis H = { f1 = σ1, . . . , fn = σn} for which (σ1, . . . , σn) /∈ C(Θ) and L(Θ, Γ(H)) <
1 + Kmin, but this is impossible since, according to (7), L(Θ, Γ(H)) ≥ K(Θ, H) ≥ Kmin + 1.

As a result, we have L(k)
h (Θ) = Kmin if not all tuples from C(Θ) are rows of Θ, and

L(k)
h (Θ) = 1 + Kmin if all tuples from C(Θ) are rows of Θ.

Computation of L(k)
h (Θ). For each fi ∈ { f1, . . . , fn}, we compute the value: ai(Θ) =

max{L(k)(Θ{ fi = σ}) : σ ∈ E(Θ, fi)} and construct the set C(Θ, fi) = {σ ∈ E(Θ, fi) :
L(k)(Θ{ fi = σ}) = ai(Θ)}. For a tuple δ̄ ∈ C(Θ) = C(Θ, f1)× · · · × C(Θ, fn), using (8),
we compute the value Kmin = K(Θ, Hδ̄). Then, we count the number N of rows from Θ
that belong to the set C(Θ) and compute the cardinality |C(Θ)| of the set C(Θ) that is
equal to |C(Θ, f1)| · . . . · |C(Θ, fn)|. As a result, we have L(k)

h (Θ) = Kmin if N < |C(Θ)| and

L(k)
h (Θ) = 1 + Kmin if N = |C(Θ)|.

Computation of L(k)
p (Θ). For each row r = (δ1, . . . , δn) of the decision table T, we check

if the corresponding proper hypothesis Hr = { f1 = δ1, . . . , fn = δn} is admissible for Θ.
For each admissible for Θ proper hypothesis Hr, we compute the value L(Θ, Γ(Hr)) using
(6), (7), and (8). One can show that the minimum among the obtained numbers is equal to
L(k)

p (Θ).

We now consider an algorithm AL that, for a given nonempty decision table T and
number k ∈ {1, . . . , 5}, calculates the value L(k)(T), which is the minimum number of
nodes realizable relative to T in a decision tree of the type k for the table T. During the
work of this algorithm, we find for each node Θ of the DAG ∆(T) the value L(k)(Θ).

The description of the algorithm AL is similar to the description of the algorithm Ah.
Instead of h(k), we should use L(k). For each b ∈ {a, h, p}, instead of h(k)b , we should use

L(k)
b . In particular, for each terminal node Θ, L(k)(Θ) = 1.
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One can show that the procedures of computation of the values L(k)
a (Θ), L(k)

h (Θ), and

L(k)
p (Θ) have polynomial time complexity depending on the size of the decision table T.

Using this fact, one can prove the following statement.

Proposition 6. The time complexity of the algorithm AL is bounded from above by a polynomial
on the size of the input table T and the number |SEP(T)| of different separable subtables of T.

A similar bound can be obtained for the space complexity of the considered algorithm.

7. Minimizing the Number of Realizable Terminal Nodes

The procedure considered in this section is similar to the procedure of the minimization
of the number of realizable nodes. The main difference is that, in decision trees with the
minimum number of realizable terminal nodes, it is possible to meet constant attributes
and hypotheses that are not admissible. Fortunately, for any decision table and any type of
decision trees, there is a decision tree of this type with the minimum number of realizable
terminal nodes for the considered table that do not use such attributes and hypotheses. We
will omit many details and describe main steps only.

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn and k ∈
{1, . . . , 5}. To find the value L(k)

t (T), we compute the value L(k)
t (Θ) for each node Θ of the

DAG ∆(T). We begin with terminal nodes of ∆(T) that are degenerate separable subtables
of T and step-by-step move to the table T.

Let Θ be a terminal node of ∆(T). Then, L(k)
t (Θ) = 1: the decision tree that contains

only one node labeled with the decision attached to all rows of Θ is a decision tree for Θ.
The only node of this tree is a terminal node realizable relative to Θ.

Let Θ be a nonterminal node of ∆(T) such that, for each child Θ′ of Θ, we already
know the value L(k)

t (Θ′). Based on this information, we can find the minimum number of
realizable relative to Θ terminal nodes in a decision tree for Θ, which uses for the subtables
corresponding to children of the root decision trees of the type k and in which the root
is labeled

• With an attribute from F(T) (we denote by L(k)
t,a (Θ) the minimum number of realizable

relative to Θ terminal nodes in such a decision tree).
• With a hypothesis over T (we denote by L(k)

t,h (Θ) the minimum number of realizable
relative to Θ terminal nodes in such a decision tree).

• With a proper hypothesis over T (we denote by L(k)
t,p (Θ) the minimum number of

realizable relative to Θ terminal nodes in such a decision tree).

We now describe three procedures for computing the values L(k)
t,a (Θ), L(k)

t,h (Θ), and

L(k)
t,p (Θ), respectively. Since Θ is nondegenerate, the set E(Θ) is nonempty.

Computation of L(k)
t,a (Θ). Construct the set of attributes E(Θ). For each attribute fi ∈ E(Θ),

compute the value:

L(k)
t,a (Θ, fi) = ∑

δ∈E(Θ, fi)

L(k)
t (Θ{ fi = δ}).

Then, compute the value:

L(k)
t,a (Θ) = min{L(k)

t,a (Θ, fi) : fi ∈ E(Θ)}.

Computation of L(k)
t,h (Θ). For each fi ∈ { f1, . . . , fn}, we compute the value: ai(Θ) =

max{L(k)
t (Θ{ fi = σ}) : σ ∈ E(Θ, fi)} and construct the set C(Θ, fi) = {σ ∈ E(Θ, fi) :
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L(k)
t (Θ{ fi = σ}) = ai(Θ)}. For a tuple (δ1, . . . , δn) ∈ C(Θ) = C(Θ, f1)× · · · × C(Θ, fn),

we compute the value:

Kmin = ∑
fi∈E(Θ),σ∈E(Θ, fi)\{δi}

L(k)
t (Θ{ fi = σ}).

Then, we count the number N of rows from Θ that belong to the set C(Θ) and compute
the cardinality |C(Θ)| of the set C(Θ) that is equal to |C(Θ, f1)| · . . . · |C(Θ, fn)|. As a result,
we have L(k)

t,h (Θ) = Kmin if N < |C(Θ)| and L(k)
t,h (Θ) = 1 + Kmin if N = |C(Θ)|.

Computation of L(k)
t,p (Θ). For each row r = (δ1, . . . , δn) of the decision table T, we check if

the corresponding proper hypothesis Hr = { f1 = δ1, . . . , fn = δn} is admissible for Θ. For
each admissible for Θ proper hypothesis Hr, we compute the value:

L(k)
t,p (Θ, Hr) = 1 + ∑

fi∈E(Θ),σ∈E(Θ, fi)\{δi}
L(k)

t (Θ{ fi = σ}).

One can show that the minimum among the obtained numbers is equal to L(k)
t,p (Θ).

We now consider an algorithm ALt that, for a given nonempty decision table T and

number k ∈ {1, . . . , 5}, calculates the value L(k)
t (T), which is the minimum number of

terminal nodes realizable relative to T in a decision tree of the type k for the table T. During
the work of this algorithm, we find for each node Θ of the DAG ∆(T) the value L(k)

t (Θ).
The description of the algorithm ALt is similar to the description of the algorithm Ah.

Instead of h(k), we should use L(k)
t . For each b ∈ {a, h, p}, instead of h(k)b , we should use

L(k)
t,b . In particular, for each terminal node Θ, L(k)

t (Θ) = 1.

One can show that the procedures of computation of the values L(k)
t,a (Θ), L(k)

t,h (Θ), and

L(k)
t,p (Θ) have polynomial time complexity depending on the size of the decision table T.

Using this fact, one can prove the following statement.

Proposition 7. The time complexity of the algorithm ALt is bounded from above by a polynomial
on the size of the input table T and the number |SEP(T)| of different separable subtables of T.

A similar bound can be obtained for the space complexity of the considered algorithm.

8. Minimizing the Number of Working Nodes

The procedure considered in this section is similar to the procedure of the minimization
of the depth. We will omit many details and describe main steps only.

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn and k ∈
{1, . . . , 5}. To find the value L(k)

w (T), we compute the value L(k)
w (Θ) for each node Θ of the

DAG ∆(T). We begin with terminal nodes of ∆(T) that are degenerate separable subtables
of T and step-by-step move to the table T.

Let Θ be a terminal node of ∆(T). Then, L(k)
t (Θ) = 0: the decision tree that contains

only one node labeled with the decision attached to all rows of Θ is a decision tree for Θ.
This tree has no working nodes.

Let Θ be a nonterminal node of ∆(T) such that, for each child Θ′ of Θ, we already
know the value L(k)

w (Θ′). Based on this information, we can find the minimum number
of working nodes in a decision tree for Θ, which uses for the subtables corresponding to
children of the root decision trees of the type k and in which the root is labeled

• With an attribute from F(T) (we denote by L(k)
w,a(Θ) the minimum number of working

nodes in such a decision tree).
• With a hypothesis over T (we denote by L(k)

w,h(Θ) the minimum number of working
nodes in such a decision tree).
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• With a proper hypothesis over T (we denote by L(k)
w,p(Θ) the minimum number of

working nodes in such a decision tree).

We now describe three procedures for computing the values L(k)
w,a(Θ), L(k)

w,h(Θ), and

L(k)
w,p(Θ), respectively. Since Θ is nondegenerate, the set E(Θ) is nonempty.

Computation of L(k)
w,a(Θ). Construct the set of attributes E(Θ). For each attribute fi ∈ E(Θ),

compute the value:

L(k)
w,a(Θ, fi) = ∑

δ∈E(Θ, fi)

L(k)
w (Θ{ fi = δ}).

Then, compute the value:

L(k)
w,a(Θ) = min{L(k)

w,a(Θ, fi) : fi ∈ E(Θ)}.

Computation of L(k)
w,h(Θ). First, we construct a hypothesis:

HΘ = { f1 = δ1, . . . , fn = δn}

for Θ. Let fi ∈ F(T) \ E(Θ). Then, δi is equal to the only number in the set E(Θ, fi). Let
fi ∈ E(Θ). Then, δi is the minimum number from E(Θ, fi) for which L(k)

w (Θ{ fi = δi}) =
max{L(k)

w (Θ{ fi = σ}) : σ ∈ E(Θ, fi)}. Then

L(k)
w,h(Θ) = 1 + ∑

fi∈E(Θ),σ∈E(Θ, fi)\{δi}
L(k)

w (Θ{ fi = σ}).

Computation of L(k)
w,p(Θ). For each row r = (δ1, . . . , δn) of the decision table T, we check if

the corresponding proper hypothesis Hr = { f1 = δ1, . . . , fn = δn} is admissible for Θ. For
each admissible for Θ proper hypothesis Hr, we compute the value:

L(k)
w,p(Θ, Hr) = 1 + ∑

fi∈E(Θ),σ∈E(Θ, fi)\{δi}
L(k)

w (Θ{ fi = σ}).

One can show that the minimum among the obtained numbers is equal to L(k)
w,p(Θ).

We now consider an algorithm ALw that, for a given nonempty decision table T and

k ∈ {1, . . . , 5}, calculates the value L(k)
w (T), which is the minimum number of working

nodes in a decision tree of the type k for the table T. During the work of this algorithm, we
find for each node Θ of the DAG ∆(T) the value L(k)

w (Θ).
The description of the algorithm ALw is similar to the description of the algorithm Ah.

Instead of h(k), we should use L(k)
w . For each b ∈ {a, h, p}, instead of h(k)b , we should use

L(k)
w,b. In particular, for each terminal node Θ, L(k)

w (Θ) = 0.

One can show that the procedures of computation of the values L(k)
w,a(Θ), L(k)

w,h(Θ), and

L(k)
w,p(Θ) have polynomial time complexity depending on the size of the decision table T.

Using this fact, one can prove the following statement.

Proposition 8. The time complexity of the algorithm ALw is bounded from above by a polynomial
on the size of the input table T and the number |SEP(T)| of different separable subtables of T.

A similar bound can be obtained for the space complexity of the considered algorithm.
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9. On Number of Realizable Terminal Nodes

Based on the results of experiments, we formulated the following hypothesis: L(1)
t (T) =

L(3)
t (T) = L(5)

t (T) for any decision table T. In this section, we prove it. First, we consider a
simple lemma.

Lemma 9. Let T be a decision table and T′ be a subtable of the table T. Then, L(3)
t (T′) ≤ L(3)

t (T).

Proof. It is easy to prove the considered inequality if T′ is degenerate. Let T′ be nondegen-
erate and Γ be a decision tree of the type 3 for T with the minimum number of realizable
relative to T terminal nodes. Then, the root r of Γ is a working node. It is clear that the
table T′S(Γ, r) is nondegenerate. For each working node v of Γ such that the table T′S(Γ, v)
is degenerate and the table T′S(Γ, v′) is nondegenerate, where v′ is the parent of v, we do
the following. We remove all nodes and edges of the subtree of Γ with the root v with the
exception of the node v. If T′S(Γ, v) = Λ, then we label the node v with the number 0. If
the subtable T′S(Γ, v) is nonempty, then we label the node v with the decision attached to
each row of this subtable. We denote by Γ′ the obtained decision tree. One can show that
Γ′ is a decision tree of the type 3 for the table T′ and L(3)

t (T′, Γ′) ≤ L(3)
t (T, Γ). Therefore,

L(3)
t (T′) ≤ L(3)

t (T).

Proposition 10. For any decision table T, the following equalities hold:

L(1)
t (T) = L(3)

t (T) = L(5)
t (T).

Proof. It is clear that L(3)
t (T) ≤ L(5)

t (T) ≤ L(1)
t (T) for any decision table T. To prove the

considered statement, it is enough to show that L(1)
t (T) ≤ L(3)

t (T) for any decision table T.
We will prove this inequality by induction on the number of attributes in the set E(T).

We now show that L(1)
t (T) ≤ L(3)

t (T) for any decision table T with |E(T)| = 0. If
|E(T)| = 0, then either the table T is empty or the table T contains one row. Let T be empty.
In this case, the decision tree that contains only one node labeled with 0 is considered as
a decision tree for T. The only node of this tree is not realizable relative to T. Therefore,
L(1)

t (T) = L(3)
t (T) = 0. Let T contain one row. In this case, the decision tree that contains

only one node labeled with the decision attached to the row of T is a decision tree for T.
The only node of this tree is realizable relative to T. Therefore, L(1)

t (T) = L(3)
t (T) = 1.

Let n ≥ 1 and, for any decision table T with |E(T)| ≤ n− 1, the inequality L(1)
t (T) ≤

L(3)
t (T) hold. Let T be a decision table with |E(T)| = n and T have m ≥ n columns

labeled with the attributes f1, . . . , fm. Let, for the definiteness, E(T) = { f1, . . . , fn}. If T is a
degenerate table, then, as it is easy to show, L(1)

t (T) = L(3)
t (T) = 1. Let T be nondegenerate.

We denote by Γ a decision tree of the type 3 for the table T for which Lt(T, Γ) = L(3)
t (T)

and Γ has the minimum number of nodes among such decision trees. One can show that
the root of Γ is either labeled with an attribute from E(T) or with a hypothesis over T that
is admissible for T. We now prove that the tree Γ can be transformed into a decision tree Γ∗

of the type 1 for the table T such that Lt(T, Γ∗) ≤ L(3)
t (T).

Let the root of Γ be labeled with an attribute fi ∈ E(T). Then, for each σ ∈ E(T, fi),
the root of Γ has a child vσ such that TS(Γ, vσ) = T{ fi = σ} and the root of Γ has no
other children. Since fi ∈ E(T), |E(T{ fi = σ}| ≤ n− 1. Using the inductive hypothesis,
we obtain that there is a decision tree Γσ of the type 1 for the table T{ fi = σ} such that
Lt(T{ fi = σ}, Γσ) ≤ L(3)

t (T{ fi = σ}). For each child vσ of the root of Γ, we replace the
subtree of Γ with the root vσ with the tree Γσ. As a result, we obtain a decision tree Γ∗ of
the type 1 for the table T such that Lt(T, Γ∗) ≤ Lt(T, Γ) = L(3)

t (T).
Let the root of Γ be labeled with a hypothesis H = { f1 = δ1, . . . , fm = δm} over T that

is admissible for T; see Figure 1, which depicts a prefix of the tree Γ. The root of Γ has a
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child v0 such that TS(Γ, v0) = TH = T{ f1 = δ1, . . . , fn = δn}. For each fi ∈ E(T) and each
σi ∈ E(T, fi) \ {δi}, the root of Γ has a child vi,σi such that TS(Γ, vi,σi ) = T{ fi = σi}. The
root of Γ has no other children.

We transform the tree Γ into a decision tree Γ∗ of the type 1 for the table T; see Figure 2,
which depicts a prefix of the tree Γ∗. For the node u0 of the considered prefix, TS(Γ∗, u0) =
T{ f1 = δ1, . . . , fn = δn} = TH. For each fi ∈ E(T) and each σi ∈ E(T, fi) \ {δi}, the node
of this prefix labeled with the attribute fi has a child ui,σi such that TS(Γ∗, ui,σi ) = T{ f1 =
δ1, . . . , fi−1 = δi−1, fi = σi}. It is clear that TS(Γ∗, ui,σi ) is a subtable of TS(Γ, vi,σi ). By

Lemma 9, L(3)
t (TS(Γ∗, ui,σi )) ≤ L(3)

t (TS(Γ, vi,σi )). It is also clear that |E(TS(Γ∗, ui,σi )| ≤
n− 1. Using the inductive hypothesis, we obtain that there is a decision tree Γi,σi of the

type 1 for the table TS(Γ∗, ui,σi ) such that Lt(TS(Γ∗, ui,σi ), Γi,σi ) ≤ L(3)
t (TS(Γ∗, ui,σi )) ≤

L(3)
t (TS(Γ, vi,σi )).

We now transform the prefix of a decision tree Γ∗ depicted in Figure 2 into a decision
tree Γ∗ of the type 1 for the table T. First, we transform the node u0 into a terminal
node labeled with the number 0 if (δ1, . . . , δn) is not a row of T and labeled with the
decision attached to (δ1, . . . , δn) if this tuple is a row of T. Next, for each fi ∈ E(T)
and each σi ∈ E(T, fi) \ {δi}, we replace the node ui,σi with the tree Γi,σi . It is clear
that the obtained tree Γ∗ is a decision tree of the type 1 for the decision table T and
Lt(T, Γ∗) ≤ Lt(T, Γ) = L(3)

t (T).

H = { f1 = δ1, . . . , fm = δm}

v0

v1,σ1 · · · vn,σn

H { f1 = σ1} { fn = σn}

σ1 ∈ E(T, f1) \ {δ1} σn ∈ E(T, fn) \ {δn}

Figure 1. Prefix of decision tree Γ.

f1

· · · u1,σ1 σ1 ∈ E(T, f1) \ {δ1}

fn

u0 un,σn σn ∈ E(T, fn) \ {δn}

{ f1 = δ1} { f1 = σ1}

{ fn−1 = δn−1}

{ fn = δn} { fn = σn}

Figure 2. Prefix of decision tree Γ∗.

We proved that, for any decision table T, L(1)
t (T) ≤ L(3)

t (T); hence, L(1)
t (T) =

L(3)
t (T) = L(5)

t (T).

10. Results of Experiments

We conducted experiments with eight decision tables from the UCI ML Repository [20].
Table 1 contains information about each of these decision tables: its name, the number of
rows, and the number of attributes. For each of the considered four cost functions, each of
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the considered five types of decision trees, and each of the considered eight decision tables,
we find the minimum cost of a decision tree of the given type for the given table.

Table 1. Decision tables from Reference [20] used in experiments.

Decision Number of Number of
Table Rows Attributes

BALANCE-SCALE 625 5
BREAST-CANCER 266 10

CARS 1728 7
HAYES-ROTH-DATA 69 5

NURSERY 12,960 9
SOYBEAN-SMALL 47 36

TIC-TAC-TOE 958 10
ZOO-DATA 59 17

For n = 3, . . . , 6, we randomly generate 100 Boolean functions with n variables. We
represent each Boolean function f with n variables x1, . . . , xn as a decision table Tf with n
columns labeled with variables x1, . . . , xn considered as attributes and with 2n rows that
are all possible n-tuples of values of the variables. Each row is labeled with the decision
that is the value of the function f on the corresponding n-tuple. We consider decision trees
for the table Tf as decision trees computing the function f .

For each of the considered four cost functions, each of the considered five types
of decision trees, and each of the generated Boolean functions, using its decision table
representation, we find the minimum cost of a decision tree of the given type computing
this function.

The following remarks clarify some experimental results considered later.
From Proposition 10, it follows that L(1)

t (T) = L(3)
t (T) = L(5)

t (T) for any decision
table T.

Let f be a Boolean function with n ≥ 1 variables. Since each hypothesis over the
decision table Tf is proper, the following equalities hold:

h(2)(Tf ) = h(4)(Tf ), h(3)(Tf ) = h(5)(Tf ),

L(2)(Tf ) = L(4)(Tf ), L(3)(Tf ) = L(5)(Tf ),

L(2)
t (Tf ) = L(4)

t (Tf ), L(3)
t (Tf ) = L(5)

t (Tf ),

L(2)
w (Tf ) = L(4)

w (Tf ), L(3)
w (Tf ) = L(5)

w (Tf ).

10.1. Depth

In this section, we consider some results obtained in Reference [12]. Results of exper-
iments with eight decision tables from Reference [20] and the depth are represented in
Table 2. The first column contains the name of the considered decision table T. The last five
columns contain values h(1)(T), . . . , h(5)(T) (minimum values for each decision table are in
bold).
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Table 2. Experimental results for decision tables from Reference [20]—depth.

Decision h(1)(T) h(2)(T) h(3)(T) h(4)(T) h(5)(T)
Table T

BALANCE-SCALE 4 4 4 4 4
BREAST-CANCER 6 6 5 6 5

CARS 6 6 6 6 6
HAYES-ROTH-DATA 4 4 4 4 4

NURSERY 8 8 7 8 7
SOYBEAN-SMALL 2 4 2 6 2

TIC-TAC-TOE 6 6 5 8 6
ZOO-DATA 4 4 4 5 4

Average 5.00 5.25 4.63 5.88 4.75

Decision trees with the minimum depth using attributes (type 1) are optimal for
5 decision tables, using hypotheses (type 2) are optimal for 4 tables, using attributes and
hypotheses (type 3) are optimal for 8 tables, using proper hypotheses (type 4) are optimal
for 3 tables, using attributes and proper hypotheses (type 5) are optimal for 7 tables.

For the decision table SOYBEAN-SMALL, we must use attributes to construct an optimal
decision tree. For this table, it is enough to use only attributes. For the decision tables
BREAST-CANCER and NURSERY, we must use both attributes and hypotheses to construct
optimal decision trees. For these tables, it is enough to use attributes and proper hypothe-
ses. For the decision table TIC-TAC-TOE, we must use both attributes and hypotheses
to construct optimal decision trees. For this table, it is not enough to use attributes and
proper hypotheses.

Results of experiments with Boolean functions and the depth are represented in Table 3.
The first column contains the number of variables in the considered Boolean functions. The
last five columns contain information about values h(1), . . . , h(5) in the format minAvgmax.

Table 3. Experimental results for Boolean functions—depth.

Number of h(1) h(2) h(3) h(4) h(5)

Variables n

3 22.823 12.063 11.892 12.063 11.892
4 33.944 23.054 22.973 23.054 22.973
5 44.955 44.085 33.994 44.085 33.994
6 55.996 55.016 55.005 55.016 55.005

From the obtained results, it follows that, generally, the decision trees of the types 2
and 4 are better than the decision trees of the type 1, and the decision trees of the types 3
and 5 are better than the decision trees of the types 2 and 4.

10.2. Number of Realizable Nodes

In this section, we consider some results obtained in Reference [13]. Results of experi-
ments with eight decision tables from Reference [20] and the number of realizable nodes
are represented in Table 4. The first column contains the name of the considered decision
table T. The last five columns contain values L(1)(T), . . . , L(5)(T) (minimum values for
each decision table are in bold).
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Table 4. Experimental results for decision tables from Reference [20]—number of realizable nodes.

Decision L(1)(T) L(2)(T) L(3)(T) L(4)(T) L(5)(T)
Table T

BALANCE-SCALE 501 5234 499 5234 499
BREAST-CANCER 161 18,061 159 24,226 159

CARS 396 65,250 391 65,250 391
HAYES-ROTH-DATA 52 317 52 338 52

NURSERY 1066 12,625,955 1061 12,625,955 1061
SOYBEAN-SMALL 6 4839 6 21,251 6

TIC-TAC-TOE 244 154,311 244 468,447 244
ZOO-DATA 17 1370 17 2847 17

Average 305 1,609,417 304 1,651,694 304

Decision trees with the minimum number of realizable nodes using attributes (type 1)
are optimal for 4 decision tables, using hypotheses (type 2) are optimal for 0 tables, using
attributes and hypotheses (type 3) are optimal for 8 tables, using proper hypotheses (type 4)
are optimal for 0 tables, and using attributes and proper hypotheses (type 5) are optimal
for 8 tables.

Decision trees of the types 3 and 5 can be a bit better than the decision trees of the
type 1. Decision trees of the types 2 and 4 are far from the optimal.

For the decision tables HAYES-ROTH-DATA, SOYBEAN-SMALL, TIC-TAC-TOE, and ZOO-
DATA, we must use attributes to construct optimal decision trees. For these tables, it is
enough to use only attributes. For the rest of the considered decision tables, we must use
both attributes and hypotheses to construct optimal decision trees. For these tables, it is
enough to use attributes and proper hypotheses.

Results of experiments with Boolean functions and the number of realizable nodes are
represented in Table 5. The first column contains the number of variables in the considered
Boolean functions. The last five columns contain information about values L(1), . . . , L(5) in
the format min Avgmax.

Table 5. Experimental results for Boolean functions—number of realizable nodes.

Number of L(1) L(2) L(3) L(4) L(5)

Variables n

3 58.4113 512.3822 57.4012 512.3822 57.4012
4 916.2625 1443.8966 814.5925 1443.8966 814.5925
5 1730.4241 113201.95283 1727.8339 113201.95283 1727.8339
6 4958.9477 6381057.161406 4654.1371 6381057.161406 4654.1371

From the obtained results, it follows that, generally, the decision trees of the types 3
and 5 are slightly better than the decision trees of the type 1, and the decision trees of the
types 2 and 4 are far from the optimal.

10.3. Number of Realizable Terminal Nodes

Results of experiments with eight decision tables from Reference [20] and the number
of realizable terminal nodes are represented in Table 6. The first column contains the name
of the considered decision table T. The last five columns contain values L(1)

t (T), . . . , L(5)
t (T)

(minimum values for each decision table are in bold).
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Table 6. Experimental results for decision tables from Reference [20]—number of realizable terminal
nodes.

Decision L(1)
t (T) L(2)

t (T) L(3)
t (T) L(4)

t (T) L(5)
t (T)

Table T

BALANCE-SCALE 401 4369 401 4369 401
BREAST-CANCER 99 15,577 99 21,208 99

CARS 290 50,260 290 50,260 290
HAYES-ROTH-DATA 36 240 36 259 36

NURSERY 759 9,643,103 759 9,643,103 759
SOYBEAN-SMALL 4 4508 4 19963 4

TIC-TAC-TOE 155 125,604 155 401,862 155
ZOO-DATA 10 1217 10 2560 10

Average 219 1,230,610 219 1,267,948 219

Decision trees of the types 1, 3, and 5 are optimal for each of the considered tables.
Decision trees of the types 2 and 4 are far from the optimal.

Results of experiments with Boolean functions and the number of realizable terminal
nodes are represented in Table 7. The first column contains the number of variables in
the considered Boolean functions. The last five columns contain information about values
L(1)

t , . . . , L(5)
t in the format min Avgmax.

Table 7. Experimental results for Boolean functions—number of realizable terminal nodes.

Number of L(1)
t L(2)

t L(3)
t L(4)

t L(5)
t

Variables n

3 34.707 48.8314 34.707 48.8314 34.707
4 58.6313 1131.5345 58.6313 1131.5345 58.6313
5 915.7121 86145.68200 915.7121 86145.68200 915.7121
6 2529.9739 485770.521005 2529.9739 485770.521005 2529.9739

From the obtained results, it follows that, generally, the decision trees of the types 1, 3,
and 5 are optimal, and the decision trees of the types 2 and 4 are far from the optimal.

10.4. Number of Working Nodes

Results of experiments with eight decision tables from Reference [20] and the number
of working nodes are represented in Table 8. The first column contains the name of the
considered decision table T. The last five columns contain values L(1)

w (T), . . . , L(5)
w (T)

(minimum values for each decision table are in bold).

Table 8. Experimental results for decision tables from Reference [20]—number of working nodes.

Decision L(1)
w (T) L(2)

w (T) L(3)
w (T) L(4)

w (T) L(5)
w (T)

Table T

BALANCE-SCALE 100 865 98 865 98
BREAST-CANCER 49 2415 45 2926 45

CARS 104 14,981 99 14,981 99
HAYES-ROTH-DATA 16 77 14 77 14

NURSERY 286 2,980,719 281 2,980,719 281
SOYBEAN-SMALL 2 330 2 1281 2

TIC-TAC-TOE 88 27,867 85 65,104 86
ZOO-DATA 7 151 7 284 7

Average 82 378,426 79 383,280 79
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Decision trees with the minimum number of working nodes using attributes (type 1)
are optimal for 2 decision tables, using hypotheses (type 2) are optimal for 0 tables, using
attributes and hypotheses (type 3) are optimal for 8 tables, using proper hypotheses (type 4)
are optimal for 0 tables, using attributes and proper hypotheses (type 5) are optimal for
7 tables.

Decision trees of the types 3 and 5 can be a bit better than the decision trees of the
type 1. Decision trees of the types 2 and 4 are far from the optimal.

For all decision tables with the exception of SOYBEAN-SMALL and ZOO-DATA, we must
use both attributes and hypotheses to construct optimal decision trees. Moreover, for TIC-
TAC-TOE, it is not enough to use attributes and proper hypotheses. For SOYBEAN-SMALL

and ZOO-DATA, it is enough to use only attributes to construct optimal decision trees.
Results of experiments with Boolean functions and the number of working nodes are

represented in Table 9. The first column contains the number of variables in the considered
Boolean functions. The last five columns contain information about values L(1)

w , . . . , L(5)
w in

the format min Avgmax.

Table 9. Experimental results for Boolean functions—number of working nodes.

Number of L(1)
w L(2)

w L(3)
w L(4)

w L(5)
w

Variables n

3 23.706 13.558 12.584 13.558 12.584
4 47.6312 312.3621 35.629 312.3621 35.629
5 814.7120 2756.2583 811.3815 2756.2583 811.3815
6 2428.9738 153286.52401 1922.7629 153286.52401 1922.7629

From the obtained results, it follows that, generally, the decision trees of the types 3
and 5 are better than the decision trees of the type 1, and the decision trees of the types 2
and 4 are far from the optimal.

We can now sum up the results of the experiments. Generally, the decision trees of the
types 3 and 5 are slightly better than the decision trees of the type 1. Decision trees of the
types 2 and 4 have, generally, too many nodes.

11. Conclusions

In this paper, we studied modified decision trees that use both queries based on one
attribute each and queries based on hypotheses about values of all attributes. We designed
dynamic programming algorithms for minimization of four cost functions for such decision
trees and considered results of computer experiments. The main result of the paper is that
the use of hypotheses can decrease the complexity of decision trees and make them more
suitable for knowledge representation. In the future, we are planning to compare the length
and coverage of decision rules derived from different types of decision trees constructed by
the dynamic programming algorithms. Unfortunately, the considered algorithms cannot
work together to optimize more than one cost function. In the future, we are also planning
to consider two extensions of these algorithms: (i) sequential optimization relative to a
number of cost functions and (ii) bi-criteria optimization that allows us to construct for
some pairs of cost functions the corresponding Pareto front.
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