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Abstract: An energy-efficient temperature sensor is important for temperature monitoring in Biomedical
Internet-of-things (BIoT) applications. This article presents a time-domain temperature sensor with
a pipeline time-to-digital converter (TDC). A programmable-gain time amplifier (PGTA) with high
linearity and wide linear range is proposed to improve the resolution of the sensor and to reduce the chip
area. The conversion time of the sensor is reduced by the fast TDC that only needs ~26 ns/conversion,
which means the sensor is suitable for BIoT applications that commonly use duty cycling mode.
Fabricated in a 40 nm standard CMOS technology, the sensor consumes 7.6 µA at a 0.6 V supply
and achieves a resolution of 90 mK and a sensitivity of 0.62%/◦C in a 1.3 µs conversion time.
This translates into a resolution figure-of-merit of 48 fJ·K2. The sensor achieves an inaccuracy of 0.39 ◦C
from−20 ◦C to 80 ◦C after two-point calibration. Duty cycling the sensor results in an even lower average
power: ~18.6 nW at 10 conversions/s.

Keywords: CMOS temperature sensor; pipeline time-to-digital converter; programmable-gain time
amplifier (PGTA); energy efficiency; conversion time; Biomedical Internet-of-things applications

1. Introduction

A smart temperature sensor is one of the most commonly desired parts in Internet of
Things (IoT) devices to monitor either environment or chip conditions [1]. The temperature
sensors that have high energy efficiency and are of low cost can be used in many BIoT
applications, for example, the preservation and transport of vaccines, medicines, blood
samples, and other medical samples that should be placed in a certain temperature range.
Duty cycling is a commonly used mode in a BIoT system, which requires the sensors
switching between the on and off states to extend the batter life. As shown in Figure 1a,
the temperature sensor consumes 4.6 µW and it is always on just like other always-on
modules that consume 300 nW. The processor and radio frequency module are activated to
process and transmit data, which takes 1 ms at a 100 µW normalized power consumption.
The temperature sensor consumes 92% of the total power consumption that is 5 µW, which
is unacceptable for most BIoT applications. When the temperature sensor works on a
duty-cycling mode, it is activated every 100 ms to take a measurement which takes only
1.3 µs consuming a 31 nA leakage current. The temperature sensor consumes only 0.02%
of the total power consumption that is reduced to 400 nW. Thus, the conversion time of a
temperature sensor should be as short as possible in order to reduce the effective power
contribution on a BIoT system. According to

P = CFV2 (1)

where C is the equivalent capacitor, F is the frequency and V is the supply voltage. Reducing
the supply voltage is beneficial to further reduce the power consumption. It means that a
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temperature sensor that works at a near-threshold-voltage supply has an advantage over
the one that works at a normal-voltage supply. In addition, a temperature sensor should be
compact and compatible with the CMOS process to reduce the cost.
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Previous researches proposed various kinds of temperature sensors with different prin-
ciples. A traditional voltage domain temperature sensor used BJT to generate proportional
to absolute temperature (PTAT) voltages and then converted the voltages into a digital
temperature reading with a ∆Σ-Analog-to-Digital Converter (ADC) [2]. It is both energy
and area consuming to implement a high-resolution ∆Σ-ADC. The higher working voltage
(>1 V) required by BJT is not suitable for the BIoT applications. In [3], a resistive-type
temperature sensor achieved a high sensitivity up to 1.09%/◦C, but it is not easy to be
integrated, so it is not suitable for the BIoT applications. An alternative method is to use
frequency or phase information to express temperature information. In [4], researchers
used two Voltage-Controlled Oscillators (VCOs) with different temperature-sensitive char-
acteristics to convert the temperature change into a frequency change, and thus into a
temperature reading by counter. With two oscillators operating at dozens of MHz fre-
quency, they achieved a short conversion time of 6.5~22 µs, but this resulted in a high
power consumption of about 154 µW. To solve the problem of power consumption, two
MOSFETs operating in a sub-threshold region are used to sense the variation of temper-
ature and generated two reference currents. Then, the ratio of currents are transformed
into an output frequency difference between the two VCOs working in dozens of kHz
frequency. The counter counts the frequency difference and outputs a temperature reading.
However, this low-frequency method resulted in a longer conversion times of 59 ms [5].
Resistance-based temperature sensors are usually implemented by RC filters [6], which
output temperature-related phase signal. This kind of temperature sensors can achieve
high resolutions, but they are not quite suitable for BIoT applications due to high power
consumption and long conversion time. In addition, researchers also expressed temper-
ature information using time domain signal. In Ref. [7], a delay line was designed to
generate temperature-dependent time signal, and a cyclic time-to-digital convertor (TDC)
outputs temperature reading. In [8], a delay line was reused to sense the temperature in a
sensing module and measure the PTAT pulse in a TDC. Time domain temperature sensors
achieve better power consumption and smaller area.

In this paper, we propose a MOSFET-based time domain temperature sensor, which is
suitable for BIoT applications due to its short conversion time and high energy efficiency.
The architecture diagram of this work is shown in Figure 2. The sensing module uses a
delay line to convert the temperature information into a delay time. An offset compensator
generates a delay signal with low temperature sensitivity, which can compensate the offset
part of the sensing module output. The output delay difference between the sensing
module and the offset compensator is then translated into a corresponding digital code
using a pipeline TDC. A programmable-gain time amplifier (PGTA) is proposed to achieve
an integer time gain and it is low sensitive to temperature variation. The PGTA has a high
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linearity, a wide linear range, and a programmable time gain. Implemented in a 40 nm
standard CMOS technology, the prototype sensor consumes 7.6 µA at a 0.6 V supply and
achieves a 90 K resolution from –20 ◦C to 80 ◦C at a short conversion time of 1.3 µs.

The remainder of this paper is organized as follows. Section 2 describes the operation
principles and the theory analysis. Section 3 presents circuit implementations with detail
analysis. Section 4 shows the measurement results of this work, and in Section 5, we present
the conclusions for this paper.
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2. Principles of Operation and Theory Analysis

For time-domain temperature sensors, the most common method of temperature
sensing is to use one or more delay lines to convert the temperature information into a
time-domain signal. Therefore, it is necessary to analyze the temperature characteristics
of the delay unit which is used in the sensing module and the TDC. According to [9],
the process of an inverter output transiting from high to low and from low to high can
be equivalent to the process of the load capacitor charging and discharging through the
equivalent resistance of MOSFET. At this point, if the output voltage is taken as half of the
supply voltage as the reference point, the propagation delay can be expressed as{

tPHL = ln 2RNCL
tPLH = ln 2RPCL

, (2)

where RP and RN are the equivalent resistances of PMOS and NMOS, respectively, at the
ON state. CL is the load capacitance of the inverter, which has a low-temperature sensitiv-
ity [7,8]. The temperature characteristic of the delay time thereby depends on RP and RN
that can be written by

RN =
2

VDD

∫ VDD

2
VDD

VDS
IDS(1 + λVDS)

dV ≈ 3
4

VDD
IDS

(
1− 7

9
λVDD

)
, (3)

RP =
−2

VDD

∫ 2
VDD

VDD

VDS
IDS(1 + λVDS)

dV ≈ 3
4

VDD
IDS

(
1− 7

9
λVDD

)
, (4)

where VDD, VDS, IDS, and λ are the supply voltage, drain-source voltage, drain-source
current and channel length modulation coefficient, respectively.
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Considering that the MOSFETs operates in triode region when the output voltage
transits from initial value to 1/2VDD, ignoring the influence of other non-ideal factors,
the drain current can be expressed as follows:

IDS =
1
2

µCOX
w
L

{
(VDD −VTH)VDS −

1
2

V2
DS

}
, (5)

where µ is the carrier mobility, COX is the gate-oxide capacitance per unit area, W and L are
the channel width and length of MOSFET, and VTH is the threshold voltage. According to
the analysis in References [10,11]:

µ = µ0

(
T
T0

)−γ

, γ = 1.2 ∼ 2.2, (6)

VTH = VTH0 + a(T − T0), a = −2 ∼ −7 mV/K, (7)

where T0 is the reference temperature, µ0 is the carrier mobility at reference temperature,
VTH0 is the threshold voltage at reference temperature, and T is the temperature.

With a rise of temperature, the mobility and the threshold voltage will both decrease.
The change of drain current with respect to temperature is obtained by derivation of the
Equation (5) to temperature.

dIDS
dT

=
1
2

w
L

COX

[
(VDD −VTH)VDS −

1
2

V2
DS

]
dµ

dT
− 1

2
w
L

µCOXVDS
dVTH

dT
. (8)

Since dµ/dT < 0 and dVTH/dT < 0, the temperature characteristics of the drain-source
current can be determined by VDD − VTH, affected by the anti-short channel effect of MOS-
FET, the threshold voltage decreases with the increase of channel length. Therefore, when
the channel length is long, VTH is much smaller than VDD. In this case, the temperature
characteristics of the drain current will be controlled by the carrier mobility, that is, thermal
coefficient of the drain current is negative. Otherwise, a shorter channel length will make
the thermal coefficient of drain current positive.

By substituting Equations (3)–(5) into Equation (2), the delay time of inverter can
be obtained: 

tPHL =
3 ln 2CLVDD(1− 7

9 λVDD)
2µNCOX

w
L {(VDD−VTH)VDS− 1

2 V2
DS}

tPLH =
3 ln 2CLVDD(1− 7

9 λVDD)
2µNPCOX

w
L {(VDD−VTH)VDS− 1

2 V2
DS}

. (9)

The delay time of a delay unit composed of two inverters is shown in Equation (10),
which is inversely proportional to the drain current. According to Equation (8), with the
change of the channel length of MOSFETs, the delay unit can generate a delay time that is
positively or negatively correlated with temperature.

tdelay_u = tPHL + tPLH . (10)

In the range of the temperature measurement, the propagation delay of the sensing
module has a part of offset. If this signal is directly quantized by a TDC, it will greatly
increase the number of the delay units in the TDC and furthermore lead to an additional
area and a longer conversion time, which increases the effective power and the area of the
sensor and is not suitable for the BIoT applications. To solve this problem, an offset com-
pensator is used to generate a delay signal with low temperature sensitivity to compensate
the offset part and the structure is shown in Figure 3.
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In order to reduce the power consumption of the bias circuit in the offset compensator,
the bias circuit works in sub-threshold region. The drain current of a MOSFET operating in
sub-threshold region is shown as

IDS = µ
W
L

CdV2
T exp

(
VGS −VTH

nVT

)
[1− exp

(
−VDS

VT

)
], (11)

where n is the sub-threshold slope and it is larger than one under the normal circumstances.
VT is the thermal voltage, and its relationship with temperature is

VT =
kT
q

(
k = 1.3806× 10−23 J/K

)
, (12)

when VDS ≥ 4VT, the Equation (11) can be simplified as

IDS = µ
W
L

CdV2
T exp

(
VGS −VTH

nVT

)
. (13)

As shown in Figure 3, the offset compensator consists of four MOSFETs and delay
units, MB1, MB2, and MB3 are working in sub-threshold region, and MB2 and MB3 have the
same size. According to Equation (13), the IBias and VBias are shown as

IBias = µ
W1

L1
CdV2

T exp
(

VGS1 −VTH1

nVT

)
, (14)

VGS2 = ln
[

un
w1
L1

CdV2
T

un
w2
L2

CdV2
T

exp
(VGS1

−VTH1
nVT

)]
nVT + VTH2

= nVT ln
(

w1L2
L1w2

)
+ VGS1 −VTH1 + VTH2

. (15)

In the offset compensator, M2 and M3 have the same size. Therefore,

Vbias = 2VGS2 = 2[nVT ln
(

w1L2

L1w2

)
+ VGS1 −VTH1 + VTH2 ]. (16)

With the same CMOS process, the temperature coefficients of VTH1 and VTH2 are
approximately same. Therefore, the temperature characteristics of VBias is determined
by VT. By changing the size of MB1 and MB2, VBias that is proportional to temperature is
generated. For delay units in the offset compensator, choosing MOSFETs with a longer
channel length can increase the propagation time. According to Equation (8), this means the
current of the delay units in the offset compensator is inversely proportional to temperature.
With the control of VBias, the drain current of MB4 will be positively correlate with the
temperature, thereby this can reduce the temperature sensitivity of propagation delay of
the offset compensator. Note that the linearity of the offset compensator is more important
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than the temperature sensitivity of the offset compensator, because the sensitivity is not
required to be exactly zero. In this work, the slope of the delay-temperature curve in the
sensing module is 0.141 ns/◦C, where that in the offset compensator is 0.059 ns/◦C, which
is translated to a 0.081 ns/◦C slope of the temperature sensor.

3. Circuit Design Implementation with Operation Details
3.1. Sensing Module

The proposed temperature sensor uses a delay line as the sensing module. The structure
of the delay unit in the sensing module is shown in Figure 4. After the CLK signal passes
through the sensing module, a temperature-dependent delay is generated. For the sensing
module with N delay units, the propagation delay can be expressed as

tsensor = N × tdelay_u. (17)

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16 
 

 

sensing module is 0.141 ns/°C, where that in the offset compensator is 0.059 ns/°C, which 
is translated to a 0.081 ns/°C slope of the temperature sensor. 

3. Circuit Design Implementation with Operation Details 
3.1. Sensing Module 

The proposed temperature sensor uses a delay line as the sensing module. The struc-
ture of the delay unit in the sensing module is shown in Figure 4. After the CLK signal 
passes through the sensing module, a temperature-dependent delay is generated. For the 
sensing module with N delay units, the propagation delay can be expressed as 𝑡 = 𝑁 × 𝑡 _ . (17) 

 
Figure 4. Structure of the delay unit in the sensing module. 

As mentioned above, the temperature characteristics of the propagation delay de-
pends on carrier mobility and threshold voltage. According to Equations (9) and (10), in 
order to achieve a higher resolution, the variation range of the propagation delay with 
respect to the temperature should be larger. Therefore, it is necessary to increase the chan-
nel length of MOSFET. In order to meet the various demands of BIoT applications, such 
as moist heat sterilization, as well as preservation and transport of biomedical samples, 
the temperature range of the sensor is designed from −20 °C to 80 °C. The sensing module 
is designed to generate a 60~73 ns propagation delay over the temperature range of –20~80 
°C when L = 11 μm. The propagation delay is approximately proportional to the temper-
ature. The delay difference between the sensing module and the offset compensator is 
13~22 ns over the temperature range of −20~80 °C. Figure 5 shows the response ((t’sensor −t-

20)/t-20, where t’sensor is the propagation delay change of the sensing module after compen-
sation, t-20 is the propagation delay of the sensing module after compensation at −20 °C) of 
the temperature sensor with variation in temperature from −20 °C to 80 °C. It can be clearly 
seen from Figure 5 that the temperature sensor demonstrates around 62% change in the 
delay time of the sensing module after compensation and the sensitivity is 0.62%/°C. 

Figure 4. Structure of the delay unit in the sensing module.

As mentioned above, the temperature characteristics of the propagation delay depends
on carrier mobility and threshold voltage. According to Equations (9) and (10), in order to
achieve a higher resolution, the variation range of the propagation delay with respect to
the temperature should be larger. Therefore, it is necessary to increase the channel length of
MOSFET. In order to meet the various demands of BIoT applications, such as moist heat ster-
ilization, as well as preservation and transport of biomedical samples, the temperature range
of the sensor is designed from −20 ◦C to 80 ◦C. The sensing module is designed to generate
a 60~73 ns propagation delay over the temperature range of −20~80 ◦C when L = 11 µm.
The propagation delay is approximately proportional to the temperature. The delay differ-
ence between the sensing module and the offset compensator is 13~22 ns over the temperature
range of −20~80 ◦C. Figure 5 shows the response ((t’sensor −t−20)/t−20, where t’sensor is the
propagation delay change of the sensing module after compensation, t−20 is the propaga-
tion delay of the sensing module after compensation at −20 ◦C) of the temperature sensor
with variation in temperature from −20 ◦C to 80 ◦C. It can be clearly seen from Figure 5
that the temperature sensor demonstrates around 62% change in the delay time of the
sensing module after compensation and the sensitivity is 0.62%/◦C.

3.2. Pipeline TDC

A delay difference which is proportional to temperature is generated after a CLK
signal propagating the sensing module and the compensator. It is the most convenient way
to quantize the delay difference using a TDC. Taking account of the requirements of the
area and the resolution for the BIoT applications, a pipeline structure is used in this work.
The structure of the proposed TDC is shown in Figure 6, which is composed of a coarse
TDC (CTDC), a PGTA, a fine TDC (FTDC), and an encoder.
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3.2.1. CTDC

As shown in Figure 6, the CTDC is based on a traditional delay-line structure.
The structure of the delay unit in the CTDC is shown in Figure 7a. In order to avoid
introducing additional errors, the temperature sensitivity of a delay unit in the CTDC
should be as low as possible. According to Equation (8), by carefully designing the channel
length of MOSFET to adjust the VTH, the propagation delay of a delay unit in the CTDC
can maintain low temperature sensitivity. The VTH can be expressed as

VTH = VDD −
µ dVTH

dT
dµ
dT

+
1
2

VDS. (18)

The simulation results of the delay unit variations in the CTDC under different processes
are shown in Figure 8. It can be seen that the resolution of the CTDC is 100.6–101.5 ps
at the NMOS-Typical corner and PMOS-Typical corner (TT corner) when L = 170 nm.
The worst condition occurs at the NMOS-Slow corner and PMOS-Slow corner (SS corner),
which shows a delay variation less than 3.8 ps over the temperature range of −20~80 ◦C.
Comparing with the resolution of 117~121.2 ps at SS corner, the variation is about 2.54%.
The effect on quantization result caused by the variation is negligible.
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Figure 8. Simulated delay time of the delay unit in the CTDC and the variations of the delay time
normalized to the resolutions at five different corners. The resolutions are 100.6 ps, 77.8 ps, 94.5 ps,
109.7 ps and 117 ps at TT, FF, SF, FS and SS corners respectively.

The structure of the arbiter is shown in Figure 7b. Note that the OR gate output VG
exhibits only a slim strip of low-level voltage when the phase difference between Start and
Stop is approximately π. This results in MA5 and MA6 having insufficient time to charge
their drain terminals prior to the next detection. Therefore, a certain margin is required to
guarantee the proper functioning of the arbiter circuit. However, this limitation mostly has
no effect in this work. The time difference between Start and Stop is less than 22 ns, which
implies a frequency lower than 23 MHz should be used in the circuit. In this work, a real-time
clock (32.768 kHz) is used for the input clock (CLK in Figure 2).

3.2.2. PGTA

Time amplifier (TA) is a key module in a pipeline TDC, which amplifies the residue
generated in the CTDC quantization. A TA determines the measurement accuracy of a
pipeline TDC. The SR-latch-based TA [12] and the cross-couple structure [13] had a very
narrow linear range due to the metastable work region and limited discharging time,
respectively. A closed-loop TA [14] had a wider input linear range than SR-latch structure,
but the gain is not programmable. A promising TA [15] achieved time amplification
by duplicating the residue in an OR gate, providing a wide input linear range and a
programmable gain simultaneously. However, long delay lines were used in the TA to shift
the residues, which caused possible overlaps between each two adjacent residues due to



Electronics 2021, 10, 1542 9 of 16

the temperature-dependent delay lines and thus resulted in reducing the accuracy of the
amplification. In addition, the long delay lines also slowed down the conversion time.

In the existing works [12–14], the TAs amplified the residue in the stage where the
stop catches up with the start, the position is defined as stage i, as shown in Figure 4.
In fact, the residue exists in every stage of the delay line in CTDC. For instance, the time
interval between Start [i+1] and Stop is (4tCTDC-ε), where ε is the residue and4tCTDC is
the delay time of a delay unit in the CTDC. In the proposed PGTA, time amplification is
achieved by extracting M times intervals in M different stages, and the residue is thereby
amplified by M times. As shown in Figure 9, the PGTA is composed of a delay line,
a digital controller, an OR gate and two groups of XOR gates. According to the PGTA
gain (M) and i, the signals from TI[i+10] to TI[i+9+M] are selected by the digital controller.
In this work, M is the gain of the PGTA, and M ≤ 8. The XOR gates in the group B are used
to extract pulse signals, whose pulse width equal a replication of several times 4tCTDC
from 10 × 4tCTDC to (9+M) × 4tCTDC. The pulses TI selected by the digital controller and
the outputs of the XOR gates in Group B are send into the XOR gates in Group A. Thus,
the residuals are extracted. To guarantee accurate pulse widths of the residues, the size of
each delay unit in the PGTA is exactly as same as that in the CTDC. The OR gate sums the
pulses (from ε[1] to ε[M]) and generates a serial signal composed of M residues in which
each single pulse width is ε. Therefore, the residue is amplified by M times. The simulation
of the PGTA when M = 2 is shown in Figure 10. The ideal resolution of the temperature
sensor can be expressed as

ResolutionTEMP =
4tFTDC × Trange

4ttemp ×M
, (19)

where4ttemp is the range in which the output delay difference between the compensator
and the sensor module with temperature variations, tFTDC is the propagation delay of the
delay unit in FTDC, and Trange denotes the temperature range (−20~80 ◦C) in this work.
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The structure of the XOR gate and the OR gate in the PGTA is shown in Figure 11.
The matching between the rising edges and falling edges of the XOR gates and the OR gate
determines the amplification accuracy of the PGTA. For the CMOS logic gates, by adjusting
the width-to-length ratio of PMOS and NMOS, the matching between the rising edges and
the falling edges can be ensured. As the temperature changes, the slopes of the rising edges
and falling edges are similar so that the PGTA is low sensitive to temperature variations.
In the proposed PGTA, the pulse width variations of a single XOR output is less than 1 ps
over the temperature range of −20~80 ◦C.
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3.2.3. FTDC

Since the PGTA outputs a serial discrete pulses, a FTDC based on a gate delay line
(GDL) is used to quantize the amplified residues. The structure of FTDC is shown in
Figure 12. The PGTA output is used as an Enable signal to control the propagations of a
LP signal in the GDL. The statement of each delay unit in the GDL is read by the encoder
as the output of the FTDC. With the control of LP and LP_n signal, MF9 and MF10 is used
to reset the statement of the FTDC after quantization. According to the descriptions in
Section 3.2.1, the sizes of the MOSFETs are carefully designed to ensure that the delay units
in the FTDC maintain a low temperature sensitivity. The resolution of the FTDC is about 50
ps. Note that the quantized range of the FTDC should be larger than the total output pulse
width of the PGTA. In this work, the FTDC is composed of 32 stages delay units, which can
provide a 1.6 ns quantized range.
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3.3. Post-Simulation

One important design consideration is that the delay difference between the sensing
module and the offset compensator should not exceed the quantized range of the pipeline
TDC that is determined by the CTDC. In the proposed TDC, the number of stages of
CTDC is 256 and the maximal gain of PGTA is 8 in this work. In order to work properly,
eight stages after the stage [i+10] in the CTDC are used to extract the residues to guarantee
a sufficient processing time for the Encoder when M = 8. Thereby, the effective number of
the stages in the CTDC is 237. The maximum conversion time of the CTDC is determined
by M and the location where i occurs, which can be expressed as

Tconv−CTDC = (i + 9 + M)×4t CTDC, 130 < i < 220. (20)

According to the simulation results, the maximum i is 220, at 80 ◦C. Therefore,
the conversion time of the CTDC is about 23.937 ns. The possible maximum conversion
time of CTDC is 25.856 ns when i = 237 and M = 8.

The post-simulation result of the temperature sensor output is shown in Figure 13 at
different process corners. Thanks to the low temperature sensitivity design of the pipeline
TDC, the output has the best linearity at the TT corner. The non-linearity under other
process corners is mainly caused by the temperature sensitivity variations of the delay
unit in the CTDC and the FTDC. The difference non-linearity (DNL) of the temperature
sensor output is shown in Figure 14a and the DNL is from−0.6 LSB to 0.7 LSB. The integral
non-linearity (INL) of the temperature sensor output is shown in Figure 14b and the INL is
from −1.3 LSB to 2.6 LSB.
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Figure 14. Linearity of the temperature sensor at TT corner: (a) DNL; (b) INL.

The error after one-point calibration is shown in Figure 15a. Matlab® is used to find the
best fitted lines for the five output curves at different corners. At the NMOS-Fast corner and
PMOS-Fast corner (FF corner) and SS corner, as shown in Figure 8, the propagation delay
of delay unit is proportional and inversely proportional to the temperature respectively,
thereby the second order temperature coefficient of the temperature sensor output is
positive and negative, respectively. The error curves at the other corner are between
those at FF and SS corners. After two-point calibration, the result is shown in Figure 15b.
The worst condition occurs at SS corner, which shows an error of 0.9 ◦C. At the TT corner,
the maximum error is less than 0.29 ◦C. The design parameters used in this work are
summarized in Appendix A.
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4. Experimental Results

The proposed temperature sensor was fabricated in a TSMC 40-nm standard CMOS
technology and worked at a 0.6 V supply voltage. The total area of this sensor is 0.05 mm2,
as shown in the die micrograph in Figure 16a. A photograph of the testing environment is
shown in Figure 16b. The sensor was mounted on a test board and placed in a temperature
chamber manufactured by GWS. The test board was connected to a power supply and
read-out circuit. A computer placed outside the temperature chamber was connected to
the read-out circuit, and the output code was read every 10 ◦C.
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The Figure 17 shows the simulated output results and the measured output results
with different PGTA gains. When M = 8, 20 samples from one wafer are tested in the
temperature chamber over the temperature range of −20~80 ◦C. The error measurements
of the proposed temperature sensor with one-point and two-point calibration are shown
in Figure 18a,b, respectively. With one-point calibration at 30 ◦C, the measured peak-
to-peak errors is ±1.3 ◦C. In the case of a two-point calibration, the calibration temper-
atures are selected to 0 ◦C and 60 ◦C, and the measured peak-to-peak nonlinearity is
±0.39 ◦C. The sensor resolution is obtained by measuring the spread of sensor error at
30 ◦C, as shown in Figure 19. The standard deviation of the measurement is about 0.09 ◦C.
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Table 1 summarizes the measured temperature sensor performance and compares
it with other state-of-the-art works. Reference [16] has the highest resolution and a high
FoM at the cost of long conversion time and large area. Reference [17] has a similar high
resolution with Reference [16] and small area at the cost of high power and long conversion
time. This work achieves the best FoM of 0.048 pJ·K2 thanks to the shortest conversion
time of 1.3 µs.

Table 1. Performance comparison of the proposed sensor with state-of-the-art works.

Reference 16′ JSSC
[4]

18′ JSSC
[16]

20′ JSSC
[17]

19′ SJ
[18] This Work

Technology 65 nm 65 nm 180 nm 65 nm 40 nm
Area/mm2 0.004 0.007 0.72 0.0084 0.05
Supply/V 0.85~1.05 0.85~1.05 1.5~2.0 1.0~1.2 0.6
Tconv/µs 22 1000 1000 2.5 1.3

TEMPrange/◦C 0~100 −40~80 −40~80 −30~100 −20~80
Resolution/mK 300 2.5 2 380 90
Inaccuracy/◦C 0.9 0.12 0.55 1.2 0.39
Power/µW 154 68 15.6 35.2 4.6

1 FoM/pJ·K2 300 0.43 0.062 12.7 0.048
1 FoM= Power × Conversion Time × Resolution2.

5. Conclusions

We proposed a CMOS time-domain temperature sensor in this paper. The relationship
between the temperature characteristic of propagation delay and the size of a delay unit
is analyzed. The design of the channel length of MOSFET can determine the positive
or negative temperature coefficient of the propagation delay. Based on this principle,
the temperature is converted into a PTAP time domain signal, and then a pipeline TDC
is used to quantize the signal. A PGTA is proposed to achieve linear programmable
gain. In order to avoid introducing additional errors and to improve the linearity of the
TDC output, the circuits in the TDC are designed with low temperature sensitivity. Thus,
this temperature sensor does not need any curvature corrections.

Based on the analysis and design, a temperature sensor had been fabricated in a
40-nm CMOS technology. A 90 mk resolution at an eight times PGTA gain was achieved.
The conversion time is only 1.3 µs, and a FoM of 48 fJ·K2 is obtained.

For most BIoT applications, the temperature does not change fast, therefore, a
low sampling rate of the temperature sensor can meet the demand of the system that
works at a duty-cycling mode. In the sleep mode, the sensor only draw 31 nA at 40 ◦C.
At 10 conversions/s and Tconv = 1.3 µs, the effective average power consumption is only
18.6 nW. In order to apply this sensor to different applications, a higher-stages of sensing
module can be used to increase the range of propagation delay varying with temperature
to achieve a higher resolution.
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Appendix A

The design parameters used in this work are summarized in Table A1.

Table A1. Design parameters used in this work.

Components Parameters Components Parameters Components Parameters

Supply 0.6 V MC1
4 480 nm/170 nm MX4

6 480 nm/40 nm
Ms1

1 240 nm/11 µm MC2
4 480 nm/170 nm MX5

6 240 nm/40 nm
Ms2

1 240 nm/11 µm MC3
4 240 nm/170 nm MX6

6 120 nm/40 nm
Ms3

1 120 nm/11 µm MC4
4 240 nm/170 nm MX7

6 120 nm/40 nm
Ms4

1 120 nm/11 µm MA1
5 120 nm/40 nm MX8

6 120 nm/40 nm
MB1

2 2.64 µm/40 nm MA2
5 120 nm/40 nm MX9

6 120 nm/40 nm
MB2

2 120 nm/10 µm MA3
5 120 nm/40 nm MX10

6 120 nm/40 nm
MB3

2 120 nm/10 µm MA4
5 120 nm/40 nm MOR1

7 480 nm/40 nm
MB4

2 3 µm/500 nm MA5
5 240 nm/40 nm MOR2

7 480 nm/40 nm
MO1

3 4.32 µm/4.4 µm MA6
5 240 nm/40 nm MOR3

7 120 nm/40 nm
MO2

3 4.32 µm/4.4 µm MX1
6 480 nm/40 nm MOR4

7 120 nm/40 nm
MO3

3 2.16 µm/4.4 µm MX2
6 120 nm/40 nm MOR5

7 240 nm/40 nm
MO4

3 2.16 µm/4.4 µm MX3
6 120 nm/40 nm MOR6

7 120 nm/40 nm
1 MS: the MOSFET in the delay units of the sensing module; 2 MB: the MOSFET in the offset compensator; 3 MO: the MOSFET in the delay
units of the offset compensator; 4 MC: the MOSFET in the delay units of CTDC; 5 MA: the MOSFET in the arbiters of CTDC; 6 MX: the
MOSFET in the XOR gates; 7 MOR: the MOSFET in the OR gate of the PGTA.
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