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Abstract: It is well known that many chronic diseases are associated with unhealthy diet. Although
improving diet is critical, adopting a healthy diet is difficult despite its benefits being well understood.
Technology is needed to allow an assessment of dietary intake accurately and easily in real-world
settings so that effective intervention to manage being overweight, obesity, and related chronic dis-
eases can be developed. In recent years, new wearable imaging and computational technologies have
emerged. These technologies are capable of performing objective and passive dietary assessments
with a much simplified procedure than traditional questionnaires. However, a critical task is required
to estimate the portion size (in this case, the food volume) from a digital image. Currently, this task is
very challenging because the volumetric information in the two-dimensional images is incomplete,
and the estimation involves a great deal of imagination, beyond the capacity of the traditional image
processing algorithms. In this work, we present a novel Artificial Intelligent (AI) system to mimic the
thinking of dietitians who use a set of common objects as gauges (e.g., a teaspoon, a golf ball, a cup,
and so on) to estimate the portion size. Specifically, our human-mimetic system “mentally” gauges
the volume of food using a set of internal reference volumes that have been learned previously. At
the output, our system produces a vector of probabilities of the food with respect to the internal
reference volumes. The estimation is then completed by an “intelligent guess”, implemented by an
inner product between the probability vector and the reference volume vector. Our experiments
using both virtual and real food datasets have shown accurate volume estimation results.

Keywords: artificial intelligence; nutrition; food volume estimation; deep learning; dietary assessment

1. Introduction

As of 2016, 39.6% U.S. adults were obese (BMI ≥ 30) [1]. In order to control obesity
and related chronic diseases, there is a pressing need to assess accurately the energy and
nutrient intake of individuals in their daily lives. Traditionally, a dietary assessment is
conducted using self-report in which individuals report their consumed foods and portion
sizes. Although this method is standard and has been utilized for decades, numerous
studies have indicated that it is inaccurate and biased [2,3]. In addition, self-report does
not work well in children [4].

With the development of smartphones and wearable devices, dietary assessment
can be performed without fully depending on individuals’ memory and willingness to
report their own intake. For example, Arab et al. [5] developed an automated image
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capture method to aid dietary recall using a mobile phone; Sun et al. [6] designed a
wearable camera system called eButton for objective and passive dietary assessment;
Jobarteh et al. [7] developed an eyeglass attachment containing an accelerometer and a
camera to record dietary events automatically; and Liu et al. [8] performed food intake
monitoring using a sensor worn on top of an ear.

With images automatically captured by a wearable device, dietary assessment can be
conducted objectively and passively in four steps: Food detection, food recognition, volume
estimation, and nutrition content analysis. The first two steps have been studied using com-
puter vision and pattern recognition methods, notably the recently developed deep learning
methods [9–11]. The last step is usually implemented using an existing food database, such
as the USDA Food Composition Database [12]. Although the technological tools in all four
steps need further improvements, the third step (volume estimation) is currently the least
developed due to a number of challenges involved, which are detailed below.

A food image is usually in the unit of a “pixel”, rather than a real-world unit (e.g.,
“centimeter”). As a result, a scale reference is required to determine the actual food size.
For example, the size of an apple must be determined by comparing it with another object
with a known size in the same image. Thus, many types of fiducial markers have been
used as the scale reference, such as a checkerboard [13] and a credit card like reference [3].
However, these fiducial markers must be carried by the individual and placed near the food
before the individual starts eating, which is an unwelcome procedure usually difficult to
implement. Secondly, to estimate food volumes effectively with a computer, it is necessary
to provide enough three-dimensional (3D) information of the food. Unfortunately, much of
the 3D information is lost in the imaging process where the food as a 3D object is projected
to a 2D plane. For this reason, instead of using a single-view image, many researchers
turned to the use of multiple images in different views [3,13–16]. However, this approach
requires the individual to move either the camera or the food in the imaging process,
complicating the research effort and possibly modifying the normal behavior of diet intake.
In addition, 3D reconstruction from multi-view images involves multiple challenges, such
as accurate camera calibration, feature extraction, image registration, pose estimation,
etc. [17].

In another approach, a depth camera or a pair of cameras has been used to obtain
images with depth information [18]. Although a depth image contains more 3D information,
to acquire this type of images, the wearable device must be made larger, heavier, and more
expensive to accommodate additional hardware and meet the requirement of increased
power consumption, which affects the wearability and usability of the device.

With the success of deep learning-based depth estimation [19,20], it has been demon-
strated that certain 3D information can be inferred from a 2D single-view image. Thus,
there is a recent trend of applying deep learning to food volume estimation using estimated
depth from the RGB image (i.e., the regular image with red (R), green (G), and blue (B)
as three primary colors). Typical algorithms include im2calories [21] and deepvol [22].
Although these algorithms have achieved a certain success in improving food volume
estimation, estimating depth from a single RGB image is still a very challenging problem.
In addition, the deep learning system requires an excessively large number of RGB images
with a known depth for network training, which are difficult to obtain in practice.

In this work, we present a human-mimetic approach to estimate food volume directly
from a single-view 2D RGB image without using any supplemental 3D information. Our
work is highlighted as follows.

1. Over the years, dietitians have used a popular portion size estimation method by
comparing the observed food with a set of common objects of known volumes. We
propose to use the AI technology to mimic this mental process. In the human case,
the food size is first matched with the most similar size of a known object. In an
AI system, we use a similar strategy formulated as an image classification step. In
the second step, while the human mentally fine-tunes the estimation by portioning
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with respect to the known object sizes, we mimic this process using an inner product
between a probability vector and a reference volume vector.

2. To validate the effectiveness of our method quickly, we used two large-scale Virtual
Food Datasets (VFD), constructed by computer simulation, of different volume ranges.
Our method achieves a high accuracy with an average volumetric error less than 9%
on both datasets.

3. To evaluate the real-world performance of our method, two Real Food Datasets (RFD)
are collected with different degrees of difficulties in estimation tasks. Our method
achieves 11.6% and 20.1% mean relative volumetric errors on the easy and hard food
datasets, respectively.

The rest of this paper is organized as follow. Food volume estimation methods related
to our study are reviewed in Section 2. Section 3 describes the concepts of our volume
estimation method. Constructions of VFD and RFD are detailed in Section 4. Experimental
studies which validate our method are described in Section 5. Discussions of several
important issues are provided in Section 6. Finally, conclusion and future directions are
presented in Section 7.

2. Related Work

There have been considerable efforts on the application of the computer vision tech-
nology to food volume estimation. Existing methods can be roughly divided into two
categories: Model-based methods and stereo vision-based methods. For the mode-based
methods, the volume is estimated by registering each food in the input image with a pre-
defined 3D food model. For example, Chen et al. [2] proposed a 3D/2D model-to-image
registration to interactively match the food contour and the 2D projection of a 3D geometric
model manually selected from a set of computer-generated shapes (a sphere, a wedge, a por-
tion of spheroid, etc.). Limited by the prescribed set of 3D shapes, this method produces a
large error when the shape of the food is highly irregular. Xu et al. [23] provided a solution
by learning 3D food models from multi-view food images. Although improvements have
been made, the model-based methods suffer from a common problem that an appropriate
3D model must be selected manually, which affects the data processing speed and is not
cost-efficient. In order to solve this problem, stereo vision-based methods [3,13–16] have
been developed to directly reconstruct the 3D food surface from a set of RGB or RGBD
(a type of color image that contains the information of depth (D) at each pixel location)
images. For example, Puri et al. [14] developed a reconstruction method from multiple
images of different views. Similarly, Hassannejad et al. [13] generated a point cloud of food
using six continuous frames extracted from a short video. To speed up the process of 3D
reconstruction, Dehais et al. [3] proposed a two-view 3D reconstruction algorithm for food
volume estimation. More recently, Gao et al. [24] presented a monocular Simultaneous
Localization and Mapping (SLAM) algorithm for food object reconstruction. Compared
with model-based methods, the stereo vision-based methods require less human efforts
during volume estimation. However, these methods are challenged by multiple tasks such
as camera calibration, feature extraction, image registration, pose estimation, etc., making
its implementation technically difficult. In addition, as mentioned previously, the 3D recon-
struction approach requires multiple images of the same food in different views. As a result,
the camera must be moved around the food while acquiring images, a difficult maneuver
for a wearable camera. Although installing two cameras within a single wearable device
can theoretically acquire stereo images, both the device cost and power consumption in-
crease. Moreover, since the wearable device is small, the distance between the two cameras
may be too short to produce a sufficient stereo effect for volumetric measurement.

In recent years, with the rise of deep learning technology, many computer vision tasks
(e.g., image classification [25], image segmentation [26], and depth estimation [19]) have
advanced significantly. As a result, there is a recent trend of applying deep learning to
food volume estimation. For example, Meyers et al. [21] estimated a depth map from the
2D food image with deep Convolutional Neural Networks (CNN) and then converted the
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depth map to a 3D voxel representation. Considering that the estimated depth maps from
RGB images may contain large errors, Lo et al. [18] instead adopted a RGBD camera to
simultaneously capture color and depth images for food volume estimation. The food re-
construction is implemented by performing the Iterative Closest Point (ICP) algorithm over
the front-view depth map and an inferred back-view depth map. Ferdinan et al. [27] and
Lu et al. [28] took a different approach. They formulated the volume estimation as a volume
regression problem from implicit 3D features transformed from the depth information.

Despite the significant progress achieved in recent years on image-based food volume
estimation, most of these methods suffer from at least one of the following drawbacks:
(1) requiring considerable human effort in selecting and manipulating 3D food shape
models; (2) requiring a special RGBD camera, more than one RGB cameras, or moving a
single RGB camera around the food during image acquisition; and (3) relying heavily on
estimated depth information which is often sparsely available from images with a single-
view or limited views, resulting in a large error and/or instability in estimation results.

3. Methodology
3.1. Motivation

Instead of acquiring multiple images and reconstructing depth explicitly, we use only
a single-view image to estimate food volume. Our approach to this difficult problem is to
mimic human thinking in volume estimation using AI technology. Over the years, dietitians
have used an intuitive method comparing the food (either in the physical world or in an
image) of an unknown size with a number of sizes of common objects, such as a thumb tip,
a golf ball, a deck of cards, and a baseball. The sizes of the objects close to the size of the
food are mentally extrapolated to produce an estimate. This method, although not very
accurate, is proven to be highly effective. Studies in psychology provide an explanation
of the effectiveness in terms of the Stroop effect where the size difference of two familiar
objects in an image can be rapidly perceived when their sizes are congruent with those of
the real world [29]. In addition, over the process of evolution, a human becomes highly
capable of not only selecting a particular object (e.g., a larger one) among the same type of
objects of different sizes, but also estimating the size of one type of object in reference to
another object of a different type with a known size. This is illustrated in Figure 1a where
we can easily tell that Food No. 1 appears larger than Food No. 2, assuming that the plates
in the two images have the same size. We can also roughly estimate the volume of any one
food in the pair if the actual volume of the other food is known, provided that the plates
are of the same size (bottom row). The estimation is facilitated even further if more than
one reference foods of known volumes are available (Figure 1b), assuming that all plate
sizes are identical.

Food1 Food2

300ml

reference unit reference volume

reference class

100ml

(a) (b)

Food3 Food4

Figure 1. (a) Motivation of our method: A human can easily tell that Food No. 1 is larger than Food
No. 2 if the plates in the two images have the same size. Moreover, we can roughly estimate the
volume of Food No. 1 or 2 if some reference volumes (Foods No. 3 and 4) are given. (b) Definitions of
terms: The reference class is an abstract food class that have similar volumes, the reference volume is
the center volume of a reference class, and the reference unit is the interval between two neighboring
reference volumes.
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These observations inspired us to adopt a human-mimetic strategy for food volume
estimation from a single-view image using an AI system. This new strategy, shown in
Figure 2, consists of two steps. In the first step, our AI system roughly classifies which
reference volume (the value is known) that the observed food matches the best, just as
a dietitian does in portion size estimation. In the second step, our system provides a
fine-tuned volumetric estimation by comparing with multiple volumetric references and
extrapolating the result, in the same process as that illustrated in Figure 1.

Input Modified MobinetV2 Class Probabilities

reference volume 
of classes

Predicted Volume
Dot product

Figure 2. Overview of the proposed food volume estimation system which contains two stages.
In the first stage, an image classification network outputs a vector of the probability values with
respect to a pre-selected set of reference classes, where the classification network is modified (detail
modification is shown in Table 1) from the MobileNetV2 model provided in Pytorch. In the second
stage, the food volume is estimated by an inner product between the probability vector and a volume
vector consisting of the volumes of reference classes.

Table 1. Network architecture for food volume estimation.

Stage Output Stride Components

block1 2

3× 3 std conv, 32 1× 1 pw conv, 96
3× 3 dws conv, 96
1× 1 pw conv, 16



block2 4

 1× 1 pw conv, 192
3× 3 dws conv, 192
1× 1 pw conv, 32

 ×3

block3 8

 1× 1 pw conv, 384
3× 3 dws conv, 384
1× 1 pw conv, 64

 ×3

block4 16

 1× 1 pw conv, 576
3× 3 dws conv, 576
1× 1 pw conv, 96

 ×4

block5 32

 1× 1 pw conv, 960
3× 3 dws conv, 960
1× 1 pw conv, 160

 ×3

3× 3 std conv, 1024

If we treat food images with similar volumes as an abstract class, the first step men-
tioned above can be interpreted as finding the closest volume class for the input image,
which can be formulated as an image classification problem. For the sake of clarity, we call
the volume used for class division as the reference volume and the abstract class associated



Electronics 2021, 10, 1556 6 of 22

with it as the reference class (see Figure 1b). Since deep CNNs such as the ResNet [30] and
DenseNet [31] have shown great success in image classification, we choose from these deep
learning architectures for reference class classification. In particular, we set multiple refer-
ence volumes (e.g., 200 mL, 300 mL, 400 mL) for reference class division. Each reference
class is associated with numerous training food images whose volumes lie within a small
range (e.g., ±50 mL) with respect to its reference volume. Thus, if a food dataset has the
maximum volume of 1000 mL, for instance, we can formulate the food volume estimation
as a 10-class classification problem if 100 mL is adopted as the unit of reference.

3.2. Neural Network for Food Classification

In order to deploy our AI technology to an embedded system within the wearable
device for real-world food volume estimation in the future, we adopt the light-weight
inverted residual block as our basic unit to construct a real-time food volume classification
network. We first briefly review the concept of the inverted residual block and then detail
our network architecture.

3.2.1. Inverted Residual Block

The inverted residual block [32] was developed from the original residual block
proposed in the ResNet [30]. Similarly, it is a stack of a 1× 1 convolution layer, a 3× 3
convolution layer, and a 1× 1 convolution layer. The inverted residual block uses the first
1× 1 convolution layer to expand the feature dimension (contrary to the original residual
block which reduces the dimension), and the second 1× 1 convolution layer to restore the
feature dimension. In addition, the inverted residual block replaces the standard 3× 3
convolution with a depth-wise separable (dws) convolution. This type of convolution [33]
factorizes the standard convolution into a 3× 3 depth-wise convolution and a 1× 1 point-
wise (pw) convolution, which reduces the computational cost significantly.

3.2.2. Food Volume Classification Network

Based on the inverted residual block, we construct a food volume classification net-
work, which mimics the mental process of the dietitian to determine the reference object
that best matches the food volumetrically, composed of five blocks with a different out-
put resolution. This network outputs the probabilities of the reference classes to which
the food in the input image belongs. The detail of our network architecture is shown in
Table 1. Block 1 consists of a 3× 3 standard convolution layer and an inverted residual
layer. Blocks 2 through 5 are stacked by different numbers of residual layers. In addition,
Block 5 contains an additional 1× 1 convolution layer to transform the feature to a higher
dimension of 1024. The global pooling strategy is used to convert the feature maps to a
feature vector for image classification.

For classification with respect to reference classes, we use hard labels, i.e., one-hot
encoding, to supervise network training. Specifically, each training image is associated
with a binary label vector that contains only one element equals to 1. The index of “1”
indicates the reference class closest to the training image. However, our goal is volume
estimation rather than volume size classification. A simple way to achieve this goal is
to use the closest reference volume as the estimated volume. However, this could result
in a significant information loss. For example, given a test image, its distances to the
closest reference class and the second closest class could be very similar. Thus, we use soft
predictions instead, i.e., the probabilities of reference classes that a food in the input image
belongs to, to perform volume estimation. The soft predictions not only tell the closest
reference class, but also give information about the relative closeness to other reference
classes. This process again mimics the mental process of the dietitian who uses degrees
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of likeliness among a set of known objects to arrive at an estimate. Specifically, the food
volume is computed by the following inner product:

V̂ =
N

∑
i=1

p(i)V(i) (1)

where V(i) is the reference volume of class i, and p(i) is the probability of the ith reference
class that the food belongs to.

3.3. References Volume Normalization

For the AI-based volume estimation system described above, it is assumed that all
the plates in the images have the same size because the plate acts as a scale reference in
this case. As a result, we need to train multiple models if plate sizes are different, which
degrades the generality of our method. To solve this problem, we propose to crop the
food along with the plate from the images and then re-size the cropped sub-images to a
fixed size (see Figure 3). Such an operation can be viewed as normalizing different sizes of
plates to 1 since it enforces different plates having the same radius in pixel unit. Since the
maximum food volume a plate can place is usually pre-defined (e.g., 1000 mL) according
to the plate’s size, thus, the maximum reference volume within the normalized plate is also
normalized to 1 (which becomes unit free due to the normalization process). After this
normalization, food images with large differences in volume can have a similar normalized
volume and thus can be placed in the same class. As a result, we can collect the dataset
using the same plate to train the classification network and need only change the reference
volumes for different plates during volume estimation. Specifically, denoting the original
volume of a food as V, and the normalized volume as V, we have:

V =
V −Vmin

Vmax −Vmin
(2)

where Vmax and Vmin are the maximum and minimum reference volumes, respectively.
Thus, the normalized volume lies in a closed interval of [0, 1]. If we use N references
classes for volume estimation, each reference class will cover a volume range of 1/N. Then,
the normalized reference volume of the ith class equals to i/N − 1/2N. According to (1),
the normalized volume estimation can be computed by:

V =
N

∑
i=1

p(i)(
i
N
− 1

2N
). (3)

Finally, according to (2) and (3), the estimated volume can be obtained by:

V̂ = Vmin + (Vmax −Vmin)
N

∑
i=1

p(i)(
i
N
− 1

2N
). (4)

Thus, once the model has been trained, only the maximum and minimum reference
volumes are required for de-normalization, i.e., for estimating the actual volumes in unseen
plates. Next, we describe how to obtain these two values.

Without loss of generality, supposing that the nth reference volume of the training set
is obtained from a 3D model with irregular surface shown in Figure 4a, Then, the reference
volume of class n can be computed by a triple integral defined over the 3D model:

Vrt
re f _n =

∫∫∫
ω

dxdydz (5)

where rt is the plate radius in the training images and ω is the region enclosed by the
3D model. Then, for an unseen (with respect to the training set) plate rnew = srt, the 3D
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model for nth reference volume computation can be obtained by scaling the model used
in a training set with a factor s in all three dimensions (Figure 4b), thus, the nth reference
volume of plate rnew can be computed by:

Vrnew
re f _n =

∫∫∫
d(sx)d(sy)d(sz) = s3Vt

re f _n. (6)

resize

crop

Ref. 1 of large plate Ref. 1 of small plate

Figure 3. Concept of normalized references: Different food volumes can be normalized to the same
or a similar reference volume by first cropping the foods from the input image and then resizing the
foods to the same size.

Figure 4. (a) Supposed 3D models for reference volume computation: (b) Scaled 3D food models.

Thus, given food images placed in an unseen plate, to obtain the maximum and
minimum reference volume for volume estimation, we only need the plate radius to
compute s.

4. Datasets

It is well known that the deep network requires a large amount of annotated data
for training. However, most current food datasets (e.g., PFID [34], UECFOOD-100 [35],
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Food-101 [36]) are designed for food recognition, rather than volume estimation since
these datasets has no information about food volumes. For this reason, most existing
deep learning-based studies on food volume used self-collected datasets for training.
For example, Li et al. [22] collected a fruit dataset to train their fruit volume estimation
network. Similarly, Meyer et al. [21] collected a RGBD food dataset for their depth-based
food volume estimation network using the Intel RealSense camera. Unfortunately, these
datasets cannot be utilized to train our AI system because they are not publicly available,
highly specialized for certain foods (e.g., fruits), or focused on depth. Since it is extremely
time-consuming to measure a large number of foods as volumetric truths for neural network
training, we first generated two virtual food datasets using computer simulation to validate
our human-mimetic method quickly. After the effectiveness our method was proven, we
then applied our method to real-world food images. This two-step approach allowed us to
circumvent the volume truth measurement problem initially and accelerated the design of
our AI system.

4.1. Virtual Food Dataset

The key problem of producing a Virtual Food Dataset (VFD) is to simulate complex
and varying food shapes with a computational algorithm. In order to obtain a sufficient
variability in a simulation result, we defined a spherical coordinate system shown in
Figure 5 and generated a cloud of 3D points (r, θ, φ). The azimuthal angle θ and polar angle
φ incremented equally in ranges of 0–360◦ and 0–90◦, respectively. In contrast, the radial
distance r was generated randomly with a Gaussian distribution of N(r̂, σ), where r̂ and
σ are the mean and standard deviation of this distribution. Once the point cloud was
generated, we applied a low-pass filter, implemented by a 2D mask across overlapped
(θ, φ) patches. The low-pass filtering produced a smooth surface of a random shape. We
adjusted the coefficients of the mask and the parameters of the distribution (r̂ and σ)
experimentally by observing the simulation results. In order to improve the appearance
of virtual foods, we wrapped each generated surface with randomly selected real food
images. The results of our computer simulation are exemplified in the top two rows of
Figure 6. The background images and food images used for wrapping are downloaded
from the Internet. In these virtual images, the food occupied a large part of each image
frame to simulate the cropping effect (described in Section 3.3).




r

Figure 5. Spherical coordinates system for VFD generation.
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Figure 6. (a) Examples and histograms of VFDL-15; (b) Examples and histograms of VFDS-15. The blue and orange bins
are histograms of a training set and test set, respectively. Note that the plate size of VFDL-15 is different from the one of
VFDS-15 although they look similar.

In order to evaluate our AI method in handling foods with different volumetric ranges,
two virtual datasets were generated with different minimum and maximum volumes.
In the first dataset, 15 classes were utilized, and the minimum and maximum volumes were
400 mL and 3400 mL, respectively. In the second dataset, 15 classes were utilized again but
the volumetric range was smaller, between 200 mL and 1700 mL. Note that the minimum
volumes of the two VFDS were not zero because random processes that we utilize tend to
produce fewer samples when the volume was close to zero. For convenience, we called
these two datasets VFDL-15 and VFDS-15, respectively (“L” and “S” represents large and
small, respectively). Finally, we divided each dataset into a training set and a test set with
a roughly 2:1 ratio (10,003:4889 for VFDL-15 and 9205:4489 for VFDS-15).

The bottom row in Figure 6 shows the distributions of the two VFDs constructed
by us. We have made our VFD publicly available at https://drive.google.com/file/d/
1CobbDAw_QeZfitBPleZGBnXY0nkntKtw/view?usp=sharing (accessed on 25 June 2021).

4.2. Real Food Dataset

We first established a Real Food Dataset (RFD) consisting of 1500 images captured
by a stationary camera. This RFD contained 50 Chinese foods of a university cafeteria in
China. In addition, for each food, multiple images were taken by turning around the table
where the food placed, providing an ideal dataset for training and testing our AI-based
volume estimation system.

In order to evaluate the performance of our system for real life cases where a single-
view image is taken at an unrestricted view angle, we established another RFD using per-
sonal mobile phones (brands unrestricted) to capture food images. This dataset consisted
of 416 images. Unlike the previously case, these images were taken with user-determined
view angles although views take directly above the food were discouraged. For conve-
nience, we call this dataset a general RFD (GRFD). Likewise, the previous dataset is called
an ideal RFD (IRFD). The volume of IRFD ranges from 110 to 410 mL, and the volume of
GRFD ranges from 66 to 630 mL. As shown in Figure 7, images in GRFD have considerable
differences in view angles than the images in IRFD.

https://drive.google.com/file/d/1CobbDAw_QeZfitBPleZGBnXY0nkntKtw/view?usp=sharing
https://drive.google.com/file/d/1CobbDAw_QeZfitBPleZGBnXY0nkntKtw/view?usp=sharing
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(a) 

(b) 

Figure 7. (a) Examples of IRFD, (b) Examples of GRFD. The images in IRFD are captured by a
stationary camera while the images of GRFD are captured by smartphones.

5. Experiments
5.1. Experimental Setups
5.1.1. Training Policy

We trained our deep neural network using the standard Stochastic Gradient Descent
(SGD) algorithm. The batch size was set to 128× 224× 224. We set the learning rate to 0.01
and divided it by 10 after every 5000 steps. The total training steps were set to 15 K and
5 K for VFD and RFD, respectively.

5.1.2. Data Augmentation

Since our food volume estimation system needs to see the entire 2D food, we employed
only “random mirror” for data augmentation.

5.1.3. Evaluation Protocol

We computed top1 and top3 classification error to evaluate the classification accuracy,
where “top” refers to the classes that are closest to the truth class. For example, for volume
class 3, the three classes closest to it are the class 2, class 4, and 3 itself. Thus, for class 3,
the top3 accuracy computes the ratio of samples that are classified into class 2, 3, and 4 to
the total samples. More formally, the top1 and top3 classification error can be computed by
(7) and (8) respectively.

top1 =
∑N

i δ(l̂ili)
N

(7)

top3 =
∑N

i

(
δ(l̂i, li − 1) || δ(l̂i, li) || δ(l̂i, li + 1)

)
N

(8)
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where l̂i and li are the predicted volume class and truth volume class of sample i, respec-
tively δ(x, y) is an indicator function written by:

δ(x, y) =
{

1 if x = y
0 otherwise .

(9)

We also computed the Mean Relative Volumetric Error (mRVE) as a measure of
accuracy for volume estimation. For each estimation, the RVE was computed by:

RVE =
|Vp −Vt|

Vt
(10)

where the Vp and Vt are the computed and measured volumes, respectively. The mRVE is
then obtained by averaging the RVE value of all test samples.

5.1.4. Computing Systems

All the experiments were conducted on a computer equipped with the Intel Xeon
E5-1630 (8 cores, 3.7 GHz) CPU, Titan X (12G) GPU, and 32G RAM. We trained our AI
system using the Tensorflow software platform [37].

5.2. Experiments on VFD
5.2.1. 15 Reference Classes

We first tested our human-mimetic method using the VFDL-15 and VFDS-15 datasets
separately. The experimental results are shown in Table 2. The first and second rows
of mRVE displays the performance of using soft predictions and hard predicted label
for volume estimation, respectively. Several important observations and conclusions are
described as follows.

Table 2. Experimental results on VFDL and VFDS with 15 classes division.

Classes
Overall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VFDL-15

top1 63.8 67.6 56.1 46.7 41.3 44.5 35.7 39.6 30.1 36.9 28.6 28.7 35.4 36.8 16.9 42.1
top3 100 98.3 96.8 96.1 93.4 89.6 84.3 83.2 83.3 78.0 76.7 75.5 81.2 83.2 55.9 86.7

mRVE 15.1 11.1 10.6 9.9 9.7 9.1 9.3 8.0 7.6 7.3 7.3 6.8 5.9 5.0 8.2 8.7
15.9 12.3 11.9 11.1 10.7 9.8 10.2 8.9 8.6 8.0 9.0 7.6 6.2 5.7 8.4 9.6

VFDS-15

top1 54.2 60.3 58.8 50.3 43.7 37.0 40.4 40.0 34.7 32.4 25.4 25.9 19.7 31.4 50.8 39.5
top3 95.8 96.9 96.7 95.4 92.2 85.5 82.0 85.0 79.8 75.9 74.2 69.3 69.1 85.4 80.1 83.7

mRVE 19.6 12.8 10.7 10.1 9.4 10.2 9.2 8.4 8.1 8.2 8.4 7.8 7.2 5.4 5.3 8.7
19.8 13.7 11.4 11.1 10.7 10.8 10.3 8.7 8.6 9.0 9.2 8.7 8.0 6.2 5.1 9.4

1. Our human-mimetic AI system achieved a 86.7% and 83.7% top3 accuracy on VFDL-
15 and VFDS-15, respectively, which demonstrated that this system is able to find the
three closest volume reference classes of the input, in a similar way that a human
uses to compare a food size with the sizes of a set of reference objects. In addition,
according to the histograms shown in Figure 8, it is unlikely for our method to classify
the input images to the reference classes far away from their true reference class. Thus,
although the top1 accuracy was relatively low, our method still achieved 8.7% and
8.7% mRVE on VFDL-15 and VFDS-15, respectively.

2. Most top1 classification accuracies achieved on large volume classes were fewer
than 40%, suggesting that the food volume classification model cannot distinguish
large volume classes very well. This was mainly because the relative volumetric
changes between large volume classes were much smaller than the changes across
small classes, which made large volume classes less differentiable. Nevertheless,
the volume estimation errors in large volume classes were typically smaller than the
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ones of small volume classes. This is reasonable since the RVE is more sensitive to
the absolute error at small classes according to (10). For example, given an absolute
error equal to 100, for the VFDL-15 dataset, the mRVE of class 1 (400–600 mL) is in
the range of 16.7% to 25%, while the mRVE of class 15 (3200–3400 mL) lies between
2.9% to 3.1%.

3. Using soft predictions for volume estimation achieved lower mRVE than using hard
predictions on both VFDL-15 and VFDS-15, proving the effectiveness of our soft
predictions-based volume estimation mentioned in Section 3.2.2.

4. Not surprisingly, our method achieved a better performance on a VFDL-15 dataset
for the reference classification task according to the top1 and top3 accuracy measures.
However, for the volume estimation task, our method showed a similar mRVE on
the VFDS-15 and VFDL-15. Together with observation 2, it can be concluded that a
better reference classes classification accuracy, which usually requires a larger interval
between neighbor classes, does not imply a better volume estimation result.

5. We achieved 8.7% mRVE on the VFDS-15 dataset that has a similar volume range to
that in the real world, which demonstrated strongly the effectiveness of our human-
mimetic approach.

5.2.2. Increased 30 References Classes

According to Observation 3 mentioned above, a better accuracy in reference class
classification does not imply a better volume estimation. While fewer reference classes
usually result in a better classification accuracy, our goal is volume estimation rather
than classification. Therefore, we further increased the number of reference classes and
studied the resulting volume estimation performances. In particular, we used 30 reference
classes for the original VFDL-15 and VFDS-15, forming VFDL-30 and VFDS-30 in the new
experiment. The volume intervals between neighboring reference classes were chosen as
100 mL and 50 mL for VFDL-30 and VFDS-30, respectively. Our experimental results are
shown in Table 3.

Table 3. Experimental results on VFDL and VFDS with 30 class division.

Top1 Top3 mRVE

VFDL-30 22.2 58.7 8.7
VFDS-30 21.2 55.1 8.6

As expected, both top1 and top3 classification accuracies decreased significantly
when the number of reference classes was increased from 15 to 30 for both VFDL and
VFDS. Since each class of VFD-15 was split into two classes in VFD-30, the top1 and
top3 errors for classes in VFD-15 should correspond to top2 and top6 errors for classes in
VFD-30, respectively. In this context, the top1/top3 accuracy of VFDL-30 and VFDS-30 is
40.8%/80.9% and 38.0%/77.3%, respectively. In addition, the number of training samples
of each class in VFD-30 was decreased significantly compared with those in the VFD-15.
In other words, a better classification accuracy is expected for VFD-30 if more samples
are available.
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Figure 8. Histograms (40 mL for bin width) of classification results for VFDL-15. White distributions indicate the test set
(for clarity, all classes are shown and separated by a blank bin). Orange distributions (one class for each panel) represent
classification results for classes 1 through 15.

5.2.3. Bias Analysis

In order to check whether our human-mimetic AI system produced biased volumetric
estimates, we investigated the distribution of volumetric errors shown in Figure 9. It ap-
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pears that the error distribution, after a normalization, can be approximated by a Gaussian
distribution centered at zero, suggesting that our AI-based volume estimator is unbiased.

Figure 9. (a) Histograms of relative errors (%) on VFDS-30, (b) Histograms of absolute errors (mL) on VFDS-30.

5.2.4. Training with Normalized Reference Class

In order to demonstrate the effectiveness of our normalization approach described
in Section 3.3, we mixed the training data of the VFDL-15 and VFDS-15 and obtained
a combined training set consisting of 19,208 images. Then, we adjusted the reference
volume for each dataset during the test stage according to (4). The experimental results are
shown in Table 4. By comparing Table 2 with Table 4, it can be observed that training with
mixed datasets achieved a better performance than training with each dataset individually.
In particular, top1 accuracy, top3 accuracy, and mRVE on the VFDL-15 dataset were
improved by 1.7, 1.4, and 0.2 percentage points, respectively, these three quantities were
improved by 0.6, 0.9, and 0.2 percentage points, respectively, for the VFDS-15. These
improvements may have resulted from the increase in the number of training samples for
each class.

Table 4. Experimental results with mixed training but separate tests for VFDL and VFDS.

Top1 Top3 mRVE

VFDL-15 43.8 88.1 8.5
VFDS-15 40.1 84.6 8.5

Our experiments demonstrated that food images can be placed in the same class as
long as they share similar normalized volumes, regardless of their actual volumes, as we
stated previously in Section 3.3.

5.3. Experiments on RFD

We first tested our human-mimetic method using the IRFD dataset. Similar to the VFD
results, we also experimented two reference units to divide the reference classes. When
100 mL was adopted as the reference unit, the available food images could only be divided
into 3 classes. Thus, we did not list the top3 accuracy since they were 100% in this case.
It can be observed from Table 5 that our AI system produced similar mRVEs when using
different reference units. In addition, our AI system produced an mRVE less than 15% for
most individual classes and 11.6% overall, which are satisfactory results in food volume
estimation from single-view images.
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Table 5. Experimental results on the IRFD dataset.

Classes
Overall

1 2 3 4 5

100 mL top1 89.0 82.4 60.7 - - 79.6
mRVE 13.0 10.8 11.8 - - 11.7

50 mL
top1 78.4 27.5 79.4 35.0 75.4 67.4
top3 97.3 100 87.6 100 88.4 93.5
mRVE 13.2 17.7 8.9 11.6 8.9 11.6

Next, we applied our method to the GRFD dataset which contained 416 images with
measured volumes. We divided these images into the training (242 images) and testing
(174 images) set. Since the GRFD had significantly fewer training samples (960 for IRFD
vs. 242 for GRFD), and the view angles of the images in GRFD are more varied than those
in IRFD, the estimation error was larger. Nevertheless, a reasonable performance was
achieved with a 20.1% mRVE (Table 6).

Table 6. Experimental results on the GRFD dataset.

Classes
Overall

1 2 3 4 5

100 mL
top1 100.0 35.0 40.0 0.0 59.6 42.5
top3 100 100 85.0 97.6 100 96.0
mRVE 25.8 27.3 20.9 19.1 15.3 20.1

Since the images were randomly divided into the training and test sets in previous
experiments, the same type of food could be found in both the training and test sets.
To investigate the capability of our human-mimetic system in handling unseen foods, we
performed an experiment where the images of IRFD were divided into the training or
test sets with different food types. In other words, all food types in the test set cannot
be found in the training set. Note that we did not conduct this experiment on the GRFD
dataset because a large number of training samples would be required to enable the deep
network to handle unseen foods. With the same consideration, we used three classes rather
than five classes. We finally obtained 960 training images and 540 test images. It can be
observed from Table 7 that our AI system produced 12.5% mRVE even with all the test
foods being new to the network. This experiment demonstrated the our human-mimetic
volume estimation system was able to focus its “mental activity” on the food volume,
rather than other food features.

Table 7. Experimental results on IRFD. The foods in the test set were unseen in the training set.

Classes
Overall

1 2 3

100 mL

training samples 350 400 210 960
test samples 210 200 130 540
top1 88.1 76.0 78.5 -
mRVE 13.6 14.0 8.3 12.5

5.4. Comparison with Other Methods

In this section, we compared our method with a number of existing methods. A general
criterion is to choose the state-of-the-art methods that report performance on the same
dataset for a fair comparison. Unfortunately, there has not been a well-recognized dataset
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for food volume estimation according to a recent published comprehensive review [38].
Instead, most methods reported performance on their own collected data that usually is
not publicly available. Thus, for comparison purposes, we chose some best-known food
volume estimation methods that used evaluation criteria, i.e., relative error, similar to ours
and that were published after 2015. Note that some negative relative errors in Table 8 can
be easily transformed into our evaluation criteria by taking the absolute value.

Table 8. Comparison with other methods. n/a means not applicable, ‘-’ represents the value was not reported in the
corresponding paper.

Method Scale Reference Input Core Idea Error

MuseFood [39] Depth RGB Image
(Top + Side View) Differential Modeling

−0.27~12.37%
Test dataset:
3 food items

Eye-Measurement [39] n/a RGB Image Visually Gauged
by Human

−13.84~22.87%
Test dataset:
3 food items

Hassannejad et al. [13] Checkerboard Multi-View (6)
RGB Images

3D Modeling with
Structure from Motion

1.70~19.10%
Test dataset:
10 food items

im2calories [21] Depth RGB + Depth Image 3D Reconstruction with
Deep Learning

-
Test dataset
NFood-3D dataset

Fang et al. [40] Depth Gray + Depth Image 3D Voxel Representation
from depth

11.00~33.90% [38]
Test dataset:
10 food objects

Lo et al. [18] Depth Depth Image
(Front + Back View)

3D Reconstruction with
Iterative Closest Point

3.30~9.40%
Test dataset:
8 synthetic
food objects

Point2Volume. [41] Depth RGB + Depth Image 3D Point Cloud
Completion

15.32%
Test dataset:
11 food items

VD Meter [42] - Multi-View (192)
RGB Images 3D Reconstruction

0.83~5.23%
Test dataset:
6 food items

Ours Learned Single RGB Image Reference Volume
Classification

11.60~20.10%
Test dataset:
174~540
food images

As shown in Table 8, we compare our method with these methods both quantita-
tively and qualitatively. Compared with eye-measurement, which inspired our method
initially, our method achieved similar or better performance, proving the effectiveness of
our human-mimetic volume estimation. When compared with other automatic volume
estimation methods, our method showed an uncompetitive performance in accuracy. Nev-
ertheless, these methods typically required more information (e.g., distance to camera,
multi-view images, sizes of checkerboard) than our method, making them difficult to
implement with wearable devices with limited hardware resources. For example, the VD
meter [42], a specialized laboratory instrument for food volume estimation, achieved the
best performance on mRVE (0.83–5.23%), but it required 192 2D images in different views,
which were obtained from an array of cameras mounted on a curved, stationary arm,
to implement the 3D food reconstruction. Note that the images of our IRFD dataset were
also obtained from one of the cameras of the VD meter. Similarly, Hassannejad et al. [13]
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also used multi-view images and reported relative errors ranging from 1.7–19.1%. How-
ever, it is difficult for an unconscious wearable camera to obtain these multi-view images.
Among the methods based on depth information, Lo et al. [18] achieved the relative errors
ranging from 3.3–9.4%, which outperformed our method by an average of 10 percentage
point if not considering the difference between the database used. However, these methods
typically rely on special depth cameras to obtain the depth image. In contrast, our method
only needs a single RGB image for volume estimation. In addition, many of these compared
methods used only a small number of food objects to test their performance. For example,
the MuseFood [39] used only three food items, i.e., three food images, to evaluate its
volume estimation accuracy. Point2Volume [41] adopted more food objects but the number
is still limited to 11. In contrast, we adopted more than 174 food images to evaluate our
food volume estimation algorithm.

Thus, the most significant advantage of our method is that we relax the requirements
for scale reference and 3D information, making it more suited for dietary assessment based
on wearable devices. As stated previously, a scale reference such as a checkerboard must be
carried by the individual and placed near the food. This is an unwelcome procedure that is
usually difficult to implement. On the other hand, acquiring additional 3D information
would either increase human effort or the size of wearable devices.

It should be noted that our method has one major limitation in that we assume
that the food plate can be accurately detected from real-world images, which usually
contain irrelevant backgrounds such as a table, wall, and people. This assumption is made
according to the recent success in object detection achieved by deep learning. In other
words, our method relies on a high-quality object detection algorithm to crop the food
plate firstly from real-world images.

6. Discussion

In this section, we discuss several important issues related to the automatic approach
to food volume estimation.

Relative Food Volume: As mentioned previously, the most stringent requirement
in image-based volume estimation is to provide a scale reference (or a fiducial marker)
in the image, such as a checkerboard card. Although a person can place this reference
within the view of the camera, it is inconvenient in practice. Since, in many parts of the
world, foods are usually placed in a plate (mostly a circular shape) for serving, using
the plate as a scale reference is a more suitable choice. For a circular plate, in particular,
only its diameter needs to be known. However, this parameter still requires human effort
for measurement. As a result, billions of food images existing on the websites cannot be
utilized for volume estimation because the plate diameter is unknown, which is a great
waste of resources. In this work, we presented a normalization method in Section 3.3 where
a food image is cropped and normalized. As a result, the plate, regardless of its actual
size, becomes standardized and unitless. For such a normalized image, our AI system is
able to estimate the relative volume for food images without information about the plate
size. The relative volume can be later converted easily to the true volume when the plate
diameter becomes available.

Multiple Foods in One Plate: Most experiments in this paper were designed for
evaluating the effectiveness of the AI approach to food volume estimation. For simplicity,
we limited it to the case where each plate contains only one type of food. In practice,
however, more than one foods are occasionally placed in a single plate. Although automatic
separation of multiple foods is beyond the focus of this paper, we briefly discuss the
computational procedure called image segmentation. Decades of research in this field have
produced a rich set of algorithms to label and separate objects. Since food objects have
complex shapes and textures, the traditional algorithms have limited success. Recently,
deep learning-based semantic segmentation algorithms [43–45] have emerged. Using
these algorithms, different foods can be first recognized and separated by a deep neural
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network [18,21]. Then, the human-mimetic method presented in this paper can be applied
to each food for volume estimation.

AI Perspective: Although using AI for a dietary assessment is still in its initial infancy,
we believe that this approach has a great potential to advance nutrition science and dietetics
significantly. As the research on this approach progresses, it becomes increasingly clear that
at least some, and perhaps the entire, previously time-consuming self-reporting tasks can be
passed to a robotic system which is unbiased, objective, and highly accurate. If successful,
this new approach will exert a strong impact on public health in producing quantitative,
unbiased dietary data for preventing and controlling diet-rated chronic diseases.

Deployment to Wearable Devices: The food volume estimation method proposed in
this paper is deployed to the ebutton, a wearable device designed by our team, for objective
dietary assessments. The eButton has a 2 GB RAM, an 8 GB NAND flash memory, and a
microprocessor with the 32-bit ARM Cortex A9 architecture and four processing cores
clocked at a maximum of 1.4 GHz [46]. It is also equipped with a wide-angle camera
to capture ego-centric images. For our deep learning-based food volume estimation
model, its computational load is about 4.7 G FLOPs given images in 360 × 720 resolution.
As the FLOPs performance of our eButton is about 44.8 G FLOPs, the eButton has enough
computational resource for deploying our food volume estimation model if not considering
real-time requirements. However, our method cannot yet achieve real-time performance on
the embedded CPU system. Thus, we currently did not deploy the proposed method to the
eButton and instead perform off-line image analysis for dietary assessment. Nevertheless,
we believe that our work will help future study on online dietary assessments with the
development of hardware.

7. Conclusions and Future Works

In this paper, we presented an image-based automatic method for food volume esti-
mation, aimed towards solving a long-standing problem in nutrition science where dietary
assessment is subjective and time-consuming. We took advantage of recently developed
AI technology and developed a human-mimetic system that imitates a dietitian’s mental
process by comparing the food size with the sizes of commonly known objects. In particu-
lar, we showed that food volume estimation can be formulated as an image classification
problem if we treat images with similar volumes as a reference class, which makes it
possible to estimate food volume from a single RGB image without using 3D information.
Moreover, we showed food images with different volumes can be also placed into the
same class for network training as long as they have similar normalized volume. Then, we
only need to adjust real volumes of the normalized reference classes for different plates
during the testing process. Based on this approach, we pre-defined a number of refer-
ences with ascending volumes acting as virtual volumetric gauges stored in a computer’s
memory. Our AI system then classifies the observed food into a set of probabilities of the
reference volumes. Finally, our AI system produces the best-guess volume based on the
stored volumes and the computed probability vector. Our experimental results have shown
that this human-mimetic approach is both accurate and robust, capable of producing a
reasonable estimate from a 2D image which contains only partial 3D information. We
have also developed a new normalization procedure allowing a collection of different food
volumes into the same reference class, which greatly facilitates the training process for the
deep neural network. In addition, we introduced the relative volume concept based on the
normalization procedure for the practical cases where the plate diameter is not available.
Our human-mimetic method has a potential to pass the time-consuming food portion size
estimation task to an unbiased and well-trained robotic system, liberating humans from
the time-consuming portion size estimation task and allowing them to improve their diet
based on automatically and objectively performed dietary assessment results.

Based on our current work, future studies will be conducted from the following two
aspects. First, we will build a larger food dataset to promote research in our current work.
Second, as stated previously, a plate contains only one type of food in this paper, however
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the method of estimating volumes from a plate that contains multiple types of food using
our method is also an interesting topic.
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10. Mezgec, S.; Koroušić Seljak, B. NutriNet: A deep learning food and drink image recognition system for dietary assessment.
Nutrients 2017, 9, 657. [CrossRef] [PubMed]

11. Aguilar, E.; Remeseiro, B.; Bolaños, M.; Radeva, P. Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants. IEEE
Trans. Multimed. 2018, 20, 3266–3275. [CrossRef]

12. U.S. Department of Agriculture, Agricultural Research Service. FoodData Central; 2019. Available online: https://fdc.nal.usda.
gov/ (accessed on 25 June 2021).

13. Hassannejad, H.; Matrella, G.; Ciampolini, P.; Munari, I.; Mordonini, M.; Cagnoni, S. A new approach to image-based estimation
of food volume. Algorithms 2017, 10, 66. [CrossRef]

14. Puri, M.; Zhu, Z.; Yu, Q.; Divakaran, A.; Sawhney, H. Recognition and volume estimation of food intake using a mobile device.
In Proceedings of the 2009 Workshop on Applications of Computer Vision (WACV), Snowbird, UT, USA, 7–8 December 2009;
pp. 1–8.

15. Rahman, M.H.; Li, Q.; Pickering, M.; Frater, M.; Kerr, D.; Bouchey, C.; Delp, E. Food volume estimation in a mobile phone based
dietary assessment system. In Proceedings of the 2012 Eighth International Conference on Signal Image Technology and Internet
Based Systems, Sorrento, Italy, 25–29 November 2012; pp. 988–995.

http://doi.org/10.1088/0957-0233/24/10/105701
http://www.ncbi.nlm.nih.gov/pubmed/24223474
http://dx.doi.org/10.1109/TMM.2016.2642792
http://dx.doi.org/10.1079/BJN20041169
http://www.ncbi.nlm.nih.gov/pubmed/15522159
http://dx.doi.org/10.1038/ejcn.2011.75
http://www.ncbi.nlm.nih.gov/pubmed/21587282
http://dx.doi.org/10.1260/2040-2295.6.1.1
http://www.ncbi.nlm.nih.gov/pubmed/25708374
http://dx.doi.org/10.1093/cdn/nzaa020
http://www.ncbi.nlm.nih.gov/pubmed/32099953
http://dx.doi.org/10.3390/nu9070657
http://www.ncbi.nlm.nih.gov/pubmed/28653995
http://dx.doi.org/10.1109/TMM.2018.2831627
https://fdc.nal.usda.gov/
https://fdc.nal.usda.gov/
http://dx.doi.org/10.3390/a10020066


Electronics 2021, 10, 1556 21 of 22

16. Woo, I.; Otsmo, K.; Kim, S.; Ebert, D.S.; Delp, E.J.; Boushey, C.J. Automatic portion estimation and visual refinement in mobile
dietary assessment. Comput. Imaging VIII. Int. Soc. Opt. Photonics 2010, 7533, 75330O.

17. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.
18. Lo, F.; Sun, Y.; Qiu, J.; Lo, B. Food Volume Estimation Based on Deep Learning View Synthesis from a Single Depth Map. Nutrients

2018, 10, 2005. [CrossRef] [PubMed]
19. Liu, F.; Shen, C.; Lin, G. Deep convolutional neural fields for depth estimation from a single image. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5162–5170.
20. Chen, W.; Fu, Z.; Yang, D.; Deng, J. Single-image depth perception in the wild. In Advances in Neural Information Processing

Systems; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 730–738.
21. Meyers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; Gorban, A.; Silberman, N.; Guadarrama, S.; Papandreou, G.; Huang, J.;

Murphy, K.P. Im2Calories: Towards an automated mobile vision food diary. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1233–1241.

22. Li, H.; Han, T. DeepVol: Deep Fruit Volume Estimation. In International Conference on Artificial Neural Networks; Springer: Cham,
Switzerland, 2018; pp. 331–341.

23. Xu, C.; He, Y.; Khanna, N.; Boushey, C.J.; Delp, E.J. Model-based food volume estimation using 3D pose. In Proceedings of the
2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013; pp. 2534–2538.

24. Gao, A.; Lo, F.P.W.; Lo, B. Food volume estimation for quantifying dietary intake with a wearable camera. In Proceedings of the
2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7
March 2018; pp. 110–113.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems; Morgan Kaufmann Publishers, Inc.: San Francisco, CA, USA, 2012; pp. 1097–1105.

26. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

27. Ferdinand Christ, P.; Schlecht, S.; Ettlinger, F.; Grun, F.; Heinle, C.; Tatavatry, S.; Ahmadi, S.A.; Diepold, K.; Menze, B.H.
Diabetes60-Inferring Bread Units From Food Images Using Fully Convolutional Neural Networks. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1526–1535.

28. Lu, Y.; Allegra, D.; Anthimopoulos, M.; Stanco, F.; Farinella, G.M.; Mougiakakou, S. A multi-task learning approach for meal
assessment. In Proceedings of the Joint Workshop on Multimedia for Cooking and Eating Activities and Multimedia Assisted
Dietary Management, Stockholm, Sweden, 15 July 2018; pp. 46–52.

29. Konkle, T.; Oliva, A. A familiar-size Stroop effect: Real-world size is an automatic property of object representation. J. Exp.
Psychol. Hum. Percept. Perform. 2012, 38, 561. [CrossRef] [PubMed]

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

32. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

33. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

34. Chen, M.; Dhingra, K.; Wu, W.; Yang, L.; Sukthankar, R.; Yang, J. PFID: Pittsburgh fast-food image dataset. In Proceedings of the
2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 289–292.

35. Matsuda, Y.; Hoashi, H.; Yanai, K. Recognition of multiple-food images by detecting candidate regions. In Proceedings of the
2012 IEEE International Conference on Multimedia and Expo, Melbourne, VIC, Australia, 9–13 July 2012; pp. 25–30.

36. Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101–mining discriminative components with random forests. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 446–461.

37. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), Savannah, GA, USA, 2–4, November 2016; pp. 265–283.

38. Lo, F.P.W.; Sun, Y.; Qiu, J.; Lo, B. Image-Based Food Classification and Volume Estimation for Dietary Assessment: A Review.
IEEE J. Biomed. Health Inform. 2020, 24, 1926–1939. [CrossRef]

39. Gao, J.; Tan, W.; Ma, L.; Wang, Y.; Tang, W. MUSEFood: Multi-Sensor-based food volume estimation on smartphones. In
Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Leicester, UK,
19–23 August 2019; pp. 899–906.

40. Fang, S.; Zhu, F.; Jiang, C.; Zhang, S.; Boushey, C.J.; Delp, E.J. A comparison of food portion size estimation using geometric
models and depth images. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ,
USA, 25–28 September 2016; pp. 26–30.

http://dx.doi.org/10.3390/nu10122005
http://www.ncbi.nlm.nih.gov/pubmed/30567362
http://dx.doi.org/10.1037/a0028294
http://www.ncbi.nlm.nih.gov/pubmed/22545601
http://dx.doi.org/10.1109/JBHI.2020.2987943


Electronics 2021, 10, 1556 22 of 22

41. Lo, F.P.W.; Sun, Y.; Qiu, J.; Lo, B.P. Point2volume: A vision-based dietary assessment approach using view synthesis. IEEE Trans.
Ind. Inform. 2019, 16, 577–586. [CrossRef]

42. Yuan, D.; Hu, X.; Zhang, H.; Jia, W.; Mao, Z.H.; Sun, M. An automatic electronic instrument for accurate measurements of food
volume and density. Public Health Nutr. 2021, 24, 1248–1255. [CrossRef] [PubMed]

43. Yu, H.; Yang, Z.; Tan, L.; Wang, Y.; Sun, W.; Sun, M.; Tang, Y. Methods and datasets on semantic segmentation: A review.
Neurocomputing 2018, 304, 82–103. [CrossRef]

44. Yang, Z.; Yu, H.; Sun, W.; Mao, Z.; Sun, M. Locally shared features: An efficient alternative to conditional random field for
semantic segmentation. IEEE Access 2018, 7, 2263–2272. [CrossRef]

45. Yang, Z.; Yu, H.; Feng, M.; Sun, W.; Lin, X.; Sun, M.; Mao, Z.; Mian, A. Small Object Augmentation of Urban Scenes for Real-Time
Semantic Segmentation. IEEE Trans. Image Process. 2020, 29, 5175–5190. [CrossRef] [PubMed]

46. Sun, M.; Burke, L.E.; Mao, Z.H.; Chen, Y.; Chen, H.C.; Bai, Y.; Li, Y.; Li, C.; Jia, W. eButton: A wearable computer for health
monitoring and personal assistance. In Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA,
1–5 June 2014 ; pp. 1–6.

http://dx.doi.org/10.1109/TII.2019.2942831
http://dx.doi.org/10.1017/S136898002000275X
http://www.ncbi.nlm.nih.gov/pubmed/32854804
http://dx.doi.org/10.1016/j.neucom.2018.03.037
http://dx.doi.org/10.1109/ACCESS.2018.2886524
http://dx.doi.org/10.1109/TIP.2020.2976856
http://www.ncbi.nlm.nih.gov/pubmed/32191886

	Introduction
	Related Work
	Methodology
	Motivation
	Neural Network for Food Classification
	Inverted Residual Block
	Food Volume Classification Network

	References Volume Normalization

	Datasets
	Virtual Food Dataset
	Real Food Dataset

	Experiments
	Experimental Setups
	Training Policy
	Data Augmentation
	Evaluation Protocol
	Computing Systems

	Experiments on VFD
	15 Reference Classes
	Increased 30 References Classes
	Bias Analysis
	Training with Normalized Reference Class

	Experiments on RFD
	Comparison with Other Methods

	Discussion
	Conclusions and Future Works
	References

