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Abstract: Machine learning (ML) technology has shown its unique advantages in many fields and
has excellent performance in many applications, such as image recognition, speech recognition, rec-
ommendation systems, and natural language processing. Recently, the applicability of ML in wireless
sensor networks (WSNs) has attracted much attention. As resources are limited in WSNs, identifying
how to improve resource utilization and achieve power-efficient load balancing is becoming a critical
issue in WSNs. Traditional green routing algorithms aim to achieve this by reducing energy consump-
tion and prolonging network lifetime through optimized routing schemes in WSNs. However, there
are usually problems such as poor flexibility, a single consideration factor, and a reliance on accurate
mathematical models. ML techniques can quickly adapt to environmental changes and integrate
multiple factors for routing decisions, which provides new ideas for intelligent energy-efficient
routing algorithms in WSNs. In this paper, we survey and propose a theoretical hypothetic model
formulation of ML as an effective method for creating a power-efficient green routing model that can
overcome the limitations of traditional green routing methods. In addition, the study also provides
an overview of past, present, and future progress in green routing schemes in WSNs. The contents of
this paper will appeal to a wide range of audiences interested in ML-based WSNs.

Keywords: machine learning; routing algorithms; energy efficient; wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) are an important technology that enables sensors
to acquire and collect various sensing data in the monitoring area [1–3] as well as realize
intelligent data processing and decisions [4,5]. In a typical WSN, a large number of sensor
nodes sense and process data by self-organizing approaches with the sink [6], and sensor
nodes transmit the collected data to the sink, which is then responsible for integrating,
processing, and uploading those data to the server [7,8]. WSNs have many advantages, such
as easy deployment [9], high reliability [10,11], and low power consumption [12–14], which
is why they are widely used in environmental monitoring [15–17], medical care [18–20],
industrial monitoring, and other fields [21–23].

However, the limited power and processing capacity of sensor nodes constrain the
applications and decrease the lifetime of WSNs [24–26]. Generally, sensors in WSNs are
equipped with limited power and are unchangeable once WSNs are deployed in the
environment [27–29]. Therefore, energy is the most precious resource in WSNs, and power-
efficient schemes can prolong their lifetime [30,31]. Identifying how to efficiently utilize
the limited resources, achieve load balancing among nodes [32], and extend the network
lifetime as much as possible is a critical issue in WSNs [33–35], especially as power-efficient
routing algorithms can greatly reduce energy consumption and extend the survival cycle
of WSNs [36–38].
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Traditional green routing schemes focus on clustering and selecting special nodes to
control the data flow and extend the lifetime of WSNs [39–41]. The low-energy adaptive
clustering hierarchy (LEACH) routing algorithm [42] divides sensor nodes into multiple
clusters and utilizes high hierarchical cluster head nodes to uniformly receive and process
the sensing data in the cluster. Hence, the member nodes in the cluster can avoid the
energy consumption caused by forwarding. In [43], data forwarding was separated from
data transmission by setting up an assistant node to avoid the premature death of some
nodes due to frequent data forwarding. However, these methods have several drawbacks.
Firstly, they depend on precise mathematical models that are very difficult to formulate
and consume too much energy. Secondly, the suitability of those methods is not adaptive
to varying network topology and different scales, which makes WSNs prone to congestion
and thus impractical. Therefore, it is necessary to adopt new methods to alleviate these
problems [44].

Machine learning (ML)-related techniques have recently helped to address the limita-
tions of traditional green routing in WSNs [45–47], which provides a versatile and flexible
paradigm when dealing with data and computation to solve complex problems that exactly
match the requirements for the design of efficient routing algorithms in WSNs [48–50].

Despite the increasing interest in ML in the WSN domain, a comprehensive overview
focusing on ML for green routing algorithms in WSNs is lacking. In order to promote the
application of ML-based routing algorithms in WSNs, this paper introduces a complete
overview of progressive research in this field. This paper aims to fill the gap between ML
and routing algorithms in WSNs by offering the most advanced overview for interested
practitioners to further promote the development of this field.

Since it is difficult to recharge sensors after deployment, it is necessary to consider
how to rationalize the limited energy of each node and extend the lifetime of WSNs. ML
offers a generic and flexible paradigm for evaluating complex problems that perfectly
match the requirement of energy-efficient routing in WSNs. Thus, the novel contributions
of this paper are as follows:

(1) We present a complete overview of advanced research within the domain of green
routing algorithms in WSNs, specifically focusing on the use of ML;

(2) We propose a theoretical hypothetic model of ML-based green routing algorithms.
As ML offers the ability to automatically learn features from data within a given
environment without prior knowledge of the underlying distribution, it is envisioned
that the proposed model will outperform traditional routing algorithms;

(3) We present the challenges related to the implementation of ML for green routing
algorithms in WSNs and identify future research directions around unresolved issues
of great value.

The rest of this paper is structured as follows. Section 2 provides an overview of
traditional green routing algorithms in WSNs and classifies and compares them through
a novel perspective. Section 3 proposes our theoretical model and describes the existing
work on ML for green routing in WSNs. Section 4 introduces the applications of ML-
based routing algorithms in WSNs. Section 5 analyzes the challenges of ML-based routing
algorithms in WSNs. Section 6 highlights the conclusion and future research directions.

2. Green Routing Algorithms in WSNs

Among the factors that consume energy in WSNs, communication among sensors is
the worst offender. The routing scheme determines the forwarding path between sender
and receiver, and an efficient routing algorithm can clearly minimize the communication
cost and maximize the lifetime of WSNs.

In most existing surveys of green routing protocols in WSNs, routing algorithms are
categorized based on the construction of the network, its topology, etc. However, there
are few classifications according to the approaches that improve the energy efficiency
of WSNs. In this paper, a novel classification is proposed as shown in Figure 1, which
classifies the existing energy-efficient routing algorithms into three categories according to
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the energy-saving scheme, namely, setting special nodes, energy-efficient scheduling, and
optimizing data flow. Specifically, setting special node-based routing algorithms include
setting hierarchical nodes and special functional nodes. Energy-efficient scheduling-based
routing algorithms can be classed into static node scheduling and mobile node scheduling.
Optimizing data-flow-based routing algorithms can be classified into single path and
multi-path routing schemes.
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2.1. Setting Special Node-Based Routing Algorithms

In WSNs, each sensor node not only transmits sensing data but also forwards them to
other sensor nodes. Additionally, nodes closer to the sink will be saddled with more tasks
around relaying packets than nodes farther, which causes an imbalance of network energy
and leads to a short WSN lifetime. By setting special nodes, these issues can be relieved
or even solved. Special node-based routing algorithms are classified into two categories:
hierarchical node-based routing algorithms [51,52] and special function node-based routing
algorithms [53,54].

2.1.1. Hierarchical Node-Based Routing Schemes

In hierarchical node-based routing algorithms, high hierarchical nodes act as an
intermediate layer between low hierarchical nodes and a sink node, which is responsible for
receiving, fusing, and delivering data sent from low-level nodes to the sink. By increasing
the communication task, high hierarchical nodes force low hierarchical nodes to reduce
their energy consumption for forwarding data.

LEACH [51] is a classic routing algorithm based on hierarchical nodes. The system
model is shown in Figure 2. The nodes in LEACH are divided into cluster head (CHs) and
cluster members according to the roles they play in WSNs. Cluster member nodes collect
the data of their surrounding area and send them to the CH in the cluster. Then, the CH
processes the data and transmits them to the sink.
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LEACH balances energy consumption in the cluster by adaptively electing appropriate
CHs. However, direct communication between CHs and the sink leads to unbalanced
energy consumption between clusters. The reason for this is that energy consumption
increases dramatically when the communication distance increases. Hence, CHs far away
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from the sink will consume more energy, which results in load imbalance among clusters
and prevents the LEACH protocol from being applied to large-scale WSNs.

To overcome this defect, an energy-efficient concentric clustering scheme (EECCS)
protocol was proposed [52], which constructs a multi-hop path among CHs according to
distance from the sink node. The path eases the imbalance of energy load among clusters.
EECCS selects cluster heads based on node weight value w:

w = (ERemain ∗ EAverage)/d2, (1)

where ERemain is the remaining energy of the sensor node, EAverage is the remaining total
energy of the cluster, and d denotes distance.

EECCS assumes that the number of nodes in each cluster should be different, the
farthest cluster from the sink should have the least nodes, and the nearest cluster should
have the most nodes because the farthest cluster will consume the least energy.

2.1.2. Special Function Node-Based Schemes

In special function node-based schemes, special function nodes may be a stronger
function node with additional hardware modules. Different from the functions of general
sensing nodes, special function nodes can assist in positioning, communication between
clusters, and serve as an aid in forwarding data. Similar to hierarchical nodes, they are used
to reduce the communication consumption of other nodes by increasing their own tasks.

The helping node is proposed in topology analysis based on node spatial distribution
(NSD) [53], which neither sends nor receives data packets but only helps nodes relay their
data packets. In NSD, there are two forwarding modes: user mode and helping mode.
In the user mode, packets are only forwarded among user nodes. In the helping mode,
the node transmits data to the nearest helping node within its own communication range,
and then data are transmitted to the sink via the helping network. NSD separates data
forwarding from data transmission by setting up helping nodes, avoiding some user nodes
from dying prematurely due to frequent data forwarding. However, the nodes in the
helping network also need to consume energy, and NSD does not provide a solution to
balance the load in the helping network.

The color-theory-based energy-efficient routing algorithm (CEER) [54] was proposed,
which designs four anchor nodes equipped with global positioning system (GPS) devices
to locate nodes. These anchor nodes play a role similar to that of CHs in LEACH, helping
the nodes to collect data and forward them to the sink directly. As shown in Figure 3, CEER
constructs a database of geographic location information, in which different RGB values
correspond to different positions. As the node has a larger distance from the sink, the RGB
value is greater.

Figure 3. The system model of CEER [54].

Each node computes its RGB value with the help of anchor nodes; then, the anchor
nodes upload the RGB value to the sink, and the sink can find the geographic location of
this node according to the database. CEER includes three stages: the routing constructing
stage, the data forwarding stage, and the improving stage. CEER decreases the cost of the
positioning network by using four anchor nodes and balances the energy load by selecting
CHs. However, the fact that CEER sets additional time slots to check whether the cluster
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member has packets to send in the data forwarding stage will increase the delay of the
network. Anchor nodes not only help with the positioning of other nodes but also with
collecting and relaying data packets from other nodes, which results in the high cost of
anchor nodes.

Hierarchical nodes and special function nodes are designed to alleviate other nodes’
burden and schedule power consumption among nodes. The difference between hierarchi-
cal nodes and special function nodes is that the former rules the lower hierarchical nodes,
while the latter provides services for the sensor nodes. A comparison of setting special
node-based routing algorithms is shown in Table 1.

Table 1. Comparison of setting special node-based routing algorithms.

Scheme Energy Consumption Energy Load Balance Scalability

LEACH [51] Save energy in data gathering, and consume energy in
single hop communication between CHs and the sink Balance in cluster Low

EECCS [52] Save energy in data gathering and multi-hop
communication between CHs and sink Good Low

NSD [53] Reduce energy consumption by helping nodes Good High
CEER [54] Anchor nodes relay energy consumption Good Medium

As shown in Table 1, in the hierarchical node-based routing algorithms, the high
hierarchical nodes that communicate with the sink directly consume more energy than
those nodes that adopt multi-hop communication. In the aspect of energy load balance,
CHs ensure an energy load balance in their cluster by selecting appropriate CHs. However,
the energy load among clusters is still imbalanced. EECCS can balance the energy load
among clusters, but it is impractical. Routing algorithms based on hierarchical nodes have
a common demerit, i.e., poor scalability. In special function node-based routing algorithms,
the special nodes perform well when it comes to saving energy and can achieve good
performance on energy load balance, and they are also scalable.

2.2. Energy-Efficient Scheduling-Based Routing Algorithms

In WSNs, sensor nodes not only transmit sensing data but also relay packets from
other nodes to the sink. Energy-efficient scheduling-based routing algorithms adjust nodes’
communication modes dynamically in a pre-defined policy to optimize performance and
prolong the lifetime. In this paper, routing algorithms based on energy-efficient scheduling
are classified into two groups. One group is based on static node scheduling [55,56], and
the schemes in this group mostly adopt sleep scheduling to reduce the energy consumption
of WSNs. The other group is based on mobile node scheduling [57,58], which optimizes
the network lifetime by moving nodes on purpose.

2.2.1. Static Node Scheduling-Based Schemes

In static node scheduling-based schemes, all nodes are fixed once they have been
deployed. Identifying how to minimize the energy cost under the premise of a good
operation is the problem that static scheduling is attempting to address. These schemes
mostly use sleep scheduling to minimize energy consumption. In sleep scheduling, some
nodes continue to work to keep the network running, and the rest of the nodes go into
a dormant state. The sleeping nodes do not transmit or receive any data packets during
their sleep. Due to the reduction in the number of working nodes, the possible paths
between sensor nodes and the sink are reduced. Improper scheduling can greatly increase
the number of hops between source nodes and sink, obviously resulting in delay.

The connected-K neighborhood scheduling algorithm (CKN) was proposed in [55],
which presents a random ranking, with each node receiving a ranking from CKN. Figure 4a
shows node C and its neighbor nodes. After node C receives the rankings of its neighbors,
it compares these rankings with its own. When each current neighbor’s ranking is lower
than that of C, node C has more than K neighbors awake, and node C can sleep. Assuming
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that K is 3, as shown in Figure 4b, there are no neighbors awake with a higher ranking and
the number of neighbors awake is bigger than 3, so the node C goes to sleep. To ensure
that every node has a chance to sleep, ranking changes randomly in every scheduling cycle.
CKN saves energy by allowing some of the nodes to sleep and reduces end-to-end delay
by maintaining a ranking list. However, random ranking cannot ensure that nodes with
low remaining energy will sleep.
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The geographic routing-oriented sleep scheduling algorithm (GSS) [56] is a trade-off
routing protocol. Before the data forwarding phase, GSS explores all possible paths from
the source nodes to the sink and ensures that all paths separate while optimizing them
by making them as short as possible. In the data forwarding phase, the source node or
the forwarding node chooses the neighbor nearest to the sink as its next hop according to
the received geographic location information. In addition, GSS demands that the nearest
nodes from the sink not be eligible for sleeping and that they keep working. As shown in
Figure 4c, node C can turn to sleep in CKN, but it cannot sleep in GSS due to its distance
from the sink. The never-sleeping nodes are a bottleneck in GSS, consuming energy much
faster than those nodes that can rest, leading to the premature death of WSNs.

2.2.2. Mobile Node Scheduling-Based Schemes

In WSNs with static sensor nodes, energy distribution becomes uneven with the
continuous communication of sensor nodes. The distance from the source node to the sink
directly affects the communication energy cost. The greater the distance, the more the
energy consumed. To reduce power consumption, source nodes or the sink must move
toward the goal area in mobile node scheduling-based routing schemes. Mobile nodes can
optimize the transmission path between the source node and the destination node and
reduce the energy consumption of the network.

In order to save power efficiently, a global energy balancing routing protocol (GEBRP)
was proposed [57], which adopts the virtual grid-based network model. In GEBRP, node
mobility scheduling includes two phases: the diffusion phase and supplementary phase.
In the diffusion phase, as shown in Figure 5, the nodes in the higher coverage areas are
scheduled to move to the low-coverage areas to balance the network coverage. In the
supplement phase, those nodes that fail or have low residual energy are replaced by high
residual energy nodes. GEBRP balances the distribution of nodes in the diffusing phase and
improves network robustness in the supplement phase. Meanwhile, GEBRP assumes that
only a few nodes need to stay awake, while other nodes can switch to sleep mode. When
there are multiple nodes in a virtual grid, GEBRP significantly reduces energy consumption.

To balance the energy load, a reliable and energy-efficient routing protocol for mobile
sinks (REEMS) was proposed [58], which schedules the mobile sink group to improve
power efficiency. As shown in Figure 6, REEMS constructs a virtual block including a sink
group, and the virtual grid is considered a boundary of the mobile sink group.
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Packets are first transmitted to the boundary nodes of the virtual grid, and when
the sinks leave the virtual grid, the data are received by sinks from the boundary node.
The sinks obtain the data packets by moving out from the virtual grid, which ensures
the reliability of the data forwarding and avoids situations where the registering area is
different from the actual area. The mobility of the sink makes the source only need to
send data to the area where the sink group may pass. Meanwhile, sinks can receive data
packets from the boundary nodes. REEMS reduces energy consumption and enhances the
forwarding ratio of data packets.

A comparison of different energy-efficient scheduling-based routing algorithms is
shown in Table 2, which considers metrics including energy saving, balance of energy load,
and delay. Reducing energy consumption and balancing the energy load can both prolong
the lifetime of WSNs. Static node scheduling-based schemes have merits in energy saving.
However, the fact that many nodes sleep in such schemes causes an issue of delay. CKN
and GSS consider the delay issue and try to decrease transmission delay. Mobile node
scheduling-based schemes have advantages in balancing the energy and load in WSNs.
GEBRP optimizes energy distribution by moving the nodes to balance the node density of
different areas. REEMS utilizes the sink and sink group to balance the energy and load.

Table 2. The comparisons of different energy-efficient scheduling-based routing algorithms.

Scheme Energy Saving Energy Load Balance Delay

CKN [55] Reduce energy cost by switching
part of nodes to sleep mode

The random ranking of the node
to balance the energy and load.

K neighbors awake to ensure the
connectivity and increase delay

GSS [56] Reduce energy cost by switching
part of nodes to sleep mode.

The random ranking of the node
to balance the energy and load.

The bottleneck node will degrade
the delay.

GEBRP [57]
A few nodes need to keep awake,
and other nodes sleep to reduce

energy cost.

Moving nodes to balance the
node energy distribution.

Moving nodes are scheduled to
decrease delay.

REEMS [58] Reduce the energy consumption
with moving sinks.

Optimize the imbalance of energy
load by the different distance Sinks are scheduled to decrease delay



Electronics 2021, 10, 1539 8 of 24

2.3. Optimizing Data Flow-Based Routing Algorithms

For energy-limited applications, WSNs should have a good performance in energy
saving and load balance. For real-time applications, WSNs should transmit data with little
delay. In order to avoid data loss and node failure, reliability is also a very important metric
that should be considered in WSNs. To meet the different requirements of applications,
optimizing data flow-based routing algorithms provides efficient solutions, which are
classified into two categories based on the number of paths from the source node to the
destination node. One is single path-based routing algorithms [59,60], and the other is
multi-path-based routing algorithms [61,62].

2.3.1. Single Path-Based Schemes

In single path-based routing schemes, routing algorithms try to achieve a near-optimal
or optimal path to the sink through local optimization. Inspired by the concept of potential
application in the physical field, Ren et al. [59] proposed the energy-balanced routing
protocol (EBRP). EBRP sets up a hybrid field consisting of three virtual fields: depth field,
energy density field, and residual energy field. The potential difference Um(i, j, t) from
node i to j at time t is defined as:

Um (i, j, t) = (1− α− β)U′d (i, j) + αU′ed (i, j, t) + βU′e (i, j, t), (2)

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ α + β ≤ 1, weights α and β determine how much impact
the energy density potential field and residual energy potential field impose on the routing
decision, respectively. The depth field means the depth of minimum hops from source
node to the sink. Under the hybrid field, the packets are forwarded to the sink along the
energy-intensive area to protect those low-energy nodes. EBRP finds an energy balancing
path to forward packets and guarantee delay performance.

Energy-efficient speed routing protocol (EESPEED) [60] is an improved energy-efficient
routing protocol based on SPEED [63]. In SPEED, each node records the location informa-
tion and forward speed of all its neighbors and sets a threshold. When a node receives
a packet, it chooses the neighbors nearest to the destination than to the node itself as the
candidate relaying set. The nodes with the highest forwarding rate are selected as the
relaying node. The routing restarts when there is no node with a forwarding rate higher
than the threshold. Different from SPEED, EESPEED considers three factors of forwarding
delay, residual energy, and relaying rate to optimize the next hop. The weight function f j
of the jth sensor is formally defined as:

f j = max(αEn + βSp ∗ φ(De)), (3)

where α + β = 1, En is the ratio of residual energy on node j, De is the ratio of delay on
node j, Sp is the relay speed its packet transfers from the present node to node j, and α and
β are the coefficients of these factors.

2.3.2. Multi-Path-Based Schemes

Multi-path-based schemes have good reliability in data transmission because there are
multiple routing paths from the source nodes to the destination nodes. Even though some
nodes in one path fail or run out of energy, packets can be forwarded through other paths.

To construct multiple path segments according to the gradient information of nodes,
the gradient-based multi-path routing protocol (GMRP) is proposed [61]. The node chooses
the path segment that can forward packets to the sink fastest as its next path segment. The
path segment selection process is repeated until the source node obtains the minimum
delay path. In GMRP, each node should maintain the information of its own gradient and
some path segments. The node finds each path segment, which starts from the node itself
and ends when it encounters a node with a lower gradient. Then, the node chooses the
minimum delay path segment as its next segment, and the first node of the selected path
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segment is the node’s next hop. GMRP finds the minimum delay path to the source with
less complexity.

Randomized switching for maximizing lifetime (RSML) [62] is a tree-based routing
protocol, and it achieves the balance of the energy load by changing the tree routing
dynamically. In RSML, the energy load is computed as the ratio of energy consumption of
the node and the node’s energy. A parameter x is adopted that represents the magnitude
of the network balance. Once the difference between the energy path load and minimum
path load is more than x, the child node, which loads more, chooses a neighbor with a load
as light as that of its parent. Repeat the process until the difference between energy path
load and minimum path load is no more than x; then, the optimal balanced tree is created.

A comparison of different optimizing data flow-based routing algorithms is shown
in Table 3, which considers the optimized parameters involved in the single-path-based
schemes and multi-path-based schemes.

Table 3. The comparisons of different optimizing data flow-based routing algorithms.

Scheme Energy Consumption

EBRP [59] Delay, residual energy, energy density
EESPEED [60] Delay, residual energy, forwarding rate

GMRP [61] Delay
RSML [62] Routing quality, supporting time

As shown in Table 3, the delay and residual energy are the most optimized parameters
in different schemes. The delay metric is related to the number of hops from the sending
node to the destination node. To some extent, the shorter the number of hops at both ends
of the communication, the lower the delay and the lower the energy consumption. The
residual energy of the node is related to the network lifetime of WSNs. If the residual
energy of the node is too low to complete the communication task, the node will fail, which
will decrease the lifetime of the WSNs. The difference between single-path-based schemes
and multi-path-based schemes is the number of paths from source nodes to destination
nodes. In general, multi-path routing is more reliable than single-path routing. From the
perspective of the specific process of optimizing data flow, the single-path-based protocol
mainly adopts the next-hop optimization method and completes the global optimization
of the network through local optimization. The multi-path-based protocol, by contrast,
utilizes the method of optimizing the next path segment or optimizing the parent node to
achieve network optimization.

2.4. Discussions

Setting special node-based routing algorithms can release the burden of the general
nodes. LEACH and EECCS reduce the forwarding burden through hierarchical nodes.
CEER utilizes anchor nodes to help other nodes to implement positioning, which minimizes
the power consumption of sensor nodes. NSD uses helping nodes to relay the packets of
others. Static node-based scheduling methods minimize the number of working nodes
to decrease energy consumption. However, delay constraints should be considered due
to sleep scheduling. CKN and GSS try to decrease communication delay. The mobile
node scheduling-based routing methods balance the energy load according to energy
consumption by moving the nodes dynamically. GEBRP and REEMS optimize power
consumption by scheduling the moving nodes. GEBRP schedules selected sensors to
balance node density among the monitoring areas, and REEMS optimizes the sink group
to balance the energy load in WSNs. Single path-based routing schemes optimize the next
hop in WSNs, and multi-path-based schemes make the network more reliable.

3. ML-Based Routing Algorithms in WSNs

ML is a technical science that studies and develops theories, methods, technologies,
and application systems for simulating, extending, and expanding human intelligence,
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and it adopts different learning algorithms to analyze data, continue learning, and make
judgments and predictions. ML techniques have been widely used for classification, re-
gression, and density estimation in various fields, such as bioinformatics, natural language
processing, computer vision, and graphics processing. The algorithms and techniques used
also come from many different fields, including statistics, probability, neuroscience, bionics,
and computer science.

The ML-based routing algorithm is an important routing design in WSNs for the
following reasons:

(1) WSNs typically monitor dynamic environments that change rapidly over time, and the
locations of nodes may change, thus requiring the development of routing algorithms
with rapid adaptation and decision making.

(2) WSNs can be used for information collection in hazardous locations that are inac-
cessible to humans (e.g., volcanic eruptions, sewage treatment, and nuclear energy
leaks). The various unanticipated influences that may occur in such situations can par-
alyze some nodes and affect routing decisions, which makes systems require strong
learning and self-adaptive capabilities to ensure accurate information collection and
transmission. Therefore, ML is very suitable for routing protocol designs with WSNs.

(3) Designing routing algorithms in WSNs should consider the challenges posed by
multiple influencing factors, such as energy consumption, fault tolerance, scalability,
and data coverage. ML enables nodes and sinks to learn from past experience and
chooses an optimized routing path to adapt to dynamically changing environments.

The advantages of using ML to design routing algorithms can be summarized as
follows. ML learns the best routing path to reduce energy consumption and extends the
lifetime of WSNs. It can reduce computational complexity by dividing the typical routing
problem into simpler sub-routing problems. In each subproblem, nodes develop graph
structures by considering only their local neighbors, resulting in low-cost, efficient, and
real-time routing. Additionally, the quality of service (QoS) requirements of routing are
satisfied by relatively simple calculation methods and classifiers, which reduce cost and
save power efficiently.

3.1. System Model

In the proposed system model, WSN is considered to be an agent within the context of
ML and uses feedback signals that can identify the system environment. Then, the system
learns and tries to achieve the best decisions with ML algorithms to design the optimal
policies. Hence, the routing decision problem can be efficiently represented as a Markov
decision process (MDP). A hypothetical cooperative routing model which is formulated as
a multi-agent MDP is proposed as shown in Figure 7. In addition, any of the ML algorithms
discussed below can be used to formulate the optimal solution. The study considers only a
WSN consisting of N sensors that observe the action of the routing.

The proposed system model is considered to function in a time-slotted manner. At the
beginning of each time slot, one of the agents, which is also the fusion center (FC), activates
an ML-based distributed cooperative routing decision and combines the local decision
of each agent. Each sensor node senses its own neighbors’ link state information (e.g.,
energy efficiency, overhead, packet loss rate, bit error rate) and makes decisions locally.
Then, they constantly sense the link state information and inform the FC of their local
decisions. Typical routing issues such as energy efficiency and QoS could be minimized by
employing spatial diversity through cooperative and distributed routing decision. In this
case, the sensor broadcasts a request for cooperative routing to all neighbors. Then, the
agent combines all the independent local decisions and gives the final decision of routing.
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Focusing on ML-based routing algorithms in WSNs, the existing schemes are classified
into four categories: distributed regression (DR)-based routing algorithms, artificial neural
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algorithms, and ensemble learning (EL)-based routing algorithms.

3.2. Distributed-Regression-Based Routing Schemes

Distributed regression aims to find a fit function
∧
f (t) to best fit the real sensor measure
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where s is the size of the whole sample set S.
To improve the routing performance, an efficient sensor data modeling framework

(ESDFM) was presented in [64]. In this distributed framework, the nodes optimally fit a
global function to match their local measurement in a collaborative way, and the model
executes a kernel linear regression in the form of a weighted sum of local basis functions,
which can map training samples into feature space to facilitate data manipulation. Once the
model is started, all nodes can answer queries in the local scope, or users on the external
network can efficiently obtain the model parameters from the nodes. Multiple sensors in
the proposed framework are highly correlated, which can minimize the communication
cost used to detect sensor data structures. This distributed regression framework includes
three layers: the routing layer, which builds a spanning tree so that neighboring nodes
have high-quality communication links; the connection tree layer, which sends messages
between neighboring nodes in the routing tree to enforce the intersection property; and the
regression layer, which optimizes the regression estimation by sending information about
the coefficients of the basis functions. Distributed regression achieves energy efficiency by
optimizing the transmitted data and routing, thus extending the lifecycle of the WSN.
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ESDFM provides a key inspiration to utilize ML in routing design in WSNs, achieving
good fitting results and less overhead in the learning phase. However, it still faces some
challenges, such as the inability to learn nonlinear and complex functions.

3.3. Artificial Neural Network-Based Routing Methods

ANN is an information processing system based on mimicking the structure and func-
tion of neural networks in the brain, which achieves the purpose of processing information
and simulating the relationship between inputs and outputs through the repeated learning
training of known information and by gradually adjusting the connection weights of neu-
rons. ANN is widely used in image recognition, speech recognition, weather forecasting,
and facial feature recognition due to its parallelism, efficiency, and flexibility.

The self-organizing map (SOM) is a typical ANN algorithm that is trained via unsu-
pervised learning to create a two-dimensional and discrete input example called a map.
To exploit the excellence of cluster-based routing algorithms in increasing the lifetime of
WSNS, the energy-based clustering self-organizing map (EBC-S) was proposed in [65],
which creates clusters with the same energy level, allowing a balanced energy load in the
network. In the cluster creation process, SOM and K-means methods are used together to
create clusters. First, vector V, which represents the X–Y coordinates and energy of the
nodes are input to the SOM. These parameters are normalized as V1:

V1 =
V −mina

maxa −mina
, (6)

where maxa and mina are the highest and smallest value for feature a.
Then, the base station selects n nodes by maximum energy, which is considered the

weight vector of the SOM. The data are transmitted from the common nodes to the cluster
head and aggregated at the cluster head, and then, the information obtained by the cluster
head will be sent to the base station. Energy consumption ETx(k, d) of transmitting k bit
data with distance d is calculated as:

ETx(k, d) = Eelec(k, d) + ETx_amp(k, d), (7)

where Eelec(k, d) is the energy for transmitting/receiving k bit data with distance d, ETx_amp(k, d)
is the amplification energy of transmitting k bit data with distance d.

The weight matrix consists of the X–Y coordinates of the nodes and the residual energy
of the nodes. The nodes with less energy move closer to the high-energy nodes and form
clusters aggregated by the SOM. The result of the SOM is specified as the input to the
K-means algorithm. Then, cluster heads are selected based on the maximum energy of the
nodes, the distance of the nodes from the base station, and the proximity of the nodes to
the cluster center. In addition, the EBC-S is deployed on the base station and centralized
computation, which assigns the role to each node, whether it is a cluster head or a node.
This hybrid scheme considers the energy consumption to extend the lifetime of WSNs.

To guarantee the QoS of the network, an ANN-based routing (ANNR) algorithm [66]
was proposed to detect the best path using the SOM unsupervised learning, and the ANNR
model is shown in Figure 8.
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Figure 8. The ANNR model with self-organizing map architecture [66]. (Reprinted with permission
from ref. [66]).

ANNR adopts a revised Dijkstra algorithm to form a backbone network and minimize
the cost path from the sink to each node in WSNs, which adopts QoS parameters as the
influencing factor in defining the edge weight coefficients, including delay, throughput,
error rate, and duty cycle. Due to the distributed nature of WSNs, ANNR defines the QoS
level in a diffuse way. Each node periodically tests the quality of each neighboring link with
Ping packets to get input samples. In the training phase, the second layer neurons compete
for high weights in the learning chain among each other. Consequently, the weights of the
winning neurons and their neighboring neurons are updated through the neighborhood
function to further match the input patterns and obtain the QoS value. Then, node vj uses
the obtained QoS value to calculate the distance d[vj, vr] to the base station vr through
neighbor node vi to avoid the region with the worst QoS level. The distance d[vj, vr] of
node vi to the base station vr, can be expressed as:

d[vj, vr] = d[vi, vr] ∗QoS, (8)

where QoS is the corresponding channel quality.
Due to the bottleneck of data processing ability and energy in WSNs, the task and

learning process of ANNR with high computational cost should be implemented through a
central data processing unit. In contrast, sensor nodes can implement the execution process
that does not require a high computational cost. This hybrid algorithm takes into account
the QoS requirements when defining the edge weight coefficients and can achieve the best
route with a low average dissipation energy and average delay.

To design an energy-efficient routing scheme, a resilient routing algorithm was pro-
posed [67], which considers the link reliability and other traditional routing metrics and
utilizes a deep-learning-based link prediction model. To improve the self-learning capabil-
ity of mining topological features, this model combines Weisfeiler–Lehman kernel and dual
convolutional neural network (WL-DCNN) for lightweight subgraph extraction and label-
ing. Then, the link state information is used to design a resilient routing mechanism based
on a combination of the current shortest path and link reliability metric, which achieves
energy efficiency and extends the lifetime by ensuring data integrity and shortening the
transmission path.

To ensure energy efficiency and QoS, a secure deep learning (SecDL) approach was
proposed [68], where the topology is formulated as a biconcentric hexagon network along
with mobile sink to improve energy efficiency. The hexagonal network is first divided into
six sectors, and the dynamic clusters are formed in a self-organizing manner. Each cluster
performs cluster head selection, minimization of redundant data, and data aggregation. In
the data transmission, the optimal route is selected in SecDL by combining trust parameters,
QoS parameters, and energy-efficiency parameters.
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In general, ANN can provide adaptive capability for routing protocols with dynamic
topology in WSNs. However, the main defects are the complexity of the algorithm and the
learning overhead in the case of dynamic topology.

3.4. Reinforcement-Learning-Based Routing Methods

Reinforcement learning enables the system to learn and improve from cases and
depends on agents who are constantly acting in the environment and receiving rewards
and punishments based on the results of their actions.

Q-learning is the most typical and widely used reinforcement learning algorithm,
in which the maximum action value is considered. Q-learning reaches convergence in
continuous iterations to obtain the optimal value matrix Q(st, at), making its computational
complexity relatively low:

Q(st, at) = Q(st, at) + α

[
r(st, at) + γ max

at+1∈A
Q(s′, at+1)−Q(st, at)

]
, (9)

where Q(st, at) is value matrix of action selection, st is the state observed at time t, at is the
action selected at time t, α is the learning rate, γ is the discount factor, and r(st, at) is the
reward for choosing action at in state st.

In [69], a Q-learning reliable routing with a weighting agent approach (QLRR-WA)
was proposed. In the construction of the routing graph, QLRR-WA adopts a weighted cost
equation to select nodes and neighbors. The states of agents represent the set of weights,
and the action is continuously taken in the environment to learn the set of weights that can
optimize network performance. Based on average network latency and expected network
lifetime, the agent is given a reward or punishment to change the agent’s next action policy.
Meanwhile, QLRR-WA tends to improve the network reliability by constructing an uplink
graph in which nodes have at least two neighbors to forward data to the gateway.

In [70], a Q-probabilistic routing (Q-PR) scheme is proposed based on reinforcement
learning and a Bayesian decision model, which learns from previous routing decisions
and local interaction among neighbor nodes to make routing schemes adjust to future
conditions. Q-PR calculates the optimal routes depending on the power constraints, the
importance of the messages, and the expected delivery rate. The Bayesian approach makes
decisions by considering the data importance, node profiles, expected transmission, and
received energy to send the group to the set of candidate neighboring nodes. However, the
RL-based routing algorithm faces the issue of a limited cognition of knowledge. Therefore,
this algorithm is not suitable for highly dynamic environments because it takes a long time
to learn history information.

To address the routing challenges caused by intermittent connections between de-
vices and lack of fixed paths for message transmission in opportunistic Internet of Things
networks (OppIoTs), a reinforcement-learning-based routing protocol RLProph was pro-
posed [71]. The algorithm optimizes the routing process by the Markov decision process
(MDP) and reduces energy consumption with the optimal routing. Compared with other
context-independent routing, RLProph automatically determines the decision to maxi-
mize the reward based on the context and achieves better performance in information
transmission.

To maximize message delivery and minimize network overhead, a MDP is formulated
as (S, A, Pa(s, s′), Ra, γ), where S is a finite set of states describing the environment, A is
the finite set of actions, Pa(s, s′) = P(st+1 = s′|st = s, at = a) is the probability that action
a(a ∈ A) in state s (s ∈ S) at time t will lead to state s′ at time t + 1, Ra is the immediate
reward received after transitioning from state s to state s′ due to action a, and γ is the
discount factor representing the difference in value between future rewards and present
rewards. The state set S is described by using certain characteristics or node-specific
context information. The rest of the MDP is structured to improve message delivery using
both the reward function and state transition probabilities. Policy iteration is used for
finding the optimal policy that describes how routing should be performed in the network.
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RLProph uses a planning-based reinforcement learning approach for routing. The routing
process uses optimal strategies to make intelligent and effective routing decisions, thereby
increasing the probability of message delivery and reducing overhead.

Considering that IoT applications have stricter requirements, such as more flexible and
efficient routing, the reinforcement-learning-based routing decision is favored for its high
flexibility and accuracy. Based on reinforcement learning, two centralized and distributed
routing schemes were designed and implemented in WSNs [72]. The powerful learning
ability and generalization ability of artificial intelligence combined with a software-defined
network (SDN) and programmable routing equipment make reinforcement-learning-based
intelligent routing feasible. A deep reinforcement-learning-based single-optimality routing
(DRLSOR) algorithm was implemented in both centralized and distributed modes, and the
convergence and re-convergence time were analyzed. A multi-optimal routing scheme was
also implemented by the model fusion, which improves the route efficiency and reduces
energy consumption. Experimental results show that the centralized routing has faster
convergence speed, while the distributed routing has better scalability.

3.5. Ensemble-Learning-Based Routing Methods

Ensemble learning is a powerful tool in ML that builds and combines multiple machine
learners to accomplish learning tasks, which generates a set of individual learners and then
combines them following a specific strategy. Individual learners are generally common ML
algorithms, such as decision trees, neural networks, etc. There are two types of integration:
homogeneity and heterogeneity. Homogeneity means that individual learners are all of the
same type, and the individual learners in this homogeneous integration are also called base
learners. Heterogeneity means that individual learners contain different types of learning
algorithms, such as decision trees and neural networks, at the same time.

In order to predict the best routing protocol for WSN, R. Arroyo-Valles et al. [73]
proposed a scheme for the order of preferences by similarity to ideal solution (TOPSIS),
which is a multi-criteria assessment algorithm used to optimize ensemble learners. Then, a
multi-criteria TOPSIS-based ensemble framework (MCTOPE) was presented. MCTOPE
considers two types of routing protocols: ad hoc on demand distance vector (AODV) and
dynamic source routing (DSR). The principle of prediction is to correctly determine the ap-
propriate routing protocol for the data collected by the WSN. Selective training samples are
first constructed to train base classifiers from a pool of ML models. The action of routing for
training is represented as a set P(SP, RP, DP, RA, RO, PDR, APL, TP, DFR, NN), where
SP represents the sent packet, RP represents the received packet, DP denotes the dropped
packet, RA is the routing agent, RO represents the routing overhead, PDR represents the
packet delivery ratio, APL denotes the average path length, TP represents the throughput,
DFR represents the dataflow rate, and NN represents the node number.

The ML models in the candidate pool include decision trees (DT), AdaBoost (AB),
random forest (RF), support vector machines (SVMs), probit linear models (PLM), neural
networks (NNs), decision stump models (DSMs), and naive Bayesian (NB). MCTOPE
continuously performs iterations of combining different models, comparing their scores
and retaining the model with the highest score to perform routing protocol selection.
MCTOPE ranks the features by the metric of mean decrease Gini (MDG). MDG is defined
as follows:

MDG =
cn

∑
i=1

pi(1− pi), (10)

where cn is the number of classes in the target variable and pi is the ratio of each class.
In general, MCTOPE divides routing protocols into different types and predicts the

best routing protocols considering various factors, such as energy efficiency, which can
effectively extend the lifetime of WSNs. However, the learning phase has a high overhead
due to the centralized implementation of the framework and the need to continuously
select appropriate ensemble models from the sample pool.
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3.6. Discussions

The comparisons of different ML-based routing algorithms are shown in Table 4, and
the metrics, such as routing type, overhead, delay, QoS, scalability, and energy efficiency
are considered.

Table 4. The comparisons of ML-based routing algorithms.

Scheme Routing ML Algorithm Overhead Scalability Delay QoS Energy Efficiency

ESDFM [64] Multi-hop Kernel linear regression Low Limited High No Reducing redundant data
EBC-S [65] Geographic SOM + K-means High Medium Medium No Optimizing paths
ANNR [66] Multi-hop SOM High Limited Medium Yes Optimizing paths

WL-DCNN [67] Multi-hop CNN High Good Low Yes Optimizing paths

SecDL [68] Geographic DNN High Good Low Yes Reducing redundant data +
optimizing paths

QLRR-WA [69] Multi-hop Q-learning Low Good Low No Optimizing paths
Q-PR [70] Geographic Q-learning Low Limited High Yes Optimizing paths

RLProph [71] Multi-hop RL Low Good Medium Yes Optimizing paths
DRLSOR [72] Multi-hop RL Low Good Low Yes Optimizing paths

EL [73] Multi-hop Hybrid High Good Medium No Optimizing protocols

As shown in Table 4, in order to implement energy-efficient routing in WSNs, ML-
based routing schemes adopt different learning algorithms, including kernel linear regres-
sion, SOM, Q-learning, reinforcement learning (RL), convolutional neural network (CNN),
deep neural network (DNN), and hybrid learning algorithms, which achieve different
performances. For example, ESDFM [64] utilizes a kernel linear regression scheme to
learn information, which causes a low overhead in WSNs. Q-learning-based QLRR-WA
can achieve both low delay and low overhead, which provides a potentially good way to
optimize power consumption in WSNs. RL can achieve both low delay and low overhead,
which provides a potentially good way to optimize power consumption in WSNs. CNN
and DNN have high overhead but good scalability and low delay. Meanwhile, EL based
on hybrid learning algorithms has better scalability in WSNs.

ML-based routing algorithms achieve energy efficiency by reducing redundant data,
optimizing paths, or optimizing protocols. Most schemes optimize routing paths to im-
plement power saving [65–72]. ESDFM [64] reduces redundant data to save power, which
results in high delay. Based on the hybrid ML, EL optimizes the routing protocols to
balance the energy consumption and overhead [73]. On one hand, the complex learning
procedure incurs additional overhead due to massive calculations. On the other hand,
the forwarding consumption of routes and the packet transmission are optimized due
to the ML-based prediction and optimal routing, which prolongs the overall lifetime of
WSNs to some extent. It is a challenging issue to design energy-efficient ML models to
balance the tradeoff between the overhead of training models and the energy saving of the
optimal routing.

4. Applications of ML-Based Routing Algorithms in WSNs

WSNs integrates microelectronics, embedded computing, mobile networks, wireless
communication, and distributed information processing technologies, which can accom-
plish real-time monitoring, sensing, and collecting information under any environmental
conditions and location through various kinds of integrated miniature sensors in coop-
eration. Meanwhile, ML-based algorithms enable WSNs that are more powerful and
intelligent. Therefore, ML-based WSNs have become one of the frontier hotspots involving
a high degree of interdisciplinary and knowledge integration that is currently attracting
international attention. Currently, ML-based WSNs are widely used in many fields such
as intelligent healthcare [74,75], industrial applications [69], underwater sensing [76,77],
intelligent transportation systems [78–80], and smart home [81] in recent years, because of
the low cost, easy deployment, and high adaptability.



Electronics 2021, 10, 1539 17 of 24

4.1. Intelligent Healthcare

In recent years, ML-based schemes have been widely used to collect various physio-
logical and vital signals of patients in intelligent medical systems to assist users in health
management. There are several advantages of healthcare-aware WSNs (HWSN): high QoS,
low cost, low power consumption, easy integration, and low complexity. Different from
other application fields, since smart medical care is closely related to the life and health
of patients, the loss or delay of any important information may lead to irreparable losses.
Therefore, there are higher requirements for QoS and delay in HWSN.

In healthcare applications, the occurrence of medical emergencies may lead to prob-
lems such as sudden traffic, network congestion, premature death of overloaded nodes, and
dynamic changes in routing paths. Therefore, doctors may not be able to obtain the latest
information from patients in time. To address these issues, a distributed congestion control
and routing algorithm was proposed in HWSN [74]. In the proposed scheme, deployed
sensor nodes are divided into different levels to transmit their sensing information through
the congestion-free path, which minimizes the total energy consumption and improves
QoS. Vital signals related to sensitive information (such as the heart rate, respiratory status,
and blood sugar) in healthcare applications are set at a high priority to ensure the reliability
and low latency of critical information delivery.

To reduce the energy consumption of collecting patient physiological data in medical
scenarios and extend the lifetime of wireless body sensor networks (WBSN), a cluster-
based routing protocol was proposed [75], which combines the Q-Learning method and the
cluster method to optimize the route between the node and the telemedicine station and
reduce the delay of data packet transmission. The scope of cluster head nodes is planned,
and the distance between two cluster heads is controlled to ensure better cluster area
coverage. To obtain an optimized route to forward the data packet from the source node
to the destination, the Q-learning algorithm is used. The node selects a route according
to a strategy that attempts to maximize the cumulative reward that a packet may have in
subsequent transitions from the current node to the next node, resulting in the shortest
path from the beginning to the end. Let r

(
Xjzi, aj

)
be the immediate reward that the packet

acquires by executing an action aj at node location Xjzi, the Q-value Q
(
Xjzi, aj

)
at node

Xjzi with the route aj is given by:

Q
(
Xjzi, aj

)
= r

(
Xjzi, aj

)
+ γMaxQ

(
δ
(
Xjzi, aj

)
, a′

)
(11)

where δ
(
Xjzi, aj

)
represents the next node location due to the selection of route aj at the

node Xjzi. If the next state node is Xjzj, then Q
(
δ
(
Xjzi, aj

)
, a′

)
= Q

(
Xjzj, a′

)
. γ is a

constant that ensures the convergence of the sum, and its value ranges from 0 to 1. If the
value is close to 0, the immediate reward is considered, while for the value close to 1, the
future reward with greater weight is considered.

It is very time-consuming to obtain Q values of all possible routing nodes. By identify-
ing the path closer to the destination a′, the Q-learning algorithm is transformed into an
enhanced Q-Learning (QL-CLUSTER) algorithm, which improves the computing speed
by reducing paths and minimizes memory requirements. This method effectively reduces
computing cost of finding the best route.

4.2. Industrial Applications

Industrial WSN (IWSN) has the advantages of flexibility, mobility, scalability, and
low maintenance, which helps to collect environmental parameters such as temperature
and humidity in the factory, or be used to monitor and maintain the operating status of
plant equipment. While saving manpower and financial resources, it is also convenient to
provide accurate monitoring and correction remotely and improve the output efficiency
and quality of products.

To provide the reliable, low-latency, and low-energy communication services in IWSN,
a Q-learning reliable route with a weighted proxy (QLRR-WA) algorithm was proposed [67],
The algorithm combines the characteristics of RL that adjusts the weights in real time
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according to the current operating conditions and the advantages of the strong reliability
of the graph routing algorithm. Compared with the inconvenience of manually adjusting
static weights and parameters in traditional graph routing, this method based on RL
only needs low computing resources and workload to flexibly adjust the optimal routing
according to the status. The effectiveness of the algorithm was validated in terms of
reliability and the power consumption.

4.3. Underwater Sensing

Underwater WSNs (UWSNs) can be widely used in marine resource surveying, pollu-
tion monitoring, aided navigation, and tactical surveillance. The most important feature
that distinguishes the underwater environment from other environments is the difference in
the propagation, which also leads to the difference in its communication methods. UWSNs
are mainly divided into two categories: underwater acoustic WSNs (UAWSNs) and under-
water optical WSNs (UOWSNs). Although there are many similarities between UWSNs and
traditional WSNs, some characteristics of UWSNs mean that traditional routing concepts
cannot be directly applied to the design of routing algorithms in UWSNs.

The acoustic routing of UAWSNs faces challenges in terms of dynamic structure, high
energy consumption, long delay, and narrow bandwidth. Traditional routing protocols are
difficult to adapt to the underwater environment. A routing model based on RL and game
theory was proposed in [76], which provides an effective packet forwarding mechanism
to solve the acoustic transmission routing problem in UAWSNs. This scheme uses a
routing based on Q-learning, which works by successively improving its evaluations of
the quality of particular actions at particular states. During the operation of UAWSNs,
sensor nodes make routing decisions by considering end-to-end delay, hop count, packet
error rate, and energy efficiency. Under dynamic acoustic conditions, the sensor nodes
attempt to maximize their own profit in a distributed online manner based on the Q-
learning approach. This solution enables each sensor node to understand the situation
and determine the best routing path through a step-by-step interactive feedback process.
During the routing operation, each node periodically updates the routing information and
reevaluates the current strategy and selects one of its neighbor nodes for packet forwarding.
This method effectively achieves the maximization of the expected benefit and improves
the energy efficiency.

Different from UAWSNs, UOWSNs have attracted wide attention for their advantages
such as high transmission rate, ultra-wideband, and low latency. However, UOWSNs
have limited communication distance, and nodes must transmit data in a multi-hop man-
ner, which leads to the problem of high probability of instability in the connection and
makes them have higher requirements for link quality. To realize the adaptive ability in
the dynamic environment, a distributed multiagent RL routing (DMARL) scheme was
designed [77]. Due to the information interaction between agents, RL algorithms based
on multiple agents are beneficial to help agents learn environmental knowledge from a
global perspective. A distributed network model is established to support multi-hop data
transmissions, which considers the energy, link stability, and data transmission quality to
modify the reward function of the routing algorithm. In order to prolong the lifetime of the
network, a distributed value function (DVF) based on the Q-learning iterative formula is
used to update the Q value of each node. The DVF Qt+1

i
(
st

i , at
i
)

is defined as:

Qt+1
i

(
st

i , at
i
)
= (1− α)Qt

i(s
t
i , at

i) + α{rt+1(st+1
j ) + a f (j) · GR

+ γ · w1 ∗Vt
j (s

t+1
j ) + γ · w2 ∗ ∑
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Vt
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t
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where:
Vt
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a f (j) =
Ej

res

∑i′∈I Ei′
res

(15)

where Vt
j (s

t+1
j ) and Vt

i′
(
st

i′
)

represent the state value functions to estimate the next state

st+1
j and other neighbors’ state st

i′ , rt+1(st+1
j ) represents a direct reward that node i (with

the current state) will receive at time t + 1, α is the type of learning rate that depends on
the link stability, I is the set of i’s neighbors, a f (j) represents the received global reward
(GR), which indicates the transmission direction of the data packet (the quality of the action
performed). According to this weight, GR is hierarchically assigned the local network of
node i to encourage nodes with more energy as the next hop and balance the network
energy. The determination of GR depends on the information of the previous node ID
stored in the data packet, and the value of the distribution weight is calculated through the
Q table of node i. w1 and w2 represent the weights of long-term rewards received by node i
from the selected node j and i’s other neighbors, respectively.

In addition, the remaining energy and the link quality between communication nodes
are incorporated into the local reward function. When the distance from the last hop to the
last hop is greater than the distance from the current node to the sink, it indicates that the
transmission direction of the packet is favorable (closer). Then, the positive feedback is
used to motivate the node. Otherwise, the negative rewards will be received. To enhance
the adaptability to the dynamic environment, DMARL also considers the link quality and
remaining energy of the node to extend the lifetime of the network.

4.4. Intelligent Transportation Systems

The Internet of Vehicle (IoV) is a typical application in the field of transportation
systems, which can effectively improve traffic efficiency and improve traffic safety. The
application of wireless multimedia sensor network (WMSN) brings rich sensing and driving
capabilities to the sensing layer of IoV. The complex task processing and frequent data
communication in IoV need to ensure the effective distribution of energy while ensuring
QoS, which is a challenge for heterogeneous WMSN with uneven energy distribution.

Based on RL, an energy-saving distributed adaptive cooperative routing (EDACR)
was proposed [78]. Compared to other ML algorithms, the RL algorithm is lighter, has low
requirements on computing resources, and can provide the high flexibility and adaptability
for the dynamic topology of heterogeneous WMSNs. In EDACR, RL is used to maintain the
routing table, and some suitable relay nodes instead of all nodes are selected to maintain
the routing table to achieve energy-efficient distribution. The nodes adaptively choose
whether to obtain the knowledge of expected performances of reliability and delay that
could be provided by the candidate relay nodes through by lightweight RL according to
their remaining energy. EDACR combines collaborative routing and RL to reduce system
energy consumption while ensuring QoS.

To guarantee the real-time transmission in IoV, a routing algorithm based on collabo-
rative learning automata was proposed [79]. The learning automata (LA) located at the
nearest access point (AP) learns from past experience and quickly makes routing decisions.
The vehicle density as well as the distance and delay between the AP and the nearest
service unit are input as parameters to cooperate with LA to select an optimized path.
Vehicles communicate with each other in a collaborative manner to share information about
these variables and intelligently choose the best route. Experimental results show that the
routing algorithm can quickly plan the optimal path and effectively reduce the delay and
energy consumption.

Considering the energy transfer problem in the vehicle energy network (VEN) orga-
nized by renewable energy, charging stations, and electric vehicles, the literature [80] takes
the joint optimization of renewable energy routing and dynamic storage allocation as the
goal and studies a VEN with time-varying point-to-point traffic flow and adjustable energy
storage capacity at stations. Based on linear programming, the joint energy storage capacity
and routing planning method are explored. The long and short-term memory model is used
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to predict traffic patterns, and RL is used to iteratively improve the prediction accuracy.
Experiments verify the effectiveness of the proposed method in optimizing routing and
reducing energy consumption.

4.5. Smart Home

A smart home is based on intelligent living systems that can help people improve
their quality of life. Sensors are embedded in home appliances and furniture and connected
to the Internet through wireless networks. The sensors deployed in the room can sense
the humidity, temperature, light, air composition, and other data, so as to automatically
control the doors, windows, air conditioners, and other home appliances, providing people
with an intelligent and comfortable living environment. The use of remote monitoring
systems can achieve remote control of home appliances. Meanwhile, WSN can monitor
the potentially dangerous behavior of infants and elderly people living alone and provide
early warnings to prevent tragedies.

The home healthcare scheduling and routing problem (HHCSRP) was explored [81],
and an offline learning method was proposed that can process all the information needed
to make decisions for HHCSRP. Considering that neural networks have been widely used
in the complex information processing of decision-making algorithms, shallow neural
networks was adopted to approximate the action value function of offline model-free RL
algorithms to develop a more intelligent routing decision algorithm and solve the home
care routing problem. The experimental results show that the neural network approximator
enables the agent to make effective routing decisions based on the complete information of
the environment, reducing unnecessary energy loss.

5. Challenges for ML-Based Routing Algorithms in WSNs

Despite their great promise, there are many challenges to implementing ML-based
routing algorithms in WSNs, which should be addressed in future research. The key
challenges come from the requirements around learning performance, energy efficiency,
real-time performance, and maintaining the security of the application and privacy of
the users.

Most current studies consider routing transmission and decision making in a single
ML framework to obtain the best policy. However, from a real-world perspective, it is
extremely costly for the network structure to collect information, which may be due to high
energy consumption, long delay, asynchronous information preprocessing, and reduced
learning speed. Therefore, the open problem is finding the best balance between learning
performance and information quality. This prevents agents from consuming excessive
resources just to achieve a minimal, negligible increase in learning performance.

As highlighted earlier, sensor nodes cannot replace their batteries after deployment,
and the lifetime of the sensors determines the lifetime of WSNs, which places a demand
on the energy efficiency of the routing protocol. However, ML algorithms, especially the
deep neural network, need a large amount of computation to ensure the accuracy of the
algorithm, which will undoubtedly consume a lot of energy, making the needs of the two
contrary. Determining how to identify a point where the superiority of ML algorithms is
balanced with energy efficiency is one of the core challenges for future applications of ML
algorithms in WSNs.

In some application scenarios, WSNs require a real-time response after monitoring
events. Some ML algorithms take the approach of collecting network conditions period-
ically before recalculating and distributing the updated network dispatch information,
which cannot meet a real-time performance in WSNs. Therefore, it is necessary to adopt effi-
cient solutions for specific applications to ensure that relevant information is communicated
quickly and accurately.

In addition to the requirements for energy efficiency and real-time performance,
security is also a key issue for WSNs, since WSN is a resource-constrained communication
network, and communication between sensors mainly relies on low-bandwidth channels.
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Hence, it is too complicated for traditional protection mechanisms to operate on WSNs to
ensure their security. Identifying how to ensure the security as well as privacy of sensing
data through ML algorithms in WSNs is one of the most challenging research topics.

Another challenge is most existing ML-based routing algorithms are based on sim-
ulation, which is far away from the actual environments of WSNs. Building large-scale
test beds to evaluate the performance of the existing algorithms and refine the ML-based
routing schemes is an exciting research area in WSNS.

6. Conclusions and Future Research Directions

This paper presents a comprehensive overview of routing algorithms in WSNs. We
elaborate on traditional and ML approaches of green routing algorithm design in WSNs.
Based on detailed comparisons and analysis, we propose a mathematical hypothesis model
of an ML-based routing algorithm for extending the lifetime of WSNs. In addition, this
study reviews the basic principles and characteristics of various routing algorithms in
WSNs. We also discuss the merits and demerits of the different techniques that can be used
to improve the performance of routing algorithms in WSN. Finally, this study presents the
challenges of implementing ML for routing algorithms design in WSNs and identifies future
research directions to be addressed and worthy of exploration with ML. This discussion
will be of interest to a broad audience in ML and WSNs.

Future research work may include the following: Due to the arithmetic bottleneck
and energy consumption limitation of WSNs, ML algorithms cannot be deployed at scale
in sensors with small computational power and limited energy. However, distributed
learning methods require less computational capacity, energy consumption, and smaller
memory footprints than centralized learning algorithms (i.e., they do not need to consider
the entire network information). Distributed cooperative learning breaks the arithmetic
bottleneck and achieves ML-based green routing with less energy consumption, which is
very suitable for WSNs.

On the other hand, ML algorithms require a lot of computation and energy for proper
parameter learning in the training learning phase, which makes their deployment in WSNs
extremely difficult. Additionally, nodes have very different computational capabilities (e.g.,
the sink has a strong computational capability, while the rest of the nodes are weak), which
provides us with ideas for how to apply transfer learning in WSNs. Since sink nodes have
more power and computing capacity, they can train the model in a distributed manner with
other sensor nodes. Then, sink nodes can transmit the trained model parameters to the
sensor nodes. After receiving the model parameters from different nodes, the sensor nodes
multiply these parameters by the corresponding weights and perform a weighted average
to obtain their final model parameters, which will reduce the training consumption of the
sensor nodes and improve the accuracy of the model in WSNs. Meanwhile, addressing the
QoS-aware routing is quite a challenging task. Satisfying the delay constraints, bandwidth
constraints, and incorporating machine learning techniques to develop a routing protocol
is quite exciting research, especially utilizing the hybrid ML techniques in WSNs.
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