i?‘lg electronics

Article

Forecasting of Tomato Yields Using Attention-Based LSTM
Network and ARMA Model

Wanhyun Cho !, Sangkyuoon Kim 2, Myunghwan Na ! and Inseop Na 3*

check for

updates
Citation: Cho, W.; Kim, S.; Na, M.;
Na, I. Forecasting of Tomato Yields
Using Attention-Based LSTM
Network and ARMA Model.
Electronics 2021, 10, 1576.
https://doi.org/10.3390/
electronics10131576

Academic Editors: Juan Antonio
Martinez Navarro, José Santa and

Andrés Muioz

Received: 4 June 2021
Accepted: 29 June 2021
Published: 30 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

Department of Statistics, Chonnam National University, Gwangju 61186, Korea;
whcho@chonnam.ac.kr (W.C.); nmh@chonnam.ac.kr (M.N.)

Department of Electronic Engineering, Mokpo National University, Muan 58457, Korea;
narciss76@mokpo.ac.kr

National Program of Excellence in Software Centre, Chosun University, Gwangju 61452, Korea
*  Correspondence: ypencil@hanmail.net; Tel.: +82-62-230-6144

Abstract: Nonlinear autoregressive exogenous (NARX), autoregressive integrated moving average
(ARIMA) and multi-layer perceptron (MLP) networks have been widely used to predict the appear-
ance value of future points for time series data. However, in recent years, new approaches to predict
time series data based on various networks of deep learning have been proposed. In this paper, we
tried to predict how various environmental factors with time series information affect the yields
of tomatoes by combining a traditional statistical time series model and a deep learning model. In
the first half of the proposed model, we used an encoding attention-based long short-term memory
(LSTM) network to identify environmental variables that affect the time series data for tomatoes
yields. In the second half of the proposed model, we used the ARMA model as a statistical time series
analysis model to improve the difference between the actual yields and the predicted yields given
by the attention-based LSTM network at the first half of the proposed model. Next, we predicted
the yields of tomatoes in the future based on the measured values of environmental variables given
during the observed period using a model built by integrating the two models. Finally, the proposed
model was applied to determine which environmental factors affect tomato production, and at the
same time, an experiment was conducted to investigate how well the yields of tomatoes could be
predicted. From the results of the experiments, it was found that the proposed method predicts
the response value using exogenous variables more efficiently and better than the existing models.
In addition, we found that the environmental factors that greatly affect the yields of tomatoes are
internal temperature, internal humidity, and CO, level.

Keywords: forecasting; tomatoes; yields; attention-based encoder network; autoregressive moving
average model

1. Introduction

As the amount grown in fields decreases, tomatoes, which are one of Korea’s favorite
food items, also used additives in diverse foods, are grown in green houses in Korea
instead. Growing in green houses, called facility agriculture, made it possible to control
the influence of various environmental factors such as photosynthesis, temperature and
geothermal temperature during the growing season. The cultivation strategy accumulated
through various trials and errors of farmers in field cultivation will be utilized in various
efficient cultivation methods to increase the yield in controlled facility cultivation in the
green house.

First, let us briefly review what kind of research existed in the method of analyzing
these time series data for growing period of fruit. In the past decades, statistical models
were mainly used to analyze these time series data for growing period of fruit. Statisti-
cal models have been predominantly used to analyze time series data over the past few
decades. These statistical models include autoregressive (AR) models, moving average

Electronics 2021, 10, 1576. https:/ /doi.org/10.3390/ electronics10131576

https:/ /www.mdpi.com/journal/electronics


https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6471-043X
https://doi.org/10.3390/electronics10131576
https://doi.org/10.3390/electronics10131576
https://doi.org/10.3390/electronics10131576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10131576
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10131576?type=check_update&version=1

Electronics 2021, 10, 1576

20f 14

(MA) models, autoregressive integrated moving average (ARIMA) models, and autore-
gressive conditional heteroskedasticity (ARCH) models [1-3]. The statistical model used
to predict the yield of conventional tomatoes is based on time series information. For
example, a method of predicting the future yield based on the yield from the previous
time point (t-1) to the time t or the yield from the previous time point of previous time
point (t-n) to the time t is used. However, not only a time series model but also exogenous
variables, which is a non-linear model, might be used to predict the yield more accurately
when considering the effects of various environmental factors of the cultivation data of the
tomato yield [4-11]. Up to now, the statistical models considered only used past data to
predict present or future emergent values. However, in the time series data, it can be seen
that the measured values occurring at a future point in time do not depend only on the past
data, but are also affected by the time series data of the new explanatory variables. This
time series data is called an autoregressive model with exogenous variables. In addition,
nonlinear regression models are frequently used to predict future data values for such
time series data. Therefore, until now, these nonlinear autoregressive exogeneous (NARX)
neural networks have been applied to the analysis of various time series data [4-11]. Some
typical cases where these NARX network models are applied are given as follows. Pham
et al. [4] present an improvement of hybrid of nonlinear autoregressive with exogeneous
input (NARX) model and autoregressive moving average (ARMA) model for long-term
machine state forecasting based on vibration data. They applied the improved hybrid
model to obtain the forecasting results in which NARX network model is used to forecast
the deterministic component and ARMA model is used to predict the error component due
to appropriate capability in linear prediction. Men et al. [5] proposed the short-term wind
speed and power forecasting system using a nonlinear autoregressive exogenous artificial
network methodology which incorporates numerical weather prediction of high-resolution
computational fluid dynamics with field information as an exogenous input. Boussaada
et al. [6] developed a nonlinear autoregressive exogenous neural network model for the
prediction of the daily direct solar radiation. They aim to supply, with electricity, a race
sailboat using exclusively renewable sources.

In addition, several papers have recently been published that analyze the NARX time
series data using deep learning networks such as RNNs or Encoder-Decoder attention
model. Qin et al. [12] proposed a dual-stage attention-based recurrent neural network
(RNN) with the best performance for time series prediction based on SML 2010 temperature
dataset and NASDAQ 100 Stock dataset. Guo et al. [13] proposed an interpretable long
short-term memory (LSTM) RNN, called multi-variable LSTM, for autoregressive time
series with exogeneous problem. From the overall hidden states of the recurrent layer, they
derive variable specific hidden representations over time, which can be flexibility used for
g-forecasting and temporal-variable level attentions. In his master’s thesis, Lee [14] and Na
et al. [15,16] proposed a bidirectional Encoder-Decoder with dual-stage attention model
that slightly modified a dual-stage attention-based recurrent neural network proposed by
Qin and colleagues for multivariate time series prediction. In addition, he used the stock
price transaction data of companies included in KODEX 200 to evaluate the performance
of the proposed model. Ran et al. [17] proposed an LSTM-based method with attention
mechanism for travel time prediction. They substituted a tree structure with attention
mechanism for the unfold way of standard long short-term memory to construct the depth
of long short-term memory and modeling long-term dependence. However, the deep-
learning network models discussed so far can exert their performance to the full only when
vast amounts of data are prepared to learn them.

Regarding the problem of predicting the yield of fruits or vegetables, it is difficult to
obtain time series data with a long time. Therefore, a time series analysis method with
excellent predictive ability for time series data of a short period is needed. To solve this
problem, this paper proposes a new method that combines a thin layer deep learning
network and statistical time series analysis.
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First, environmental factors affecting tomato cultivation were identified using attention-
based LSTM, including which exogenous factors greatly affected the yield during a given
cultivation period. In this case, we additionally made the initial prediction of tomato
yield using an attention-based LSTM model. Second, since the difference between the first
predicted value and the actual observed value is large, we applied the statistical time series
model ARMA to compensate for this difference. Therefore, to identify environmental fac-
tors that affect tomato yield, and to predict yield more accurately, we proposed a new yield
prediction model by combining attention-based LSTM and ARMA. Finally, to evaluate the
yield predictive power of the proposed model, the performance of the proposed model
was compared and analyzed with the existing statistical models, linear regression, ridge
regression, SGD regression, and one of deep learning algorithms, IARNN.

The rest of this paper is organized as follows. Details of our proposed method are
presented in Section 2, and the experimental results on the yields of the tomatoes and
dataset are presented in Section 3. Finally, the conclusion is presented in Section 4.

2. Forecasting System using Attention-Based LSTM Network and ARMA Model
2.1. Attention-Based LSTM Network

This section describes both the overall structure of the prediction system and also the
roles of each component used for predicting the yields of tomatoes. The structure of the
input attention-based LSTM model is given in Figure 1. The overall process of this network
consists of two steps. First, by using n-data, each of which has a length of T, as an input,
and putting it into the LSTM in Encoder, hidden states are created. Next, using the hidden
states generated by the LSTM, attention contained in Encoder is applied to derive variables
that have great significance among exogenous variables that influence the variable to be
predicted.

: Xe

(x},x1, -, x2)T = | LSTM = hl - % LSTM = h} i
1 T AttEn thz 1 T Fully

(x2,x2,- ,x3)T =+ | LSTM |~ hZ %thr = X2 —»{ LSTM |*h% | C;r;ge Fo.
l T max) X 1 t Layer

G, 2, -, xB)T =i | LSTM | A2 ut K —>| LSTM | h2t

Figure 1. Structure of input attention-based Encoder network.

The LSTM network, the first part of the attention-based Encoder network, is capa-
ble of learning long-term dependencies. It has the advantage of connecting previous
information to the present task. Due to its special memory cell architecture, the LSTM
network overcomes the defects of the traditional RNN, especially the problems of gradient
disappearance and gradient explosion.

For time series prediction, given the input sequence X = (x1, x2,..., x7) with X; €
R" where n is the number of exogeneous series, the encoder can be applied to learn a
mapping from x; to h; with

hy = f(hi—q, xi), (1)

where h; € R™ is the hidden state of the encode at time ¢, m is the size of the hidden
state, and H = [h1, Hp,..., hr] is a non-linear activation function that could be an LSTM
or gated recurrent unit (GRU). Here, we used an LSTM unit as h; to capture long-term
dependencies. Each LSTM unit has a memory cell ¢; and three sigmoid gates: input gate
it, forget gate f;, and output gate o;. The update of an LSTM unit can be summarized as
follows:

ft = O‘(Wf~[ht_1, xt] + bf), (2)
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it = o(Wi-[hy—1, x¢] + by), 3)
Cr = tanh(We:[hy—1, xi] + be), )
ct = fiocr1 + "¢, 5)

or = o(Wo-[hy—1, x¢] + bo), (6)
hy = o/ tanh(cy), (7)

where [h;_1, xt] € R™" is a concatenation of the previous hidden state /;_; and the
current input, x; We, W;, We, W, denote the weight vector of the forget gate, input gate,
output gate, memory cell, respectively, and b Iz b;, bc, b, are the bias vectors. Moreover, o is
a logistic sigmoid function and ° is an element wise multiplication. Equation (2) represents
the forget gate and determines what information should be thrown away from the cell
state, where f; denotes the output of the forget agate. Equations (3) and (4) represent the
input gate, which decides what new information should be stored in the cell state, where
it and ¢; denote the output of the input gate, and c; denotes the activation vector of the
current cell state. Equations (6) and (7) represent the output gate, where o; denotes the
output of the output gate. I1;_; and h; are the hidden state of the last cell and the current
cell. Finally, the feature state matrix H = [hy, hy, ..., h] is the output of the LSTM layer.

The attention layer, the second part of the attention-based Encoder network, allows
the model to capture the most important exogenous variables for yields of tomatoes when
different features of past states are considered.

T
k — (x’l‘, x’ﬁ, e ,x’%) e RT, we can con-

Given the k-th input exogeneous series x’
struct an input attention mechanism via a multilayer perceptron, by referring to the previ-

ous hidden state h;_1 and cell state ¢;_1 in the encoder LSTM unit as

ek = o7 tanh(we[ht,l, 1]+ Uexk), ®)
and L
of = ©

L exp(e})”

where v, € RT, W, € RT*" and U, € RT*T are parameters to learn. Factor oc’t‘ is the
attention weight measuring the importance of the k-th input exogenous series at time t.
The input attention mechanism is a feed forward network that can be jointly trained with
other components of the LSTM. With these attention weights, we can adaptively extract
the driving series with

~ T
Xt = (zx}xtl, wZx?, -, oc’fx’f) . (10)
Then the hidden state at time ¢ can be updated as:
he = f(hi—1,%1), (11)

where f is an LSTM unit that can be computed according to Equations (2)—(7) with x;
replaced by the newly computed ¥;. With the proposed input attention mechanism, the
encoder can selectively focus on certain deriving series rather than treating all the input
driving series equally.

Third, for non-linear autoregressive with exogenous (NARX) modeling, we aimed to
use the multi-layer perceptron to approximate the function F so as to obtain an estimate
of the current output 7 with the observation of all inputs as well as previous outputs.
Specifically, §j can be obtained with

91 =F(y1. Y2 Yp_y 2, %2, - ,x1) = vy (Wy[hr] + bw) + b, (12)
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where [h7] € R" is the hidden state. The parameters W, and by, are the weights and biases
of multilayer perceptron network.

2.2. Autoregressive Moving Average (ARMA)
The ARMA (p, q) prediction model for time series y; is given as

p q
yr=c+ Z Qiyi—i + Z Q]‘etf]' + &, (13)
i=1 j=1

where c is a constant, p is the number of autoregressive orders, g is the number of moving
average orders, ¢; is autoregressive coefficients, &; is moving average coefficients and ¢; is
a normal white noise process with zero mean and variance o2.

As the ARMA models have numerous parameters and hyper-parameters, Box and
Jenkins [1] suggest an iterative three-stage approach to estimate an ARIMA model. They
are model identification, parameter estimation and model checking. First, model indemni-
fication is the checking stationarity and seasonality, performing differencing if necessary,
choosing model specification ARMA (p, q). To determine the orders of ARMA model,
autocorrelation function (ACF) and partial autocorrelation function (PACF) are used in
conjunction with the Akaike information criterion (AIC). Second, the parameter estima-
tion is the computing coefficients that best fit the selected ARMA model using maximum
likelihood estimation or non-linear least-squares estimation. Third, the model checking
is the testing whether the obtained model conforms to the specifications of a stationary
univariate process.

2.3. Hybrid Forecasting System Using Attention-Based LSTM Network and ARMA Model

In general, it is difficult to accurately predict the yield due to the small amount of fruit
or vegetable data collected at the cultivation site. Hence, none of ARMA and attention-
based LSTM network is a suitable model for forecasting this kind of data. First, for a small
amount of time series data, an attention-based LSTM network is applied to calculate a
rough predicted value for the yield. Next, the difference between the predicted value
generated through the LSTM network and the actual observed value can be corrected using
an appropriate statistical model. Thus, we can combine the two models to form a system
that can more accurately predict yields. The progress of a new prediction system that will
implement this idea can be progressed through the following five steps.

Step1: We train an attention-based LMTM network using learning data including several exoge-
nous factors and yields collected.

Step2:  We use the validation data as input to the learned attention-based LSTM to generate
predicted values for yields. ;41 = vyT(Wy [ht] + bw) + by,

Step 3:  We use the actual time series data {y1, ya,- - - , yt} of the yields and the predicted time
series data {§j1, §a,- - -, J¢ } predicted by the model to create the residual time series data
as follows. ey = yx — Gk, k=1,---, t.

Step4:  We construct an ARMA model for the generated error time series data and generate a
predicted value of the error for the future point in time.

i1 =+ Quer - Pujer+ frer -+ ijer
wheree; =e€ r—e k1, k=0,---,].

Step5:  We add the predicted time series value (§;11) by the attention-based LSTM model in step
2 and the error value (é;,1) predicted by the ARMA model in step 4 to get the time series
predicted value at time t + 1 as follows. Yiym = Yt4m + 6t4m , m=1,---, L.

The Figure 2 is shown as diagrammatically illustrating the progress of the new predic-
tion system described so far.
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Figure 2. Hybrid forecasting system using attention-based LSTM network and ARMA model.

3. Experimental Results

This section describes the dataset for empirical studied and the graphical analysis
conducted for all of variables for the time series dataset. Finally, we compared the proposed
attention-based LSTM model against other existing methods and interpreted the input
attention for exogenous variables as well as the efficiency of prediction for tomato yield.

3.1. Datasets

The dataset used in this study consisted of data from a total of 83 farm households
collected from 2017 to 2018 and from 2018 to 2019 in three regions, including Gyeongam,
Jeonbuk, and Jeonnam, in South Korea. As the value of the response variable, the yield
of tomatoes observed at a total of 31 time lags every week was used. In addition, as
exogenous variables, a total of 15 time series data such as the minimum, maximum and
average values of the internal temperature, external temperature, internal humidity, and
CO; concentration observed during the same period were used. The collected data are
summarized in Table 1. Jedrszczyk et al. [18] and Greco et al. [19] mentioned the rainfall
item as one of the exogenous variables, but since this study does not consider a model that
predicts the yield of tomatoes grown in the field, but rather considers exogenous variables
that affect tomato yield in a facility, it is considered that there is no need to consider rainfall
in particular, and it was excluded from consideration. Instead, this study found that
humidity rather than rainfall affects yield in facility cultivation, so the experiment was
conducted considering the maximum, minimum, and average humidity for day/night
humidity.
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Table 1. Information of collected exogenous variables for tomatoes.

Role of Variable Name of Variable Measure Unit
Response Variable Yields of Tomatoes Kg/ m?
Internal Temperature Min, Avg, Max °C
EtatonyVrale e Temperae Min v <
CO; Level Min, Avg, Max ppm
Measure of Interval No. of Time Lag No. of Observation
2017~2018, and 2018~2019 30 Weeks 83 Farms

3.2. Association Analysis

First, we used the DTW technique to analyze the correlation between tomato yields
and environmental variables affecting the yields. Table 2 and Figure 3 show the DTW
distance and DTW matching graphics between the tomato yields and 12 environmental
factors.

Table 2. DTW distance between environment variables and tomato yields.

No. Variables Distance
1 Internal Temperature Min 4.70
2 External Temperature Min 5.78
3 Humidity Min 5.88
4 CO; min 4.01
5 Internal Temperature Avg 441
6 External Temperature Avg 6.76
7 Humidity Avg 5.41
8 CO;y Avg 4.52
9 Internal Temperature Max 5.18
10 External Temperature Max 6.22
11 Humidity Max 6.07
12 CO; Max 7.18

Here, the smaller the distance or the closer the shape of the graph is to a straight
line, the more environmental factors affecting the tomato yields can be found. From the
following two results, we found that the minimum and average values of the internal
temperature, and the minimum and average values of CO; have great influence on the
yields of the tomatoes.

Next, we conducted a correlation analysis to numerically evaluate the relationship
between the yields and each environmental variable. From the results shown in Table 3, we
note that the minimum, average, and maximum values of the internal temperature and the
minimum and average values of CO, have a positive correlation with the tomato yield, but
it turned out that the average and the maximum of the internal humidity has a negative
correlation with the tomato yields.

Therefore, from the above two analysis results, we conclude that the internal tempera-
ture, CO; and internal humidity are the environmental factors that have a great influence
on the tomato yield. However, it was found that the internal temperature and CO, had a
positive correlation with the yields, but on the contrary, the internal humidity had a nega-
tive correlation with the yields. Therefore, to increase the yields when growing tomatoes,
it is recommended to increase the internal temperature and the level of COy, and on the
contrary, it is desirable to reduce the internal humidity.
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Figure 3. Correlation between environment variables and tomato yields by DTW.
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Table 3. Correlation coefficients between tomato yields and environmental factors.

No. Variables (vs. Tomato Yields) Correlation
1 Internal Temperature Min 0.407
2 External Temperature Min —0.052
3 Humidity Min —0.146
4 CO; min 0.396
5 Internal Temperature Avg 0.418
6 External Temperature Avg 0.064
7 Humidity Avg —0.307
8 CO, Avg 0.277
9 Internal Temperature Max 0.374
10 External Temperature Max 0.118

11 Humidity Max —0.201
12 CO, Max 0.314

3.3. Prediction by Attention-Based LSTM

In prediction step, firstly, we trained the attention-based LSTM network using the
73-farmhouse data and calculated standardized attention weights to find out which en-
vironmental variables affect the tomato yield. In the LSTM model, we used MSE (mean
square error) as the loss function and Adam’s optimizer as the optimization algorithm. The
learning rate was 0.001, 32 input attention LSTM units were used, 32 encoder LSTM units
were used, and 100 repetitions of train epochs were used. Figure 4 shows the histogram of
the weights for each exogenous variable. Figure 4 shows that the environmental factors
that greatly influence the tomato yields are the internal minimum temperature, inter tem-
perature mean, internal temperature maximum, maximum humidity and the maximum
CO5. The results given here are very similar to those given by the DTW discussed above.

alpha
0.08 A
0.06 A
=)
&
0.04 1
0.02 1
0.00 -
=) - o~ m < \n © ~ © @ o -
g ¢ g g ¥ ¢ ¢ % % % 3 %
E [ [3 E o
E‘I g'l E' 'EI g| E| g| E' E-' E-I g| El
2 3 3 € 8 £ £ € o
S5 4 g s 2 g 5 2 B
£ § o oA c ’é
O

variables

Figure 4. Attention weights for input environmental variables.

Secondly, we created a two-dimensional scatterplot for the observed values and
predicted values generated by the trained attention-based LSTM using the 10-testing
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data. Figure 5 shows that the state-based LSTM model has a large difference between the
measured and predicted values for the overall testing farms data.

Actual value

0 2 4 6 8
Predited

Figure 5. Scatterplot between predicted values and actual values.

3.4. Prediction by Hybrid Methods

We conducted an experiment to find out the performance of the proposed method. The
data used in the experiment were the tomato production produced by a total of 83 farms
each week, and the production of 73 farms among them was used as a dataset to train the
input attention-based LSTM. The output of the remaining 10 farms was used to analyze
the performance of the proposed method.

First, we configured the data in units of T = 5-time steps to learn the input attention-
based LSTM and regression models. We used 70% of the total 2030 datasets for training and
30% for validation. Separately, 256 samples were used as test data. To select the optimal
time T, we examined the effect of each environmental factor on the yield for each week.
To this end, the model was trained using the actual yield and the values of environmental
variables from T = 3 to T = 15 in units of one week based on the yield. As a result of
calculating the RMSE using the validation data with the trained model, the RMSE value
was the lowest when the time point was T =5, so we selected T = 5. Next, the (p, ) order of
the ARMA model for predicting the error component of the proposed method was set to
(2, 0). To determine the optimal (p, ) in ARMA (p, q), we iteratively assumed the model for
p from 0 to 3 and q from 0 to 3 and computed the autocorrelation function [15]. Therefore,
the value that maximizes autocorrelation (p = 2, g = 0) was selected. Figure 6 shows the
results of predicting tomato yield using traditional regression models such as linear, ridge,
and SGD regression. At this time, the same 12 environmental factor values were used as
input values for each time period, and the yield at that time was used as the response
variable value. In Figure 6, the x-axis represents the lag in weeks, and the y-axis shows the
predicted yield and the actual measured yield of the three models corresponding to the
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lag. Yields prediction by the traditional regression method shows comparatively similar
predictive power. However, many prediction errors occur on harvest days where there is
a sudden change in yields. Since the cultivation methods are different for each growing
farm, environmental factors are also slightly different for each farm, and the measurement
accuracy is also different for each farmer, so there was a deviation between the measured
value and the predicted value. This result can be attributed to the limitations of the existing
multiple linear regression model as well as the inaccuracy of the farmers’ measurements.

farm1l farm20
64 — Linear Regression = Linear Regression
— Ridge 141 — ridge
5§ 4 =—— SGD Regressicn 12 { — SGD Regressicn
real value real value
2 10 7
3 o8
06
2
04
1
02
o : : . 001 : : :
] 5 10 15 20 o 5 10 15 20
farm43 farmas
81 — Linear Regression 40
[ Ridge 35
SGD Regression
64 real value 30 N
°l i, y\/fs/
a 20
15 = Linear Regression
3 — Ridge
2] 10 J_ —— 5GD Regression
05 Y real value
0 5 10 15 20 25 30 o 5 10 15 20 25
farm50 farm54
30
15
25
L0
20
5 E /
L0 4 — Linear Regression 15 — Linear Regression
= Ridge = Ridge
= 5GD Regression — S5SGD Regression
)59 10
real value real value
] 5 10 15 20 25 30 o 5 10 15 20
farm8l farm317
15 200
—— Linear Regression
10 { = Ridge 175
—— SGD Regression 150
15 real value
125
0 100
15 0.75
—— Linear Regression
20 050 — Ridge
5 0.25 —— SGD Regression
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0 5 10 15 o 5 2 0 5 10 5 20
farm332 farm344
14 { — Linear Regression 401 — Linear Regression
- Ridge 35 { = Ridge
124 — sGD Regressicn —— SGD Regression
10 real value 30 real value
25
81 20
& 15
4 10
N \v—\—_‘ 05
0 00
0 2 4 & 8 10 0 5 10 15 0 5 30

Figure 6. Scatterplot between predicted values and actual values.

Figure 7 shows that the results of predicting tomato production for 10 randomly
selected farms. In Figure 7, the blue solid line shows the result of predicting the production
volume using the input attention-based RNN (IARNN), and the green solid line shows the
output prediction result using the method combining the input attention-based LSTM and
the ARMA model (IARNN + ARMA). The red line shows the actual production. As shown
in Figure 7, if we analyze it graphically, the trend of almost all farms’ tomato production
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can be predicted well. In particular, farmers No. 54 and No. 317 showed good predictions
even when there were large fluctuations in tomato production per week.
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Figure 7. Comparison results of tomato yields prediction using input attention-based RNN and the
proposed method.

The following numerically compares the prediction performance of the proposed
method with the input attention-based RNN (IARNN) using mean square error. It can
be seen from numerical comparison that the proposed method shows better performance.
However, as can be seen from the graphical and numerical analysis, the performance of
farmhouse 332 is not good. This is because the proposed method uses the ARMA model to
compensate for the error component, and a certain amount of time series data is required to
estimate this error component in the ARMA model. However, it was difficult to accurately
predict the error component because the production period of farm 332 was relatively too
short (as shown in Table 4).
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Table 4. Mean square error for several time series data analysis methods.

No. of Linear Ridge SGD IARNN Proposed
Farm Regression Regression Regression Method
11 1.394 1.438 1.588 1.676 1.359
20 0.419 0.446 0.473 0.418 0.103
43 1.186 1.226 1.279 1.550 0.609
45 0.706 0.703 0.704 0.828 1.110
50 0.260 0.260 0.279 0.243 0.126
54 0.634 0.611 0.562 0.537 0.517
81 0.425 0.416 0.437 0.430 0.289
317 0.427 0.427 0.459 0.335 0.340
332 21.102 20.858 20.503 20.325 37.951
344 0.286 0.306 0.341 0.358 0.228

4. Conclusions

In this paper, we tried to predict how various environmental factors with time series
information affect the yields of tomatoes by combining a traditional statistical time series
model and a deep learning model. In the first half of the proposed model, we use an
encoding attention-based LSTM network to identify environmental variables that affect the
time series data for tomatoes yields. In the second half of the proposed model, we used the
ARMA model as a statistical time series analysis model to improve the difference between
the actual yields and the predicted yields given by the attention-based LSTM network
at the first half of the proposed model. Next, we predicted the yields of tomatoes in the
future based on the measured values of environmental variables given during the observed
period using a model built by integrating the two models. Finally, the proposed model was
applied to determine which environmental factors affect tomato production, and at the
same time, an experiment was conducted to investigate how well the yields of tomatoes
could be predicted. From the results of the experiments, it was found that the proposed
method predicts the response value using exogenous variables more efficiently and better
than the existing models. In addition, we found that the environmental factors that greatly
affect the yields of tomatoes are internal temperature, internal humidity, and CO; level. In
the future, the research direction is to apply the proposed hybrid model to predicting the
yield of crops grown in various facilities such as strawberries, watermelons, melon, and
cucumbers as well as tomatoes.
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