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Abstract: The unpredictable situation from the Coronavirus (COVID-19) globally and the severity
of the third wave has resulted in the entire world being quarantined from one another again. Self-
quarantine is the only existing solution to stop the spread of the virus when vaccination is under
trials. Due to COVID-19, individuals may have difficulties in breathing and may experience cognitive
impairment, which results in physical and psychological health issues. Healthcare professionals are
doing their best to treat the patients at risk to their health. It is important to develop innovative
solutions to provide non-contact and remote assistance to reduce the spread of the virus and to
provide better care to patients. In addition, such assistance is important for elderly and those that
are already sick in order to provide timely medical assistance and to reduce false alarm/visits to
the hospitals. This research aims to provide an innovative solution by remotely monitoring vital
signs such as breathing and other connected health during the quarantine. We develop an innovative
solution for connected health using software-defined radio (SDR) technology and artificial intelligence
(AI). The channel frequency response (CFR) is used to extract the fine-grained wireless channel
state information (WCSI) by using the multi-carrier orthogonal frequency division multiplexing
(OFDM) technique. The design was validated by simulated channels by analyzing CFR for ideal,
additive white gaussian noise (AWGN), fading, and dispersive channels. Finally, various breathing
experiments are conducted and the results are illustrated as having classification accuracy of 99.3%
for four different breathing patterns using machine learning algorithms. This platform allows medical
professionals and caretakers to remotely monitor individuals in a non-contact manner. The developed
platform is suitable for both COVID-19 and non-COVID-19 scenarios.

Keywords: artificial intelligence; channel frequency response; coronavirus; software defined radio

1. Introduction

COVID-19 cases appeared at the end of December 2019 as an outbreak that rapidly
spread throughout the whole world and produced the symptoms of cough, fever, and
shortness of breath while mostly varying from person to person [1,2]. The severity of the
third wave of COVID-19 is greater than the previous two waves, especially in third world
countries that are thickly populated such as India, Pakistan, and Bangladesh. The world
health organization already declared it a global pandemic on 11 March 2020 [3,4]. It is now
a major health concern to the whole world and every country is searching for a solution for
the containment of the virus [5]. Although trials of vaccination have started throughout
the world, the current viable solution is still self-quarantine. Unfortunately, self-quarantine
causes other health issues. Therefore, it is necessary to monitor continuously vital signs
such as breathing, temperature, and heartbeat. It has been reported that breathing rate
is a commonly ignored vital sign, which may be an indicator of health problems [6].

Electronics 2021, 10, 1558. https://doi.org/10.3390/electronics10131558 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5768-7195
https://doi.org/10.3390/electronics10131558
https://doi.org/10.3390/electronics10131558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10131558
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10131558?type=check_update&version=1


Electronics 2021, 10, 1558 2 of 22

Recent research in medical science suggest that a person with a breathing rate of more
than 20 breaths per minute is possibly sick and a person with a breathing rate of more
than 24 breaths per minute is more likely to have serious health problem [6]. Dyspnea
is a breathing abnormality in which patient suffers from shortness of breath. It is also
one of the common symptoms of COVID-19, which may cause an increase in breathing
rate and heart rate. The mostly hospitalized patient who suffers from COVID-19 had
dyspnea [7,8]. It can be used for early diagnosis of COVID-19 and medical care services
can provide timely treatment. As COVID-19 is a spreading disease, its observation requires
a non-contact regular monitoring breathing sensing technology. Advances in wireless
sensing technologies using radio frequency (RF) signals have the ability for reducing the
load from the hospital and provides connected health services to an individual in his own
home [9]. The deployment of wireless sensing technology for connected health monitoring
is a viable and feasible solution to stop the spread of COVID-19. Various non-contact
wireless sensing-based systems have been proposed for human activity monitoring and
recognition [10–14]. The basic principle for detecting human body movements by exploiting
a wireless sensing-based technology is that the human body is mostly made of water, which
can reflect wireless signals. Therefore, human motion introduces variation in the received
signal by a nearby wireless communication device. As a result, a unique pattern at the
receiving end helps in recognizing the different type of motions for identifying human
activity and the early diagnosis of vital signs such as breathing and heart rate compared
to traditional human activities and health monitoring systems. RF signal-based systems
have the following benefits. First, RF signal-based solutions are contactless and human
movements can be identified exclusively through the received wireless signal reflected
from the human body. Therefore, users do not need to attach or wear sensors on their
body, which are inconvenient in many situations (e.g., for children and eldercare) and
impossible in pandemic situations (e.g., for COVID-19). Second, RF signal-based solutions
have an increased coverage area than camera technology. RF signals can pass through
walls, windows, doors, and furniture, while camera technology has restricted viewing
angles and require good lighting surroundings. Drawbacks of camera-based technology
also include certain privacy issues because cameras also capture other sensitive information
in private places such as a bathroom and changing room [15–17]. The ultra-wideband
(UWB) based technology exploited RF signals and occupy a larger bandwidth. The larger
bandwidth provides better time resolution and this technology is considered a favorable
technology for indoor tracking and localization [18]. However, UWB technology occupies
wideband and may enforce interference with other operating devices that operate at the
same frequency.

Existing RF signals-based systems are used to monitor health by exploiting WCSI data.
However, these systems require raw data to further process useful information regarding
human health. The state-of-the-art machine and deep learning schemes are used to extract
statistical features of WCSI patterns related to specific human body motion for specific
health issues instead of developing models to rectify WCSI patterns [19]. The research
study on wireless sensing technologies has shown potential and promise in improving
the quality of life of human beings and the operational productivity of industry; however,
there are still technical challenges to be resolved and innovative improvements need to be
made to increase the use of the limited radio spectrum. Currently, the exploitation of Wi-Fi
signals for non-contact sensing has shown great promise in improving connected healthcare
services. The major benefit of the Wi-Fi sensing approach is that they can be installed in
line-of-sight (LOS) environments as well as non-line-of-sight (NLOS) environments. Wi-Fi
sensing reuses the infrastructure that is used for wireless communication and is easily
accessible anywhere and so it is easy to deploy and is a low-cost solution [20]. Wi-Fi sensing
techniques overcome traditional technological drawbacks [21]. However, secure, reliable,
flexible, portable, and multifunctional non-contact sensing remains a challenge. The
summary of drawbacks of the existing technologies used for connected health applications
is provided in Table 1. SDR technology has the potential to monitor human health and early
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diagnosis of vital signs in a non-contact manner [22]. SDR technology is portable, flexible,
has multifunctional capabilities, and it is cost-effective due to software-based modification
without changing the hardware [23]. This research exploits SDR technology flexibility
and portability with state-of-art machine learning algorithms. This research investigates
and evaluates various challenges in the development of non-contact sensing platforms for
connected health, especially with respect to the containment of COVID-19.

Table 1. Summary of existing connected health technologies drawbacks.

Sr. Technology Drawbacks

1 Sensors-based Comfortability issues and source of spreading viruses

2 Camera-based Privacy concern and limited coverage area

3 Radar-based LOS requirements and no occlusion between radar and patient

4 UWB-based Occupied wideband and enforce interference

5 Wi-Fi-based Flexibility and portability issues

This research aimed to develop a non-contact intelligent sensing SDR platform for
connected health applications. The developed platform monitors health by preserving
individual privacy, providing comfort to patients, and the containment of deadly viruses.
The developed platform is low-cost and can be accessed anywhere at any time. It is
intelligent, reliable, portable, flexible, and multifunctional in resolving the challenges
observed in the healthcare sector. The following are the contributions of this research:

� This research highlights the design issues in extracting the correct CFR by simulating
the wireless channel characteristics and evaluates the effect on the CFR.

� This research provides a solution to counter the time and frequency offset by intro-
ducing the Van-De-Beek algorithm and channel noise reduction by using the wavelet
filter and moving the average filter to extract the WCSI of human body movement.

� The developed platform faithfully captures human breathing minute movement
and intelligently classifies normal, slow, fast, and deep breaths using three machine
learning algorithms.

The rest of the paper is presented as follows: In Section 2, related work on non-contact
sensing is presented. In Section 3, material and methods are presented in developing the
SDR technology-based platform for intelligent sensing of connected health applications.
In Section 4, simulated, experimental, and classification results are presented. In Section 5,
the significance of the achieved results is discussed. In Section 6, the conclusion of the
design of the developed platform, the results achieved, the limitations of the platform, and
future recommendations are presented.

2. Related Work

Over the past decade, the exploitation of RF signals for non-contact sensing of human
body movements has shown great potential within the field of connected healthcare ap-
plications. Machine and deep learning algorithms are extensively used in the literature
for the intelligent classification of health problems. The Wi-Fi signal-based health mon-
itoring system used a network interface card (NIC) and a desktop PC along with Omni
directional antennas for various health monitoring and diagnosis of vital signs such as
breathing, heart rate, sleep disorder, fall, dementia, asthma attacks, freezing of gait, [24–33]
etc. Although Wi-Fi-based sensing is a promising solution, there are still the concerns
of flexibility and portability. In Reference [34], the flexible and portable SDR technology
is exploited for activity recognition and classification (ARC) of human activities and ex-
plores a new research area in the field of connected healthcare. The proposed system
used OFDM technology to extract fine-grained WCSI for sensing the wireless channel. In
Reference [35] WCSI is used to analyze human hand movements by capturing both the
magnitude and phase response. The SDR technology-based platform faithfully captured
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slow and fast waving human hand movements. The post-surgery of spinal cord patient
for the classification of wrong and correct body posture was presented in [36]. The system
used SDR-based technology for the collection of data and was successfully classified by
using machine learning algorithms. The deep learning-based convolutional neural network
(CNN) model and SDR technology were used to classify ankle movements after surgery.
The WCSI based image data accurately detected the movement of the ankle of patients that
had fractured ankle surgery [37]. A device-free system using SDR technology recognizes
different human activities by exploiting WCSI in an indoor environment. Human body
movements were detected in a quasi-real-time setting using SDR technology [38]. Patterns
of WCSI presented unique variations caused by body movements to identify large-scale
and small-scale movements. SDR technology-based system exploited radio wave signals
to captured human body motion patterns [39]. The SDR based technology is widely used
for connected health applications to efficiently detect large-scale body movements related
to health abnormalities. The small-scall body movements related to health abnormalities
such as breathing and heart rate remain a challenge in terms of designing an optimal SDR
platform [40].

3. Materials and Methods

The material and methods used to develop a non-contact sensing platform for con-
nected health using SDR technology and AI include the design of the SDR platform, data
collection approach, data preprocessing techniques, feature extraction and selection, and
classification algorithms.

3.1. Design for SDR Platform

The design for developing the SDR platform includes algorithm development using
Simulink software on a host PC and hardware configuration using universal software-
defined radio peripheral (USRP). The platform consists of two USRP devices equipped with
one Omni-directional antenna and two host PCs. The software designs of the transmitter
and receiver in Simulink, processing of transmitter and receiver USRP devices, and wireless
channel for analyzing the human breathing are shown in Figure 1.
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3.1.1. Transmitter Software Design

In transmitter software design, the OFDM technique-based signal is generated to
capture the fine-grained WCSI. Initially, the random bits x(n) are generated at successive
sample times and possess one channel per column. Signal columns may be buffered into
frames by specifying the number of samples per frame as more than 1. This input signal
is modulated using the quaternary phase-shift keying (QPSK) technique presented in
Equation (1):

T(k) = xI(n) + jxQ(n) (1)

where signal xI(n) and jxQ(n) are in-phase and quadrature components. Furthermore, the
modulated signals are converted into smaller parallel streams of subcarriers. The nulls and
DC subcarriers are added to concatenate the signals of the same data type in order to create
a continuous output signal. The subcarrier k = 0 is not used since its magnitude and phase
would be influenced by the carrier frequency FC and subcarrier nulls are used for canceling
inter-carrier interference (ICI) without the need for guard bands or expensive band-pass
filters. Computing the inverse fast Fourier transform (IFFT) of the contiguous signal for
transforming complex frequency domain signals into the time domain signal involves
orthogonality between the subcarriers. The total number of subcarriers used is N-FFT
points, including the DC and null subcarriers, and T(k) contains the QPSK modulated
complex data. The complex data signal is transformed into the time domain by using
Equation (2):

t(n) =
1
N

N−1

∑
k=0

T(k)e−j2π k
N n (2)

where n = 0, 1, 2 . . . . . . .., N− 1, the cyclic prefix (CP) in the time domain is inserted at the
start of the frame by replicating the last one-fourth samples, rendering the frame N + L.
The CP addition in the OFDM frame is used for avoiding inter-symbol interference (ISI).
The complete OFDM frame, including the CP, can be written mathematically as provided
in Equation (3).

s(n) = tN+L(n) (3)

The flexible gain is added to enhance the transmitted signal strength. The software-
defined flexible USRP hardware configuration is also a function of the transmitter PC. This
function is used to control RF processing, such as operating carrier frequency, master clock,
interpolation, system gain, etc.

3.1.2. Transmitter Hardware Functionality

The function of the transmitter USRP device is to interpolate the incoming signal
s(n) from the transmitter host PC via universal serial bus (USB) cable by using digital up-
conversion (DUC). The transformation of the digital signal to an analog signal is performed
by using digital to analog conversion (DAC). The filtering is applied by using low-pass
filtering (LPF), a mixer is used for operating at the desired carrier frequency, and transmit
amplification (TA) is used for controlling the gain of the system. Finally, the signal is sent
over to a wireless channel by using a Tx port through the transmitting antenna.

3.1.3. Wireless Channel

The wireless channel is modelled for the simulated and real-time wireless channel.
The simulated channel includes ideal, AWGN, fading, and time-frequency dispersive
channels to analyze the wireless channel characteristics and their effects on CFR. Wireless
channel has rich information regarding the characteristics of the channel noise, Doppler
shift, multipath fading, reflection, and diffraction as shown in Figure 2. Therefore, human
body reflection information may be used for human health monitoring.
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3.1.4. Receiver Hardware Functionality

The function of the receiver USRP device is to receive r(n) from the antenna. The Rx
port amplifies the signal with the low noise amplification (LNA). It then multiplies the
signal with an operating frequency by using a mixer, then it passes through LPF which
converts the baseband frequency. It then converts the signal into the digital signal by ADC
and decimates the signal for the software processing in the receiver PC by using the digital
down converter (DDC).

3.1.5. Receiver Software Design

In the receiver software design, the wireless channel impairments and their effect on
CFR are firstly analyzed by simulations for design problems. Simulation results help in
removing the time and frequency offset. We introduced the Van-De-Beek algorithm in the
receiver design to reduce time-delays and transmitter-receiver oscillator mismatch. This
helps in the synchronization of OFDM frames and the correct removal of CP. In analyzing
the channel impairment effects on CFR for designing a receiver, we considered the ideal,
AWGN, fading, and dispersive channels. In the ideal channel, the transmitted OFDM
frame, s(n), is received exactly at the receiver without any channel impairment at the
simulated channel, i.e., s(n) ∼= r(n). The received signal rI(n) is provided in Equation (4)
as the following.

rI(n) = s(n) (4)

The CFR for ideal channel CI(k) is directly measured by taking the Fourier transform
of rI(n) as shown in Equation (5).

CI(k) =
N−1

∑
n=0

rI(n)e−j2π k
N n (5)

In the AWGN channel, the additive noise N(n) is added at the simulated channel to
the transmitted OFDM frame s(n). The received signal rA(n) is provided in Equation (6) as
the following.

rA(n) = s(n) + N(n) (6)
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The CFR for the AWGN channel CA(k) is directly measured by taking Fourier trans-
form of rA(n) as shown in Equation (7).

CA(k) =
N−1

∑
n=0

rA(n)e−j2π k
N n (7)

In the fading channel, the Doppler shift ∆f is added at the simulated channel to the
transmitted OFDM frame s(n). The received signal rF(n) is provided in Equation (8).

rF(n) = s(n)ej2π(f+∆f)/N (8)

The CFR for the fading channel CF(k) in the presence of the Doppler shift is directly
measured by taking the Fourier transform of rF(n), as shown in Equation (9).

CF(k) =
N−1

∑
n=0

rF(n)e−j2π k
N n (9)

In the dispersive channel, the time and frequency offset are added at the simulated to
the transmitted OFDM frame s(n). The received signal rD(n) is provided in Equation (10).

rD(n) = s(n− tOS)ej2πfOSn/N (10)

The CFR for dispersive channel CD(k) is directly measured by taking the Fourier
transform of rD(n), as shown in Equation (11).

CD(k) =
N−1

∑
n=0

rD(n)e−j2π k
N n (11)

In all the simulated channels, frame synchronization is not applied to analyze the
CFR and CP is directly removed. While in the real-time software design of the receiver,
CP is removed after the synchronization. The software-defined flexible USRP hardware
configuration block is used to modify and control hardware parameters, such as carrier
operating frequency, system gain, decimation, master clock rate, etc. The received signal,
r(n), possesses the WCSI which includes channel noise, reflection from human body
motion, and carrier frequency and time offset, etc. The offset in carrier frequency between
the transmitter and receiver oscillator mismatch destroys the orthogonality among the
subcarriers and introduces ICI. Therefore, compensation and estimation of carrier frequency
offset (CFO) are required at the receiver. The CFO compensation can be performed either
in the time domain before the FFT or by directly adjusting the carrier frequency oscillator.

Mathematically, the CFO is used as a multiplication of each s(n) sample by e
j2πεn

N , where ε
is the normalized CFO and N is the number of subcarriers. The received samples can now
be modelled as shown in Equation (12):

r(n) = c(n) ∗ s(n− θ)e
j2πεn

N + N(n) (12)

where c(n) is the channel response, θ is the unknown timing offset, ε is an unknown
frequency offset, and N(n) is additive noise. Van de Beek algorithm is used to estimate and
compensate the time-frequency offset [24]. This algorithm is also used for frame synchro-
nization to eliminate the CP correctly. Figure 3 shows the workings of the algorithm. This
algorithm finds estimates of time offset t̀OS and frequency offset f̀OS by using Equations (13)
and (14), respectively:

t̀OS = arg max{ |γ(tOS|−ρΦ(tOS)} (13)

f̀OS = − 1
2π
∠γ(t̀OS) (14)



Electronics 2021, 10, 1558 8 of 22

where γ(tOS) provided in Equation (13) is used to estimates time offset t̀OS and frequency
offset f̀OS. The magnitude of γ(tOS) is compensated by energy term Φ(tOS) and peaks
at time instant which provides t̀OS, while its phase at this time instant is proportional to
f̀OS. The γ(tOS) is the correlation between two pairs of L samples of OFDM frame that
are N samples apart. Φ(tOS) is the energy part and ρ is the magnitude of the correlation
coefficient provided in Equations (15)–(17), respectively.

γ(m) =
m+L−1

∑
n=m

r(n)r ∗ (n + N) (15)

Φ(m) =
1
2

m+L−1

∑
n=m

|r(n)|2 + |r(n + N)|2 (16)

ρ =
|E{r(k)r ∗ (k + N)}|√

E{|r(k)|}2 E{|r(k + N)|}2
(17)
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The time and frequency offset are removed along with CP from each OFDM frame.
Each OFDM frame will have N-points after CP removal. The FFT is then used to convert
the time domain OFDM samples to the frequency domain OFDM samples. The expression
for transforming time domain data into frequency domain data to measure CFR is provided
in Equation (18).

R(k) =
N−1

∑
n=0

rN(n)e−j2π k
N n (18)

Since R(k) is the complex CFR value, it can be converted into magnitude and phase
response provided in Equations (19) and (20), respectively.

|R(k)| =
√

RRe2 + RIm2 (19)

The RRe and RIm are the real and imaginary parts of the CFR.

∠R(k) = −tan−1
(

RIm

RRe

)
(20)
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The magnitude and phase response of the multiple OFDM frames is expressed in the
Equations (21) and (22).

|R(k)|k,F =


∣∣R(ejω)∣∣

1,1

∣∣R(ejω)∣∣
1,2 · · ·

∣∣R(ejω)∣∣
1,F∣∣R(ejω)∣∣

2,1

∣∣R(ejω)∣∣
2,2 · · ·

∣∣R(ejω)∣∣
2,F

...
... · · ·

...∣∣R(ejω)∣∣
k,1

∣∣R(ejω)∣∣
K,2 · · ·

∣∣R(ejω)∣∣
k,F

 (21)

k is used for the total number of subcarriers and F is used for the total number of
OFDM frames received.

∠R
(

ejω
)

k.F
=


∠R
(
ejω)

11 ∠R
(
ejω)

1,2 · · · ∠R
(
ejω)

1,F
∠R
(
ejω)

21 ∠R
(
ejω)

2,2 · · · ∠R
(
ejω)

2,F
...

... · · ·
...

∠R
(
ejω)

k,1 ∠R
(
ejω)

k,2 · · · ∠R
(
ejω)

k,F

 (22)

The CFR presented in the magnitude and phase in Equations (21) and (22) is used for
data preprocessing and classification.

3.2. Data Collection and Preprocessing

The data is collected in a real-time lab environment as shown in Figure 4. The
experimental setup used two desktop PC and two USRP devices equipped with two Omni-
directional antennas. The distance between the two antennas is 120 cm. The breathing
experiments are conducted in a quiet environment without any humans in the lab except
the person performing the experiments. The developed platform is very sensitive to human
movements so it was necessary to conduct experiments in a quiet environment. The
desktop PC used on the transmitter side is a Lenovo Intel(R) Core (TM) i5-7400 3.00 GHz
processor, 8 GB RAM with the Windows 10 64-bit operating system. The desktop PC on the
receiver side is a Lenovo Intel(R) Core (TM) i5-7500 3.40 GHz processor, 16 GB RAM with
Windows 10 64-bit operating system. Two B210 USRP devices are used and their hardware
configuration parameters are provided in Table 2. Five healthy subjects are selected and
trained by using video demonstration for performing the experiments. The details of the
subjects for performing the experiments are provided in Table 3. The breath patterns used
to conduct experiments are normal breath (Eupnoea), slow breath (Bradypnea), fast breath
(Tachypnea), and deep breath (Kussmaul). Normal breath experiments are conducted when
the subject breathes at a normal rate. The “normal” rate depends on age but a typical adult
takes between 12 and 20 breathe per minute when resting. Slow breath experiments are
conducted when the subject breathes slower than what is considered normal. This means
that the body is not getting sufficient oxygen. The slow breath may be a symptom of a
condition that affects metabolism or another problem, such as carbon monoxide poisoning,
drug overdose, or sleep apnea. Fast breath experiment is the opposite of slow breathing. In
this case, the subject breathes faster than normal. It can be a symptom of lung illness that
limits the intake of air. Deep breath experiments are conducted when humans breathe deep
and fast. This type of breathing occurs in humans having problems related to diabetes. Due
to diabetes, the body does not use appropriate sugar for energy, instead, it burns stored fat
in place of energy. This causes a rise in the acid level in the blood, which causes the human
body to get rid of extra carbon dioxide by breathing deep and fast [42].
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Table 2. Hardware configurations for breathing experiments.

Platform B210

Channel Mapping Tx 1

Channel Mapping Rx 1
Centre Frequency 900 MHz

PPS Source Internal

Clock Source Internal

Master Clock Rate 20 MHz

Transport data type int16

Enable Burst mode false

Interpolation Factor 125

Decimation Factor 125

Output data type Same as transport data type

Transmitter serial number 30 AD2 FE

Receiver serial number 30 AD311

Transmitter Gain 80

Receiver Gain 70

Samples per frames 1600

Table 3. Subjects’ participation in breathing experiments.

Sr. Subject Age (Years) Height (cm) Weight (Kg) Body Structure

1 Male 30 168 70 Ectomorph

2 Male 32 180 95 Endomorph

3 Male 28 168 72 Mesomorph

4 Male 26 174 76 Mesomorph

5 Male 35 176 80 Ectomorph

The CFR of breathing data is in the raw form and this requires data preprocessing in
order to obtain accurate, significant, and efficient data. Firstly, the wavelet filter is used
for de-noising. This filter not only removes outliers from data but also preserves the sharp
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transitions present in the data. Especially, when we applied the “soft heuristic SURE”
thresholding with scaling down of noise. The coefficient obtains from the decomposition of
raw data by selecting the subcarriers level 4 by the “sym5” wavelet. Finally, a moving aver-
age filter is applied for smoothing the data and to eliminate the high-frequency component
noise which is not generated by the breathing movement.

3.3. Features Extraction

The features extraction and selection methods are useful for the transformation of
data, which translates the preprocess data into significant trends to process data. Features
extraction is an important approach for the reduction in data size and provides useful
information in developing a classification model. Most researchers used the statistical char-
acteristics approaches for features extraction. In this research, features extraction reduced
3.5 k dimensions to 18 statistical time and frequency domain features for developing the
classification model. The list of statistical features used in developing the classification
model are provided in Table 4. The features extractions are as follows: The maximum
and minimum data values are used to extract the trend from the data; the mean value is
used to extract the stable component from the data; the standard deviation extracts the
degree of dispersion between the data sampling points; the variance extracts variations
from the mean; the root mean square (RMS) extracts the magnitude of the data; the peak-
to-peak value extracts amplitude range; the kurtosis extracts the tailedness in the data; the
skewness extracts symmetry present in the data; the peak factor extracts whether there
are any significant impacts in the data or not; the interquartile range extracts statistical
dispersion and it is equal to the difference between 75th and 25th percentiles; waveform
factor extracts the ratio between RMS values to the average values in data; FFT extracts
the frequency component with the maximum and minimum components present in the
data; spectral probability, signal energy, and spectrum entropy extracts data for frequency
domain analysis.

Table 4. Statistical features for the transformation of CFR data.

Sr. No Features Expression

1 Minimum value Ymin = min(xk)

2 Maximum of value Ymax = max(xk)

3 Mean Ym = 1
N

N
∑

i=1
xk

4 Standard deviation YSD = 2

√
1

N−1

N
∑

i=1
(xk − Ym)2

5 Variance YV =
n
∑

i=1
(xk − Ym)2

6 Root mean square YRMS = 2

√
1
N

N
∑

i=1
xk

2

7 Peak to peak value YPPV = Ymax − Ymin

8 Kurtosis YK =
1
N ∑N

k=1

(∣∣∣ xk
∣∣∣−YMV

)4

YRMS
4

9 Skewness YS =
1
N ∑N

i=1

(∣∣∣ xk
∣∣∣−YMV

)3

YRMS
3

10 Peak factor YP =
max(xk)

YRMS
(i = 1, 2, . . . , N)

11 Interquartile range YIQ = Q3 −Q1
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Table 4. Cont.

Sr. No Features Expression

12 Waveform factor YW = N∗YRMS

∑N
k=1

∣∣∣ xi
∣∣∣ (i = 1, 2, . . . , N)

13 FFT YFFT =
N
∑

n=−N
x(n)e−j2π k

N n

14 Minimum frequency value Yfmin = Min(YFFT)

15 Maximum Frequency value Yfmax = Max(YFFT)

16 Spectral Probability YSP =
FFT(k)2

∑N
i=−N FFT(k)2

17 Signal Energy YE =
N
∑

n=−N
|p(k)|2

18 Spectrum Entropy YSE =
N
∑

i=−N
p(k)ln(p(k))

3.4. Classification

Machine learning algorithms are used to develop classification models for predicting
abnormalities based on breathing data in the presence of uncertainty. These adaptive
algorithms classify normal and abnormal patterns from the trends present in the different
breathing patterns. When a learning machine is trained with more experimental data,
the processing on large data set improves its identification performance. All the features
extracted from CFR data is converted into the heterogeneous matrix. Breathing CFR data is
interpreted as a column vector where each row is labelled with the corresponding breathing
pattern. The cross-validation (CV) technique is used for the assessment of a model by
evaluating the performance of the machine learning algorithm on new data by giving
predictions that were not trained before. In this technique, the training of algorithms is
performed by splitting the known dataset into subset size to train and test the data. CV
takes in random splits of the original dataset in each repetition into the training group
and the testing group. The supervised learning techniques are then used to train and
test datasets for evaluating the performance. This step is repeated several times and the
performance is evaluated as the average error. When training on developing a model, CV
plays a vital role to avoid underfitting and overfitting. However, partitioning the dataset to
capitalize both the learning and rationality of test results is challenging. This is the stage
where CV plays its role in practice. CV offers several approaches that partition the dataset
in a different fashion for finding the optimal algorithm to develop a model. In this research,
K-fold CV is used for splitting the dataset randomly into an equal size dataset by selecting
5-folds. One-fold is used for testing to validate a trained model using the leftover folds.
This step reiterated five times in a manner such that each fold is used once for successful
validation. The average error occurs across the number of partitions and results in the
average error occurring in 5-folds. This is one of the most popular techniques used for CV
and it has better performance but requires increased execution time because the training
of the model requires repetitions. The information about the conducted experiments is
provided in Table 5. The accuracy of a model is used as a diagnostic measure to reflect
the validated model results. The performance of the classifier is analyzed by accuracy in
percentage, prediction speed in observations/s, and training in seconds.
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Table 5. Information on the conducted breathing experiments.

Experiments Information Quantity

Number of subjects 5

Number of activities 4

Number of each activity perform 5

Time for each activity 30 s

Number of experiments 100

Number of USRP devices 2

Number of PCs 2

Number of antennas 2

Number of classification algorithms 3

Observations 14,600

Data Size 2 MB

Predictors 18

Response classes 4

Cross-validation 5-fold

4. Results

The results are presented based on simulations and experiments for analyzing the
effects on CFR due to various channel effects and human body movement during breathing.
The classification results are presented to analyze the accuracy of the developed system for
the detection of abnormal breathing.

4.1. Simulations Results

In Figure 5, the magnitude and phase response for the ideal channel are presented
to analyze the CFR for channel characteristics. The result shown in (a) signify magnitude
response for the ideal channel is unified for all received OFDM frames. The magnitude
response shows whether or not the channel is affected by any channel characteristics. The
ideal channel magnitude response is constant for all received OFDM frames. Similarly,
the result shown in (b) signifies that the phase response for the ideal channel is zero for
all received OFDM frames. The phase response shows if the channel is not affected by
any channel characteristics and its response will be zero, which means the transmitter
and receiver has no phase difference. In Figure 6, magnitude and phase responses for the
AWGN channel are presented for analyzing the CFR for channel characteristics. The result
shown in (a) signifies that the magnitude response for AWGN channel varies along with
the unity magnitude for all received OFDM frames. The magnitude shows if the channel is
affected by noise and its magnitude response also changes for all received OFDM frames.
Similarly, the result shown in (b) signifies that the phase response for AWGN channel
varies very fast above and below zero degrees for all received OFDM frames. The phase
response shows if the channel is affected by noise and its phase response is varies, which
means the transmitter and receiver has a different phase. In Figure 7, magnitude and
phase response for fading channel in the presence of a Doppler shift of 10 Hz is presented
to analyze the CFR for channel characteristics. The result shown in (a) signifies that the
magnitude response due to the presence of Doppler shift varies significantly for all the data
subcarriers and received OFDM frames, but DC and null subcarriers reflects no change in
magnitude response in all the OFDM frames. Similarly, the result shown in (b) signifies
that the phase response for the fading channel varies significantly to observe the change.
The phase response shows if the Doppler shift is present in the channel results when there
are significant phase changes. In Figure 8, magnitude and phase responses for the time-
frequency dispersive channel are presented to analyze the CFR for channel characteristics.
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The result shown in (a) signifies that the magnitude response remains constant in all the
OFDM frames but the magnitude variation occurs among all the subcarriers. Similarly, the
result shown in (b) signifies phase response with consistent variations in all the OFDM
frames due to the time-frequency offset. The phase response shows if the time-frequency
offset is present in the channel results in the event of a significant phase change present in
the CFR. In Figure 9, the magnitude response of four different Doppler shifts in the Rayleigh
fading channel is presented to analyze the CFR for channel characteristics. The result shows
that magnitude response variation is constant over all OFDM frames when a 0 Hz Doppler
shift is present in the fading channel. The variations increase in magnitude response from
slower to faster when the Doppler shift increases. A Doppler shift of 50 Hz magnitude
variation is very fast compared to 5 Hz and 20 Hz. In Figure 10, phase response for four
different Doppler shifts in the Rayleigh fading channel is observed. The result shows that
phase response variation is constant over all OFDM frames when a 0 Hz Doppler shift is
present in the fading channel. The variations increase in phase response from slower to
faster when the Doppler shift increases. A Doppler shift of 50 Hz phase variation is very
fast as compared to 5 Hz and 20 Hz. The results conclude that if the Doppler shift is present
in the channel, then the phase response changes accordingly.
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4.2. Experimental Results

The experimental results are achieved from the four different breathing patterns
experiments. The CFR in terms of the magnitude response of WCSI is used to analyze the
pattern. In Figure 11, the normal breath magnitude response is presented. The result shows
that magnitude response presents almost 14 normal peaks over 3500 OFDM frames. In
Figure 12, the slow breathing magnitude response is presented. The result shows that the
magnitude response presents 6 peaks over 3500 OFDM frames. In Figure 13, the fast-breath
magnitude response is presented. The result shows that the magnitude response presents
34 peaks over 3500 OFDM frames. In Figure 14, the deep breath magnitude response is
presented. The result shows that the magnitude response presents 19 peaks with a high
magnitude over 3500 OFDM frames.
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4.3. Classification Results

The classification is applied by using three popular machine learning algorithms:
K-nearest neighbor (KNN), support vector machine (SVM), and decision tree (DT). The
results are presented by the confusion matrix and the performance of each algorithm is
expressed in terms of accuracy, prediction speed, and training time. The confusion matrix
presents observations from the actual and predicted class and mismatch for breathing
experiment data are presented in Table 6. The performance analysis of algorithms for
breathing experiments data are presented in Table 7.

Table 6. Confusion matrix of human breathing experiments data.

Algorithms Actual/Predicted Normal Slow Fast Deep
Normal 3606 44 0 0

Slow 32 3618 0 0
Fast 0 0 3638 12

KNN

Deep 0 0 12 3638
Normal 3599 16 35 0

Slow 19 3606 24 1
Fast 40 45 3553 2

SVM

Deep 3 3 0 3644
Normal 3446 180 22 2

Slow 166 3454 24 6
Fast 17 4 3611 18

Decision Tree

Deep 0 4 3 3543



Electronics 2021, 10, 1558 20 of 22

Table 7. Performance of algorithms for human breathing experiments data.

Algorithms Accuracy (%) Prediction Speed (Obs/s) Training Time (s)
KNN 99.3% ~460,000 3.431
SVM 98.7% ~43,000 75.72
DT 96.9% ~460,000 163.83

5. Discussion

The developed SDR technology-based platform design is validated by simulations
of simulated wireless channels. Analyzing the different simulated channels is useful
because they provide a better understanding of various factors for the desired information
from the wireless channel. The ideal channel CFR is useful because any change in the
above or below unity magnitude response and zero phase response presents the variation
in CSI. The ideal CFR is also valuable for calibration, initial testing, and validation of
the system design. Analyzing the AWGN CFR is useful because any change in channel
characteristics, magnitude, and phase response shows the variation in CSI. The AWGN
CFR is valuable for understanding the noise effect on the CFR. Analyzing the fading CFR
in the presence of a Doppler shift is useful because it corresponds to the motion in CSI. The
fading channel CFR is also valuable because this test and validation shows that the system
design is capable for detecting human motions that are present in the wireless channel.
Analyzing the time-frequency dispersive CFR in the presence of time-frequency offset is
useful because it provides information about transmitter and receiver frequency mismatch
and time delay. The time-frequency CFR is also valuable because this test and validation
shows that the system design requires synchronization to remove time and frequency
offsets. Analyzing the fading channel CFR in presence of different a Doppler shift is useful
because it corresponds to the variations of motions present in CSI. The fading channel CFR
in the presence of different Doppler shifts is also valuable because this test and validation
show that the system design is capable of detecting different human motions present in the
channel. The results from four different breathing patterns conclude that CFR, in terms of
magnitude, can be distinguished from normal and abnormal breathing patterns. Normal
and abnormal breathing is classified by using various machine learning algorithms. The
KNN is the best among all algorithms with a maximum accuracy of 99.3%, maximum
prediction speed of 460,000 obs/s, and possesses a minimum training time of 3.431 s. The
results achieved from the developed SDR platform show that this platform is capable of
measuring breathing during the COVID-19 and non-COVID-19 scenarios and is further
used for connected health applications.

6. Conclusions

This research work reveals that wireless communication technologies are not only used
for voice, text, videos, and multimedia applications but also links devices for connected
health applications. The advantage of the double-edged sword made it a promising solution
to meet the challenges of today’s world. In this research, the design of the SDR technology-
based platform is validated through simulated wireless channels. The simulated results
gave a better understanding of wireless channel characteristics for measuring CFR. The
SDR technology-based developed platform intelligently senses human body movements
in order to diagnose breathing abnormalities in a non-contact manner. The four different
breathing patterns are classified by using three machine learning algorithms. The KNN is
the best among all three algorithms, with a maximum classification accuracy of 99.3%. The
experiment results reveal that the developed platform is reliable, portable, scalable, flexible,
and has multifunction capabilities. The developed platform is a viable solution for COVID-
19 and non-COVID-19 scenarios. It is also very useful in detecting early diagnosis of
COVID-19 symptoms, such as shortness of breath and dry cough. Although the conducted
research work faithfully classifies the breathing pattern for the diagnosis of breathing
illness, the limitation of this research is that it cannot be applied to health issues that are
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not related to body motion, such as temperature, diabetics, etc. This research can be further
used for the early diagnosis and monitoring of breast cancer, sleep disorder, gait, and many
other diseases under the scope of human body motion.
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