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Abstract: A practical compact antenna test range (CATR) requires good quiet zone quality for
antenna characterization. This paper addresses the phase profile of the CATR quiet zone from the
known intensity pattern of spatial domain and Fourier domain based on a combined alternating
projection algorithm. The proposed algorithm is composed of Gerchberg–Saxton (GS) and Hybrid
Input–Output (HIO) algorithms and the two algorithms with spatial phase perturbation (SPP) work
collaboratively or independently under predesigned conditions. It is observed that the algorithm
with random initial phase guess can always converge to an optimal solution by performing a series
of hierarchical optimizations of the problem. The numerical results are in good agreement with
simulated results in different frequency bands, overcoming the phase retrieval limitation of local
convergence in the iterative process. Furthermore, to validate the effectiveness and robustness of the
proposed procedure, the related discussions corresponding to different sampling areas in Fourier
domain and different signal to noise ratios (SNRs) are given.

Keywords: compact antenna test range (CATR); phaseless measurements; phase retrieval; alternating
projection

1. Introduction

With CATRs applied in the millimeter (mm) or sub-millimeter (submm) wave bands
widely [1–7], increasing importance has been attached to the quiet zone disturbance as-
sessment. In order to ensure effective CATR application, ±0.5 dB/±5° maximum ampli-
tude/phase deviations from a constant value are allowed in the design and the implemen-
tation of a CATR. As is well known, due to variation of the temperature, probe positioning
inaccuracy, and cable flexing, phase data acquisition becomes difficult, especially at mm-
and submm- wave bands. Consequently, the phase retrieval (PR) of the field through
amplitude-only has important research value. Additionally, the PR problem is of great
concern in many other fields such as electron microscopy [8], astronomy [9], crystallogra-
phy [10], lithography [11], optical imaging [12], and antenna characterization [13].

For simplicity, a very broad class of PR problems can be expressed as follows, T[x(t)] =
|y(w)|ej(w). t and w denote coordinate vectors of object and observation domains, respec-
tively. T is an operator, and x(t) is an unknown signal. |y(w)| is the amplitude of observa-
tion domain. Then, we find x(t) from |y(w)| and some a priori information. The alternating
projection method known as an iteratively plane-to-plane backpropagation algorithm has
been widely used. This class of methods originated from the classical Gerchberg–Saxton
(GS) [14] algorithm where T is a Fourier transform operator. For the GS algorithm, the
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sets of attributes defined in the two domains are nonconvex, resulting in easily subject
subjecting to trap into false solutions. For this reason, Fienup introduced a broad frame-
work for iterative algorithms based on the GS algorithm in a series of papers, in which
three main classes of algorithms, error-reduction (ER), basic input–output (BIO) as well as
hybrid input-output (HIO), were proposed [15–17]. In addition, many modified methods
based on the above alternating projection algorithms have been proposed for solving an-
tenna phaseless measurement problems [18–24]. These methods retrieve phase information
through two sets of amplitude. However, they are very sensitive to the initial phase guess.
Besides, the size of each plane needs to be much larger than that of the required recovery
aperture and the sampling rate should be at least λ/4.

Over the past few years, PhaseLift in a new PR framework provided by Candès [25,26]
has been recently developed and has aroused widespread interest. Different from the
alternating projection method for solving non-convex problems directly, the methods
under the new framework rely on the relaxation of the original nonconvex problem into a
convex one to get the global optimal solution. It is shown in PhaseLift [25,26] that lifting the
PR problem to a higher dimensional and using semidefinite relaxation can transform the
PR problem into a convex quadratic programming problem. When the measured signals
are sparse signals, the stability of PhaseLift cannot be guaranteed. In order to improve the
drawback, PhaseCut [27,28] was presented by accurately separating the amplitude and
phase variables on the basis of PhaseLift. Due to the lifting, the two methods result in
the prohibitive computational costs of two-dimensional signal reconstruction. Recently,
a convex relaxation PhaseMax was proposed [29–34] to deal with a PR problem with
non-lifting and operating in the original signal dimension. It is worth noting that convex
relaxation methods require multiple sets of amplitude measurements in the observation
domain to ensure convergence.

The other category of methods is usually based on minimization or maximization of
some cost function or fitness function by global optimization procedures [35–38]. In [35],
the weighted L2-norm regularize as a multiplicative constraint is introduced in the cost
function, and the conjugate gradient method is employed to minimize the cost function.
In [38], the gradient descent algorithm is utilized to minimize the cost function. Due
to a lack of measured phase information, the overall cost function in these methods is
non-linear, which usually fail to obtain the global optimal solution. Furthermore, these
methods highly rely on the accuracy of the initial phase guess. If initial estimation is
not reasonable, it is very difficult to obtain relatively accurate phase information. In [36],
the method introduces a suitable relaxation in the cost function and decomposes the cost
function maximization problem into a limited number of different convex programming
problems. Nevertheless, the accuracy of this method is closely related to the number of
unknowns. In [37], the cost function is minimized by the genetic algorithm. While the
cost function contains two functions to accelerate the convergence of the algorithm, the
algorithm still needs nearly 100,000 times to converge. More than this, the acquisition of
two sets of amplitude information on different closed cylindrical surfaces will result in a
higher cost than on planes.

While a number of phaseless antenna measurement approaches have been developed,
there are very few papers concerning the phaseless characterization of quiet zone in CATR.
In [38], the technique used to retrieve the phase of the quiet zone in CATR is based on
a given initial phase range and two sets of amplitudes on the planes. The area of the
plane is much larger than the aperture area of the main reflector; meanwhile, the least
sampling interval needs to be λ/4. Even so, the measured surfaces still result in a truncation
error inevitably. It should be noted that when there are many unknown parameters to
be solved, it will converge to a false solution. In [39], we use the alternating projection
method to recover the phase. However, four sets of amplitude data need to be sampled.
Therefore, a large number of unknowns involved and the strict requirements for achievable
measurement accuracy make the related PR problem of large electrically sized CATR still
a very difficult task. To this end, we introduce a new alternating projection method to
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retrieve phase information of the quiet in CATR without relying on the accuracy of the
initial phase guess.

In this paper, the proposed alternating projection method is based on the combination
of GS and HIO algorithms with additional spatial phase perturbation (SPP) which allows
to escape from the attraction region of one local optimum to that of another candidate
solution. The novel algorithm is implemented in three parts. The first and second parts
are a combination of the improved GS and HIO algorithms with the SPP and the third
part is a pure improved HIO algorithm. This method takes advantage of the fact that the
introduced SPP can allow simply skipping from one attraction area to another attraction
area by simply changing the added interference phase. Meanwhile, the introduction of
HIO in the third part of the algorithm is an attempt to prevent excessive interference when
the solution is near the optimal solution because excessive interference may result in falling
into the current local minimum solution of the problem.

The performance of this method has been pointed out by extensive numerical analysis
which uses synthetic data to retain all the features of a CATR. The data is generated
using MATLAB and commercial software GRASP-10.0 developed by TICRA. Referring
to a Cassegrain Gregorian tri-reflection CATR with a spherical main reflector and two
shaped sub-reflectors introduced in [5], problems related to the practical application and
performance of this system have been pointed out.

2. Phase Retrieval as a Feasibility Problem

The image recovery problem in a Hilbert image space L is to estimate the original
form x based on the measurements of the related physical image and some a priori informa-
tion [40,41]. In the phase recovery problem of this article, the measurements are composed
of two sets of amplitude data, which are the modulus s of the original signal x from the
object domain and the modulus m of the Fourier transform x̂ of x, namely |x| = s and
|x̂| = m. The original signal x ∈ C is complex value. The measurement data s and m are
reals and nonnegative. Generally, we can properly model discrete physical signals/images
in Hilbert signals/images space L. Thus, a signal x in L is a square-integrable function,
mapping a discrete variable to a complex number.

It is necessary to consider an important piece of information that the support of x is
included in some set D ⊂ RN . Moreover, the complement of D is specified as {D. The
characteristic functions of D and {D are 1D and 1{D, respectively, and the values of them
are defined as

1D(x) =
{

1 if x ∈ D
0 if x ∈ {D

, (1a)

1{D(x) =
{

0 if x ∈ D
1 if x ∈ {D

. (1b)

S and M are defined as the signal sets in L satisfying the constraints of the object
domain constraint and the Fourier domain constraint, respectively. The object domain
constraint restricts x to the set

S = {y ∈ L | y · 1{D = 0 and y > 0}. (2)

Meanwhile, the projection of a signal x ∈ L onto the object domain constraint S is
given by

PS(x) = x · 1D. (3)

Since the measured amplitude s of the object domain is known, x can be defined by

x(t) =

s(t)
x(t)
|x(t)| t ⊂ D

x(t) otherwise
. (4)
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M is a signal set that satisfies the Fourier domain constraint, whose Fourier modulus
is consistent with the modulus m, namely

M = {y ∈ L||ŷ |= m}, (5)

where ŷ denotes the Fourier transform of y, and is defined by

ŷ(ω) =

m(ω)
x̂(ω)

|x̂(ω)| if x̂(ω) 6= 0

m(ω) otherwise
. (6)

It should be emphasized that M is closed but non-convex, whereas set S defined by
Equation (2) is a closed convex set (as seen in [42]). The projection of a signal x ∈ L onto the
Fourier magnitude constraint set M is to replace the amplitude of the Fourier transform of
x with the known measured data m and inversely transform the result, and is expressed as

PM(x) = F−1(ŷ0). (7)

Therefore, the PR problem in Hilbert space can be expressed in mathematical form.
This is to find a signal x ∈ L that satisfies the above constraint, namely

find x ∈ S ∩M. (8)

Through the mathematical formula, the problem of solving PR can be transformed
into finding a suitable point in the intersection of two constraint sets. This kind of problem
is called a feasibility problem in mathematical optimization. In addition, in this article
we will only consider the phase recovery problem in the case of S ∩M 6= ∅. Because the
sampled signals are discrete signals with finite dimensions, the Hilbert space in this article
can be equivalent to a Euclidean space whose dimension depends on the amount of data
required to deal with the problem.

3. The Theory of Phase Retrieval of Quiet Zone
3.1. The Proposed SPP GS/HIO-HIO Algorithm

Let us consider the PR of the quiet zone in a Cartesian coordinate system Oxyz of a
triple offset reflector CATR. The phase retrieval problem of the plane S1 at z = z0 with the
transversal dimension a ∗ a in quiet zone can be solved when the amplitudes of the two
planes S1 and S2 are measured as shown in Figure 1. The field of plane S2 is the Fourier
transform of the field of plane S1 and this process can be achieved by a metasurface lens as
explained in [43].

Figure 1. Geometry of the problem.

When alternating projection methods solve the feasibility problem of phase recovery,
the signal is alternately projected onto the Fourier constraint set M and the object constraint
set S to update until the algorithm converges and outputs the retrieved phase. If the update
of the signal always satisfies the invariable constraint, the algorithm will not converge or
fall into a local minimum corresponding to the “false solutions” of the problem. In order to
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avoid the shortages, the SPP GS/HIO-HIO algorithm proposed in this paper adaptively
introduces different constraints to update the signal according to the process of dealing
with the feasibility problem.

The process of the proposed SPP GS/HIO-HIO algorithm is shown in Figure 2. It
can be mainly divided into the following three parts. The first part mainly uses the
SPP GS algorithm to preprocess the signal. When the initial input signal consisting of a
known amplitude and a randomly generated phase is projected onto the object domain,
the constraint of SPP GS is performed to update the signal with the count number k
increased by one. The second part is mainly to update the signal cyclically for ks − 1 times.
Meanwhile, the constraint of SPP HIO is used to update the signal when it is projected
onto the object domain under the condition of mod(k.ks) > k0. The updated constraint of
SPP HIO is replaced by that of SPP GS if mod(k.ks) < k0, and then returned to the first part
with the updated signal as the input value.

Figure 2. Illustrated process of performing SPP GS/HIO-HIO algorithm.

The addition of SPP in the first and second parts is to prevent the algorithm from failing
to converge. However, extra interference effects in the presence of SPP will occur when the
updated signal is close to the original target signal, which will also lead the algorithm to
fall into a local minimum corresponding to the “false solutions” of the problem. Therefore,
SPP will be removed on the condition of k > K′ in the third part. Moreover, the constraints
for the signal updating in the object domain are those of the HIO algorithm. The retrieved
phase of the updated signal will not successfully generate until the algorithm converges.

In order to prevent the occurrence of overlapping effects at the boundary, we addi-
tionally introduced the zero-padding method by adding equal zeros in both the x-direction
and the y-direction, introduced in the object domain. As shown in Figure 3, the amplitudes
of plane S1 can be divided into two sets, set D and its complement {D according to the
zero region. The elements of set D are sampled amplitudes, while the elements of {D are
all padded with zeros. Furthermore, the sampled region in plane S2 should cover the entire
zero-padding part.

On the basis of the zero-padding method, we present in Figure 4 the flow chart of
the signal updating with constraints of the SPP GS algorithm and the SPP HIO algorithm,
respectively, when the signal is projected onto the object domain. The flow chart of the HIO
algorithm is not given for the reason that it only lacks the addition of the SPP compared
with that of the SPP HIO algorithm.
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Figure 3. Geometry of the problem with zeros padded.

Figure 4. Flow chart of SPP GS / SPP HIO algorithms for signal updating.

The equation of the control algorithm in the kth iteration update of the signal are

Fk(u, v, z0) = |Fk(u, v, z0)|e−jϕk(u,v,z0) = F{ fk(x, y, z0)}, (9a)

F′k(u, v, z0) = |F(u, v, z0)|e−jϕk(u,v,z0), (9b)

f ′k(x, y, z0) =
∣∣ f ′k(x, y, z0)

∣∣e−jθ′k(x,y,z0) = F−1{F′k(u, v, z0)
}

. (9c)

Equation (9) is where the signal fk(x, y, z0) is projected onto the Fourier domain
constraint set M to obtain f ′k(x, y, z0). Then the signal f ′k(x, y, z0) is projected onto the
object domain constraint set S and updated to fk+1(x, y, z0). According to the program
process, the object domain constraint for signal updating will be different. When k ≤ K′,
SPP (e−j∆θk ) is added and then e−jθk+1 = e−j(∆θk+θ′k). If mod(k, ks) ≤ k0, fk+1(x, y, z0) is
defined as

fk+1(x, y, z0) =

{
| f (x, y, z0)|e−jθk+1(x,y,z0) (x, y, z0) ∈ D

0 otherwise
, (10)

If mod(k, ks) > k0, fk+1(x, y, z0) is defined as

fk+1(x, y, z0) =

{
| f (x, y, z0)|e−jθk+1(x,y,z0) (x, y, z0) ∈ D
fk(x, y, z0)− β f ′k(x, y, z0) otherwise

. (11)
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When k > K′, SPP is removed and then e−jθk+1 = e−jθ′k ; the signal updating is
updated to

fk+1(x, y, z0) =

{
| f (x, y, z0)|e−jθ′k(x,y,z0) (x, y, z0) ∈ D

fk(x, y, z0)− β f ′k(x, y, z0) otherwise
. (12)

As explained in [12], the phase ∆θk(x, y) in SPP is expressed as:

∆θk(x, y, z0) = α
(

2
{

rand(−1,1)(x, y, z0)
}

k
− 1
)(

1− k
K′
)
. (13)

where α is a scaling factor that determines the initial size of the perturbation. In order to
ensure that the introduced disturbance allows the algorithm to avoid converging to a local
minimum, the initial value of perturbation cannot be selected as too small. The default value
of α in this paper is set to π/2 unless otherwise specified. Moreover,

{
rand(−1,1)(x, y, z0)

}
is a randomly generated matrix at the kth iteration with the same dimensions as the plane
S1 being processed. The elements in the matrix are uniformly distributed between −1 and
1. The factor β is a constant feedback parameter. It has been found that the value of β
between 0.5 and 1 can produce good results [44] and the value of β is set to 1 in this paper.

3.2. An Outline of the Solution Steps

The problem of PR has been transformed into a feasibility problem in mathematical
optimization in Section 2. The main purpose for the optimization is to find a suitable signal
in the intersection of two constraint sets. The following will explain in detail how the
alternating projection algorithms work and the type of role that they play in the problem.
For each update, the signal is first projected onto the Fourier-domain constraint set M and
then onto the object-domain constraint set S. Furthermore, set S is convex (and actually
linear) and closed, M is closed but nonconvex. The Fourier domain constraint remains the
same throughout the solution. However, the support constraints contained in the object
domain constraint set vary according to k.

When k ≤ K′ and mod(k, ks) ≤ k0, the updated signal can be obtained through [45]

fk+1(x, y, z0) =

{(
PM( fk)e−j∆θk

)
(x, y, z0), if (x, y, z0) ∈ D

0 otherwise
. (14)

Then, the signal can be further defined as

fk+1 = e−j∆θk (PSPM)( fk), (15)

For a better understanding, the projection process of the SPP GS method is shown in
Figure 5.

When k ≤ K′ and mod(k, ks) > k0, the support constraints for the signal updating will
be changed as (16), which can be rewritten as (17).

fk+1(x, y, z0) =

{ (
PM( fk)e−j∆θk

)
(x, y, z0) if (x, y, z0) ∈ D

fk(x, y, z0)− β(PM( fk))(x, y, z0) otherwise
(16)

fk+1 = 1D · PM( fk)e−j∆θk + 1CD · [ fk − βPM( fk)]

= 1D · PM( fk(x, y, z0))e−j∆θk + (1− 1D) · [ fk(x, y, z0)− βPM( fk)]

=
(

PS

((
β + e−j∆θk

)
PM − I

)
+ (I − βPM)

)
( fk)

(17)
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β is set to 1 in (17). Now let RS =
(
1 + e−j∆θk

)
PS − I and RM =

(
1 + e−j∆θk

)
PM − I. Thus,

the updated signal can be rewritten as (18).

fk+1 =
(

PS

((
1 + e−j∆θk

)
PM − I

)
+ (I − PM)

)
( fk)

=
1(

1 + e−j∆θk
)(((1 + e−j∆θk

)
PS − I

)((
1 + e−j∆θk

)
PM − I

)
+ e−j∆θk I

)
( fk)

=
1
2

√
2

(1 + cos ∆θk)
ej π

3

(
RSRM + e−j∆θk I

)
( fk)

(18)

We can further simplify the form of (18) to obtain

fk+1 =
ej π

3

2

√
2

(1 + cos ∆θk)

(
RSRM + e−j∆θk I

)
( fk). (19)

According to the form of (19), the corresponding signal projection and update can be
divided into three steps through [46], shown in Figure 5. Firstly, calculate the reflection
rk+1/2 of fk in relation to set M, and then calculate the reflection rk+1 of rk+1/2 in relation
to the set S. f ′k+1 is the midpoint of the segment between fk and rk+1. Finally, the updated
fk+1 can be obtained from (19).

Figure 5. Schematic diagram of signal projection and update under the constraints of the SPP GS
algorithm and the SPP HIO algorithm.

If k > K′, the perturbation phase e−j∆θk will be removed, and the support constraint of
the object domain set S for the signal updating is modified as (20), which can be simplified
as follows:

fk+1(x, y, z0) =

{
(PM( fk))(x, y, z0) if (x, y, z0) ∈ D

fk(x, y, z0)− β(PM( fk))(x, y, z0) otherwise
(20)

fk+1 = (PS(2PM − I) + (I − PM))( fk) =
1
2
((2PS − I)(2PM − I) + I)( fk) (21)

Let RS = 2PS − I and RM = 2PM − I; fk+1(x, y, z0) can be expressed as

fk+1 =
1
2
(RSRM + I)( fk). (22)

The corresponding signal projection and update through (22) has been shown in
Figure 6. Similarly, rk+1/2(rk+1) is the reflection of fk(rk+1/2) in relation to the set S (set M).
fk+1 is the midpoint of the segment between fk and rk+1.
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Figure 6. Schematic diagram of signal projection update under the constraints of HIO algorithm and
the proposed algorithm.

In this paper, the value of k0, ks, and K′ are set to 1, 40, and 600, respectively. The
number of updates k starts from 1, and the total number of updates K is set to 1200. The
whole projection procedure of the proposed algorithm under these parameters is shown in
Figure 6.

4. Numerical Verification of the Theoretical Results

Several numerical experiments have been performed to evaluate the effectiveness and
stability of the algorithm in the proposed Cassegrain Gregorian tri-reflection CATR [5].
The CATR consists of a spherical main reflector with a circular aperture, two shaped sub-
reflectors and a Gaussian feed horn as shown in Figure 7. The aperture diameter of the
main reflector is a (a = 1 m), and the diameter of the cross section of the effective quiet
zone is b (b = 0.7 m). For the sake of simplicity, set the z-axis coordinate of the plane of the
quiet zone to be retrieved in this paper to z0 (see in Figure 3).

Figure 7. The plane view of the Cassegrain Gregorian tri-reflector CATR.

The measurement planes S1 and S2 are sampled at λ/2 by commercial software
GRASP-10 and MATLAB simulation software, respectively. If we want to obtain the
missing phase of the plane with a diameter of a, the sampling areas of S1 and S2 are a ∗ a and
2a ∗ 2a, respectively. In order to assess the stability of the proposed approach, the missing
phases of the S1 with the CATR working at 75 GHz, 138 GHz, and 220 GHz, respectively,
were recovered. Additionally, under the same initial input and total number of iterations
(K = 1200), the recovery performance of the proposed algorithm is compared with that of
the other four algorithms: GS, HIO, GS/HIO [12], and hybrid GS/HIO [47] algorithms.

Before describing the details of PR, some explanations on performance indicators
are needed. The discrete sum squared error (SSE) between the amplitude of the Fourier
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transform of the current iteration Fk(u, v, z0) and the Fourier amplitude data m(u, v, z0), is
employed to judge the convergence of the algorithms and presented to be

SSE = 10 log10

{
∑U

u=1 ∑V
v=1{|Fk(u, v, z0)| − |m(u, v, z0)|}2

∑U
u=1 ∑V

v=1{|m(u, v, z0)|}2

}
. (23)

Moreover, the comparisons of the cost function values with different algorithms are
given with the tri-reflector CATR working at different frequency bands. Considering the
performance of the quantitative evaluation algorithm, we also define the phase normalized
root mean square error (NRMSE) as:

NRMSE =

√∥∥∥θtarget − θretrieved

∥∥∥2
/∥∥∥θtarget

∥∥∥2
(24)

The phase of the plane S1 located at z0 was retrieved by the proposed algorithm and
the other four algorithms for comparison. It can be found from Figure 8 that the retrieved
size is the aperture size with a circle domain of 1 m. In order to simplify the comparison
with different algorithms, only the normalized phase retrieved values on the horizontal (y
= 0) and vertical (x = 0) axes are drawn.

Figure 8. The comparison of target phase and phase retrieved by the algorithms at three different-
frequencies.
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It can be seen that the performance of the proposed SPP GS/HIO-HIO algorithm is
the best. Whatever frequency the CATR works at, the phase retrieved by the proposed
algorithm can always be highly consistent with the target phase obtained by commercial
software GRASP-10. The phase jitter trend recovered by the GS/HIO algorithm is roughly
the same as that of the target phase. The performances of the other three algorithms are
not good, especially at f = 75 GHz.

It can be seen from Figure 9 that the SSE decreases as the iterative number increases and
the SSE performance converges when k = 1200 at different frequencies. Note that the lowest
SSE performance is achieved by the proposed algorithm and that that of other algorithms
no longer decreases or decreases very slowly when k > 600. The SSE performance of
the proposed algorithm can further decrease sharply in the range of 600 to 800 because
the constraint of SPP GS/HIO is changed to that of HIO when k > 600 to prevent the
proposed algorithm from converging to the current local optimum. It is worth noting that
the convergence performance of the proposed algorithm at f = 75 GHz is better than that at
f = 138/220 GHz because the wavelength is larger at f = 75 GHz, and then phase jitter in
QZ is larger due to the edge diffraction. In addition, fewer unknowns need to be solved in
lower frequency. These factors will make the algorithm easier concerning obtaining large
error values in the solution process, which is conducive to the algorithm escaping from
the current local optimal solution to find a more appropriate solution in the derivative
operations.

Figure 9. The comparisons of the cost function values of the proposed SPP GS/HIO-HIO algorithm
and the other four algorithms at three different frequencies. (a) f = 75 GHz; (b) f = 138 GHz;
(c) f = 220 GHz.

In order to further compare the difference between the phase recovered by the algo-
rithms and the target phase, the 2-D target phase distribution and the recovered phase
distribution at f = 220 GHz are shown in Figure 10. Additionally, the NRMSE perfor-
mances of phases recovered by each algorithm at different frequencies are listed in Table 1.
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Table 1. Comparison of the NRMSE of the proposed SPP GS/HIO-HIO algorithm and the other
four algorithms.

Algorithm f = 75 GHz f = 135 GHz f = 220 GHz

GS 2.8 × 101 3.45 × 10−1 8.3 × 10−2

HIO 6.53 × 100 5 × 10−2 6.1 × 10−2

Hybrid GS/HIO 1.794 × 101 6.9 × 10−1 1.03 × 10−1

GS/HIO 1.7 × 10−3 3 × 10−3 1.1 × 10−2

SPP GS/HIO-HIO 1.32 × 10−5 6.54 × 10−4 9.66 × 10−4

In Figure 10a, the distribution of the target phase in the quiet zone on the y-axis is
approximately symmetric, while the phase distribution on the positive half axis on the x-
axis has more severe fluctuations than that on the negative half axis. Compared with target
phase distribution of the plane with a diameter of 1 m, the phase distributions retrieved by
the GS, HIO and hybrid GS/HIO algorithms, respectively, lack the main phase jitter details
(see Figure 10d–f). The retrieved phase distributions by the three algorithms do not have a
significant jitter in the quiet zone with a diameter of 0.7 m, but the jitter sharply increases
outside the quiet zone. The phase distribution obtained by the GS/HIO algorithm contains
too many phase jitters, especially in the quiet zone, while these jitters do not exist in the
target phase distribution (see Figure 10a,c). As expected, the detail of the phase distribution
retrieved by the proposed SPP GS/HIO-HIO algorithm is almost identical to that of the
target phase distribution (see Figure 10a,b). A comparison of the computational time of the
five algorithms under the same conditions has been shown in Figure 11. It can be seen that
the GS algorithm has the fastest convergence speed, followed by the proposed algorithm.
However, the GS algorithm easily converges to the wrong solution. Then, the performance
of the proposed algorithm is the best from a comprehensive perspective.

Based on the analysis results of the above sections, the performance of the proposed
algorithm is the best. In addition, the results of the phase presented in Figures 8 and 10 are
retrieved based on the amplitude obtained under ideal conditions. In order to evaluate the
robustness of the proposed algorithm, the phase will be retrieved under the interference
of different degrees of additive white Gaussian noise at f = 220 GHz. We also use the
GS/HIO algorithm to retrieve the phase under the same conditions for comparison. In
order to facilitate comparison, the normalized retrieved phase on the horizontal axis and
vertical axis with a range of the quiet zone are plotted in Figure 12.

Additionally, the NRMSE values of the retrieved phase with a range of 1 m as a
function of the signal-to-noise ratio (SNR) are depicted in Figure 13.

As can be seen in Figures 12 and 13, the performance of the proposed algorithm is
significantly better than that of the GS/HIO algorithm. Whatever the value of SNR, the
NRMSE performance of the phase recovered by the proposed algorithm is greater than
that recovered by the proposed algorithm. Besides, the phase recovered by the GS/HIO
algorithm is in good agreement with the target phase in the condition of SNR > 30 dB. In
Figure 13, when the SNR is greater than 25 dB, the NRMSE value of the phase recovered by
the proposed SPP GS/HIO-HIO algorithm decreases sharply.

Notably, the missing phase of the plane with diameter a retrieved by the algorithms
above is based on the amplitudes of planes S1 and S2. The required amplitude sampling
range of plane S1 in the spatial domain is a ∗ a with the remaining part padded with zero,
and that of plane S2 in the Fourier domain needs to be 2a ∗ 2a. The sampling area of S2 is
too large and brings a huge burden of sampling and computing. Therefore, it is necessary to
consider the sampling area of the S2 plane. The following shows the comparison between
the retrieved phase and the target phase of the plane with diameter a (a = 1 m), when
the sampling area of the plane S2 is reduced in different proportions with the sampling
size still equal to λ/2. The results retrieved by the GS/HIO algorithm and the proposed
algorithm are shown in Figures 14 and 15, respectively.
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Figure 10. The 2-D target phase distribution (a) at f = 220 GHz as well as the 2-D phase distribution
recovered by the proposed SPP GS/HIO-HIO algorithm (b), GS/HIO algorithm (c), hybrid GS/HIO
algorithm (d), HIO algorithm (e), and GS algorithm (f).



Electronics 2021, 10, 1545 14 of 17

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

1 × 1 0 0

1 × 1 0 1

1 × 1 0 2

1 × 1 0 3

Re
cor

ded
 Ti

me
s (S

ec)

I t e r a t i o n s

 G S
 H I O
 H y b r i d  G S / H I O
 G S / H I O
 S P P  G S / H I O - H I O

Figure 11. The comparison of the computational time of these algorithms at f = 220 GHz.

Figure 12. The phase retrieved by the GS/HIO algorithm (a), and the proposed algorithm (b) with different SNRs: The
comparison of the normalized target phase and the normalized retrieved phase on the horizontal axis and vertical axis with
the range of the quiet zone.

Comparing Figure 14 with Figure 15, it can be further verified that the proposed
algorithm performed better than the GS/HIO algorithm. Furthermore, when the sampling
area of S2 is reduced to the same size as the plane to be retrieved, namely a ∗ a, the phase
retrieved by the proposed algorithm can be completely consistent with the target phase.
If the sampling area of S2 is further reduced, there is a difference between the recovered
phase value and the target phase value (see Figure 15). It can be seen from the figures
that the relative difference on the entire coordinate axis increases as the sample region
decreases. Nonetheless, the relative differences between the recovered phase jitter and the
target phase jitter are small in the region of a < 0.7 m. Generally, we mainly focus on the
relative difference of phase jitter in the core region of the quiet zone and the difference
between the maximum and minimum of phase jitter is the main evaluation criteria to be
considered. Therefore, the proposed algorithm can still basically ensure high PR accuracy,
when the sampling area of S2 is reduced to 1/16 of the original size.
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Figure 13. The comparison of the NRMSE of the phase of the entire plane retrieved by the two
algorithms under different SNRs.

Figure 14. The comparison between the target phase and the phase retrieved by the GS/HIO
algorithm with the sampling area of the plane S2 reduced in different proportions.

Figure 15. The comparison between the target phase and the phase retrieved by the proposed
algorithm with the sampling area of the plane S2 reduced in different proportions.

5. Conclusions

This paper proposes an improved alternating projection method to solve the character-
ization problem of CATR with phaseless measurements. This problem has been formulated
as a feasibility problem, that is, to find a suitable signal in the intersection of two constraint
sets. The proposed algorithm contains three different update constraints, which perform a
series of hierarchical optimizations of the problem, and the corresponding solution opti-
mization process has been given. Meanwhile, the phase retrieval performances of other
published alternating projection algorithms are compared with the proposed algorithm
under the same conditions. The numerical examples are given in the Cassegrain Gre-
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gorian tri-reflection CATR condition and the performances prove that the method can
retrieve the missing phase in a reliable manner without frequency limitation. Moreover,
the algorithm can still guarantee higher PR accuracy when the acquired amplitude data is
greatly reduced.
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