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Abstract: The performance of vehicle active safety systems relies on accurate vehicle state information.
Estimation of vehicle state based on onboard sensors has been popular in research due to technical
and cost constraints. Although many experts and scholars have made a lot of research efforts for
vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and
model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme
using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw
rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based
on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously,
the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw
rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness
of the proposed method. The test results indicate that the proposed method has higher estimation
accuracy than the extended Kalman filter.

Keywords: vehicle state estimation; extended H-infinity Kalman filter; noise uncertainty; model
parameter perturbation

1. Introduction
1.1. Motivation

Active safety systems have proven themselves to be one of the most effective means
of reducing traffic accidents. Some typical active safety systems include antilock braking
systems [1], yaw stability systems [2], collision avoidance systems [3], and so on. The pre-
requisite for these active safety systems to work accurately is the availability of accurate
vehicle state information [4]. Existing onboard sensors are limited in the number of ve-
hicle states they can measure. Some states that characterize vehicle stability, such as the
sideslip angle, cannot be measured by onboard sensors. Although some special sensors
can measure the sideslip angle, they are expensive and require additional installation in
mass production cars, which greatly limits the application of this measurement method. To
obtain some key state information of the vehicle more economically, many scholars have
proposed various interesting estimation methods.

1.2. Literature Review and Limitations

In recent years, the studies of estimation methods based on nonlinear observer and
Kalman filter (KF) have been widely reported. In the literature [5–8], the method based on
a nonlinear observer is used to estimate the vehicle state and is proved to be effective under
certain conditions. However, the estimation accuracy of the nonlinear observer is heavily
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dependent on the accuracy of the vehicle model parameters. In addition, Kalman filter-
based estimation methods are widely used in vehicle positioning, navigation, and control
due to their ability to efficiently handle measurement noise [9]. Its iterative process consists
of three steps. Firstly, the statistical properties of the system noise and the observation noise
are used to process the time update and the observation update of the random signal, then
the unknown variables are estimated, and finally, the optimal estimate is achieved [10].

In general, the traditional KF is only suitable for linear systems. It requires that
the observation equation is linear [11]. Thus, it is not suitable for the state estimation of
complicated and nonlinear vehicle systems. On the other hand, the traditional KF requires
that the model parameters and noise variances are precisely known [12]. Furthermore,
the process noise and measurement noise are white noises and are uncorrelated with
each other [13]. In many practical applications, system model parameters and/or noise
variance often are uncertainties because of model perturbation, stochastic disturbance, and
unmodeled dynamics [14]. These factors usually deteriorate the estimation accuracy of KF.

Therefore, extended Kalman filtering [15–17] is proposed to deal with these problems.
Some studies have shown that EKF has better estimation accuracy compared to KF [18–22].
However, when statistical properties of noise are unknown, the estimation accuracy of
EKF will decrease. Thus, some scholars proposed the adaptive extended Kalman filter
(AEKF) [23,24]. When the system noise is unknown, the AEKF-based solution can obtain
more accurate vehicle states. In addition, some researchers attempt to utilize the H-infinity
filter to estimate the vehicle states with noise uncertainties. In [25], the H-infinity filter
was used to weaken the effect of noise uncertainty on the estimation accuracy. In addition,
state estimation considering parameter perturbation is an interesting research hotspot. The
model parameters to be identified will vary according to the complexity of the vehicle
dynamics model. For example, considering vehicle drive conditions, some driveline
parameters need to be obtained. Montonen et al. [26,27] identified the mechanical driveline
parameters of a hybrid bus by inputting a pseudo-random binary signal. Furthermore,
some scholars have proposed a comprehensive estimation architecture [6,28,29]. It generally
consists of two parts: one is the online estimation of the parameters of the model, and the
other is the use of various filtering algorithms to obtain better estimation performance
based on the updated model.

Although a lot of research work has been done by many experts and scholars for the
above problems, few studies have been reported considering both noise uncertainty and
model parameter perturbation. Thus, in the paper, we propose a novel comprehensive
scheme for vehicle state estimation. The main contributions of this article are as follows.
A comprehensive scheme using dual EH∞KF is proposed to estimate the vehicle mass
and vehicle state when the noise statistics are unknown and model parameters are inac-
curate. Furthermore, the virtual tests show that the proposed method can acquire higher
estimation accuracy than the existing EKF. The remainder of this paper is structured as
follows. The vehicle model is introduced in Section 2. Section 3 presents the proposed
comprehensive scheme in detail. Section 4 shows the virtual test results. Finally, Section 5
concludes this work.

2. Vehicles Dynamics Estimation Models

Considering real-time computing requirements and estimator design issues, a nonlin-
ear three-degree of freedom vehicle model (see Figure 1) is used for the vehicle state and
parameter estimation [30]. In order to handle a tractable estimation problem using only
the standard sensors, we have to make some assumptions. The steering angles of the front
left and right wheels are the same. The left and right wheels on each axle have the same
stiffness. The lateral forces are decoupled from the longitudinal forces. The effects of wind
and air resistance are neglected. Its equations of motion are as follows:
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where γ, β are respectively yaw rate and sideslip angle; vx and vy are respectively longitu-
dinal vehicle speed and lateral vehicle speed; a and b are respectively distance from the
center of gravity to the front axle and distance from the center of gravity to the rear axle;
L is the wheelbase; Fx1 and Fy1 are respectively longitudinal and lateral forces on the front
axle; Fx2 and Fy2 are respectively longitudinal and lateral forces on the rear axle; k1 and k2
are respectively cornering stiffness of the front axle and cornering stiffness of the rear axle;
Iz and m are respectively vehicle moment of inertia about z axis and vehicle mass; ax and
ay are respectively longitudinal acceleration and lateral acceleration; and δ is front-wheel
steering angle.

Figure 1. The nonlinear three degrees of freedom vehicle model.

State and measurement equations of the vehicle model, that is, Formulations (1) and
(2) can be converted to a continuous-time state-space model.{ .

x(k) = f (x(k), u(k),w(k))
y(k) = h(x(k), u(k), v(k))

(3)

where x(k), u(k), and y(k) are respectively state vector, input vector, and measurement
vector, for mass estimation: x(k) = [m]T and y(k) = [ay]

T ; for state estimation: x(k) =

[γ, β, vx]
T , u(k) = [δ, ax]

T , and y(k) = [ay]
T ; w(k) and v(k) are respectively the state

process noise and measurement noise; f (·) and h(·) are respectively the state transition
and output function.

It is necessary to discretize the continuous-time vehicle model to accomplish the esti-
mation of vehicle states via discrete measurements. Equation (3) can be written as follows:{

x(k + 1) = f (x(k), u(k))+w(k)
y(k + 1) = h(x(k + 1), u(k + 1)) + v(k + 1)

(4)

For mass estimation, x(k + 1) = [mk+1]
T , y(k + 1) = [ay,k+1]

T , ∆(k) is the sample time.
The nonlinear vehicle system can be written as follows:

[mk+1]
T = [mk]

T (5)
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(6)

For state estimation, x(k + 1) = [γk+1, βk+1, vx,k+1]
T , y(k + 1) = [ay,k+1]

T . The nonlin-
ear vehicle system can be written as follows:

 γk+1
βk+1

vx,k+1

 =

 γk + ( a2k1+b2k2
Izvx,k

γk +
ak1−bk2

Iz
βk − ak1

Iz
δk)∆k

βk + [( ak1−bk2
mvx,k

2 − 1)γk +
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[ay,k]
T =

[
ak1 − bk2

mvx,k
γk +

k1 + k2

m
βk −

k1

m
δk

]T
(8)

3. Methodology

The framework of the proposed comprehensive scheme is presented in Figure 2, which
consists of four modules: Input and output of vehicle signal; Vehicle model; Vehicle mass
estimation based on EH∞KF; and Vehicle state estimation based on EH∞KF. The vehicle
model receives the input signals including front wheel angle and lateral acceleration. Then,
the sensors transmit the measurement signals with noise uncertainty and model parameter
perturbation to the next estimators. The first EH∞KF estimator is used to identify the mass
parameter of the vehicle. Meanwhile, the second EH∞KF estimator uses the result of the
first estimator to predict the vehicle state.

Figure 2. The framework of the proposed estimation algorithm.

3.1. EKF

The EKF algorithm is derived by firstly linearizing the nonlinear state and measure-
ment equations, and then by using the standard Kalman filter [31]. The detailed process of
the EKF is given as follows:

To linearize the nonlinear system state Equation (4), the results are as follows:{
xk+1 = Axk + uk + wk
yk = Hxk + vk

(9)

where xk+1 is the system state variable; uk is the input signal; yk+1 is the measured output;
wk and vk separately is driving noise and measurement noise; both of which are uncorre-
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lated white noises; Q and R are the noise covariance matrices;
~
Zm,k+1 is the vector of sensor

measurement values; A and H separately are the Jacobian matrix where the nonlinear
system state Equation (4) takes the partial derivatives to the state vector xk:

A = ∂ f (xk ,uk)
∂xk

=


∂ f1
∂x1
· · · · · · ∂ f1

∂xm
· · · · · · · · · · · · · · · · · ·

∂ fm
∂x1
· · · · · · ∂ fm

∂xm


H = ∂h(xk ,uk)

∂xk
=


∂h1
∂x1
· · · · · · ∂h1

∂xm
· · · · · · · · · · · · · · · · · ·

∂hm
∂x1
· · · · · · ∂hm

∂xm


(10)

Applying the basic equation of KF to the linearized model (9), the recursion algorithm
of EKF is listed below.

The first step: prediction of the state variable at time k:

xk+1 = Axk + uk (11)

The second step: prediction of system state error matrix P:

Pk+1 = APkAT + Q (12)

The third step: calculation of gain matrix K:

Kk+1 = Pk+1HT(HPk+1HT + R)
−1

(13)

The fourth step: update of system state variable X̂ at time is k + 1:

X̂k+1 = Xk+1 + Kk+1(
~
Zm,k+1 −HXk+1) (14)

The fifth step: update of system state error covariance matrix P̂:

P̂k+1 = (I−Kk+1HT)Pk+1 (15)

In Formulas (11) and (12), the initial value of state variable and system state error
covariance matrix is separate x0 = E[x0], P0 = var[x0].

3.2. EH∞KF

The EH∞KF algorithm is a joint method that the nonlinear discrete-time systems are
first linearized similar to the EKF and the linearization errors are treated as disturbances,
and then the linear H∞ filtering technique is directly applied to the linearized systems [32].

The discrete-time nonlinear dynamic model for the H∞ filter is given as follows [33].{
xk+1 = f (xk, uk) + wk
yk = h(xk, uk) + vk

(16)

where xk is the state vector, uk is the input signal, and yk is the observation vector. wk and
vk are respectively the process and measurement noise which are random and uncertain.

In the H∞ filter approach, a linear combination of states is estimated instead of directly
estimating the state.

zk = Lkxk (17)

where zk is the signal to be estimated and Lk is a known matrix that is assumed as Lk = I; I
is an identity matrix.

The H∞ filter defines a cost function as the performance measure [34].
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J =
∑ N−1

k=0 ||zk − ẑk||2sk

||x0 − x̂0||2p−1
0

+ ∑ N−1
k=0 (||wk||2Q−1

k
+ ||vk||2R−1

k
) .

(18)

where x̂0 is defined as the estimation of the initial state, x0− x̂0 is unknown initial estimation
error. Herein, ẑk is defined as the estimation of zk, zk − ẑk is defined as the estimation error,
||zk − ẑk||2sk

. denotes the weighted inner product, as well as the other analogous symbols.
The symmetric positive definite matrices P0, Qk, Rk, Sk are unknown that should be chosen
by designers based on the specific applications. Especially, Sk will affect the gain matrix in
the H∞ filter.

The objective of the H∞ filter algorithm is to guarantee the finite upper bound on the
estimation error and simultaneously minimize this upper bound [35].

supJ <
1
θ

(19)

where “sup” is supremum, θ is a predefined scalar constant, and the error attenuation
parameter. Neglecting the supremum and according to Equations (18) and (19), results in
the following:

J = ∑ N−1
k=0 ||zk − ẑk||2sk

− −1
θ [∑ N−1

k=0 (||wk||2Q−1
k

+ ||vk||2R−1
k
) ]

− 1
θ ||x0 − x̂0||2p−1

0
< 0

(20)

Based on (17) and (19), the designer may select suitable estimation x̂k to minimize J,
and then select suitable wk, vk, x0 to maximize J, so the H∞ filter can be interpreted as the
following “mini-max” problem:

J∗ = min
x̂k

maxJ
wk ,vk ,x0

(21)

In this paper, combining EKF with H∞ filter, the recursion algorithm of EH∞KF can
be expressed by the following steps:

xk|k−1 = Akxk−1|k−1 + wk (22)

yk|k−1 = Hkxk|k−1 + vk (23)

Pk|k−1 = AkPk−1|k−1 Ak
T + Qk (24)

Kk = Pk|k−1[I − θSkPk|k−1 + Hk
T R−1

k HkPk|k−1]
−1

Hk
T R−1

k (25)

x̂k|k = Akxk|k−1 + AkKk(yk|k − Hkxk|k−1) (26)

P̂k|k = AKPk|k−1[I − θSkPk|k−1 + Hk
T R−1

k HkPk|k−1]
−1

AT
k + Qk (27)

where Ak and Hk are respectively Jacobian matrix. Formulas (22)–(24) are a prediction of
the state variable, measurement, and error covariance matrix at time k− 1. Formula (25)
stands for the calculation of the gain matrix K, and Formulas (26) and (27) are respectively
the update of system state and error covariance matrix at time K.

In Equation (27), the term θSkPk|k−1 tends to make P̂k|k larger, as well as Kk, which
increases the weight of measurement. Compared with the EKF, the EH∞KF adds the
tolerance to the uncertain dynamics model and noise so that it has stronger robustness
than the EKF. In addition, the following circumstance must be satisfied to make sure the
EH∞KF algorithm can be realized successfully when θ is selected [25]:

P−1
k|k−1 − θSk + Hk

T R−1
k Hk > 0 (28)
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3.3. EH∞KF Based Vehicle Mass and State Joint Estimation

Figure 3 is the flowchart of EH∞KF based vehicle mass and state estimation. An
EH∞KF estimates the vehicle mass in real-time to cope with the uncertainty of the model
parameters, and secondly, the output of this EH∞KF is used as input to another EH∞KF to
estimate the vehicle state in real-time. The specific iterative process of EH∞KF is as follows.

System equations
+1 ( , )

( , )
k k k k

k k k k

k k k

x f x u w
y h x u v
z L x

= +
= +
=

Measured value 𝑦𝑦𝑘𝑘

State  at k

(initial value    )0x

State  at k

0p(initial value    )
1kp +1kx +

EH∞KF  algorithm

EH∞KF  based mass estimation

Calculate Jacobian
matrix

Prior state estimate

Update state 
covariance            1kp +

1kx +

Update state estimate

1ˆkx +

, kSθ valueSet 

Calculate the Kalman 
Gain 𝐾𝐾𝑘𝑘+1

Update state 
covariance 1ˆ kp +

via(25)

via (10)

via (22)

via(24)

via(26) via(27)
+1k

Input

𝛾𝛾,𝛽𝛽, vx at

Output

Mass   at 

System equations
+1 ( , )

( , )
k k k k

k k k k

k k k

x f x u w
y h x u v
z L x

= +
= +
=

Measured value 𝑦𝑦𝑘𝑘

State  at k

(initial value    )0x

State  at k

0p(initial value    )
1kp +1kx +

EH∞KF  algorithm

EH∞KF  based state estimation

Calculate Jacobian
matrix

Prior state estimate

Update state 
covariance            1kp +

1kx +

Update state estimate

1ˆkx +

, kSθ valueSet 

Calculate the Kalman 
Gain 𝐾𝐾𝑘𝑘+1

Update state 
covariance 1ˆ kp +

via(25)

via (10)

via (22)

via(24)

via(26) via(27)
+1k

Input

Output

Figure 3. The joint estimation framework.

We first calculate the prior estimate and the estimation error covariance based on the
known initial values. Then, the estimation error covariance of the prior state is used to
update Kalman gain. Next, the posterior state is calculated using the Kalman gain and
the prior state. Finally, the posterior state error covariance is dynamically updated using
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Equation (27). The above iterative steps will continuously loop to obtain accurate vehicle
state information.

4. Simulation Experiment Platform and Results

The proposed comprehensive estimation schemes implemented in MATLAB/Carsim
co-simulation experiment platform are presented in this section. The MATLAB software is
used to run the EH∞KF algorithm and the Carsim software is utilized to set up the test
traffic scenario of the double lane change. Herein, this section provides two test examples
to demonstrate the effectiveness of the proposed method. In addition, the traditional EKF
and the proposed estimation method are compared respectively with the reference value.

4.1. The Simulation Experiment Platform

The simulative experimental platform is shown as Figure 4, which is composed of the
following three subsystems:

1. The Vehicle Simulation System: It contains two parts: the Driver Model and the
Carsim Model. The Driver Model can regulate the steering angle, driving, and
braking pedals to follow the target trajectory and target speed. Afterward, the signals
of the Steering-wheel Angle Sensor, Accelerator Position Sensor, and Brake Position
Sensor are transferred to the Carsim model. Meanwhile, the Carsim model feedbacks
the vehicle state xk to the driver model;

2. The Data Acquisition System: It simulates the vehicle measurement system. Firstly,
the observation variables (ax, ay δ) from the vehicle model are collected by the virtual
sensors. Simultaneously, the Non-Gaussian measurement noise vk that simulates the
real sensors is added to the actual output observation vectors. Finally, the virtual
sensors will pass the measurements to the State Estimation System;

3. The State Estimation System is the focus of the simulative experimental platform.
It can use the EH∞KF estimator to estimate the vehicle mass, and then take the vehicle
mass as the input variable of the next EH∞KF estimator. The last estimation results
(m, γ, β, vx) will compare respectively to the reference vehicle mass and state vectors
given by the Carsim Model system.

4.2. Simulation Results

Two different test scenarios were set up to verify the effectiveness of the proposed
algorithm: they are the double lane change test on high and low adhesion surfaces, re-
spectively. The vehicle state output values from the software Carsim are used as reference
values to compare with the proposed algorithm. The vehicle model parameters from the
Carsim software are shown in Table 1

Table 1. The parameters of vehicle model.

Symbol Name Numbers and Units

m mass 1420 kg
a distance from the center of gravity to the front axle 1.015 m
b distance from the center of gravity to the rear axle 1.895 m
Iz vehicle moment of inertia about z axis 1536.7 kg·m2

k1 cornering stiffness of the front axle −102,540 N/rad
k2 cornering stiffness of the rear axle −98,500 N/rad

4.2.1. Double Lane Change Test on High Friction Coefficient Road

Figure 5 demonstrates a typical curve of the steering wheel angle on the dry asphalt
road in which the tire-road friction coefficient is 0.85 and the initial vehicle speed is 40 km/h.
Since the Carsim software provides a manual input interface, we can directly simulate
the scenario by giving the specific parameters for the above conditions. It is taken as
the input to the vehicle mass estimation. To verify the effectiveness of the vehicle mass
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estimation algorithm, we set up the initial vehicle mass to be 1000 kg, while the real vehicle
mass is 1420 kg. The simulation time is set to 20 s. The estimation results of vehicle
mass are demonstrated in Figure 6. In Figure 6, the vehicle mass estimation curve of the
EKF algorithm rises rapidly after 5.5 s. After about 12.5 s, the vehicle mass estimation
converges to 1250 kg. It is obvious that there is a difference of 170 kg from the reference
value. For the EH∞KF algorithm, the vehicle mass estimation curve rises rapidly after 6 s.
The vehicle mass estimation converges quickly to 1400 kg after a small fluctuation about
7.7 s. The EH∞KF method is closer to the reference value than the EKF method under the
above conditions.

The Carsim   Model 
State Feedback

Uncertain Measurement
Noise 

vx

Data Acquisition 
System

EH∞KF
Vehicle Mass Estimation

Target  Trajectory

Steering-wheel 
Angle Sensor

(X,Y）

Target Speed
Accelerator 

Position Sensor

Brake Position 
Sensor

𝑣𝑣𝑘𝑘
The Virtual Observed

Sensors
𝑦𝑦𝑘𝑘=[𝑎𝑎𝑥𝑥, 𝑎𝑎𝑦𝑦, 𝛿𝛿]𝑇𝑇 + 𝑣𝑣𝑘𝑘

𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦,𝛿𝛿

The Driver Model

𝑥𝑥𝑘𝑘

State Estimation System

Comparison
of results

EH∞KF
Vehicle State Estimation 

𝑎𝑎𝑦𝑦 , 𝛿𝛿

𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦 , 𝛿𝛿

Comparison
of results

𝛾𝛾,𝛽𝛽, vx

m

m

𝛾𝛾𝑐𝑐 ,𝛽𝛽𝑐𝑐 , 𝑣𝑣𝑥𝑥𝑐𝑐

𝑚𝑚𝑐𝑐

Vehicle Simulation System

0 2 4 6 8 10 12 14 16 18 20

Time(s)

40

V
x 

(k
m

/h
)

Figure 4. The co-simulation environment is used for validation of the proposed algorithm.

Figure 5. The steering-wheel angle on high friction coefficient road.
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Figure 6. Vehicle mass estimation on high friction coefficient road.

Figures 7–9 show the estimation results of yaw rate, sideslip angle, and vehicle speed
using the EKF and the EH∞KF on high friction coefficient road. According to the figures, it
can be noticed that the yaw rate, sideslip angle, and vehicle speed estimation curves of the
EH∞KF follow reference values better during the simulation process. Nevertheless, the
estimation curves of the EKF are far from the reference value. From the locally enlarged
view in Figures 7 and 8, it can be seen that the effect of EH∞KF is better than EKF.
In Figure 9, the vehicle speed estimation using the EKF has a large fluctuation at the
moment of the 6 s, and a huge estimation deviation with a reference value from the 6 s to the
20 s. From Figures 10–12, we can see that the mean absolute error of vehicle state estimation
using the EH∞KF is lower than the EKF. The RMSE index of the vehicle state is shown
in Table 2. The EH∞KF consistently outperforms the EKF. In summary, the estimation
performance of the EH∞KF is better than standard EKF under the above conditions.

Figure 7. Yaw rate estimation on high friction coefficient road.
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Figure 8. Sideslip angle estimation on high friction coefficient road.

Figure 9. Vehicle speed estimation on high friction coefficient road.

Figure 10. Yaw rate absolute error on high friction coefficient road.
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Figure 11. Sideslip angle absolute error on high friction coefficient.

Figure 12. Vehicle speed absolute error on high friction coefficient road.

Table 2. RMSE of estimation results on high friction coefficient road.

RMSE Yaw Rate Sideslip Angle Vehicle Speed

EKF 1.3775 0.1658 8.1780
EH∞KF 0.1267 0.0583 1.0275

4.2.2. Double Lane Change Test on Low Friction Coefficient Road

Figure 13 shows a typical curve of the steering wheel angle on the ice-snow road that
is taken similarly as the input signal to the vehicle mass estimator. The tire–road friction
coefficient is 0.2 and the initial vehicle speed is 20 km/h. Herein, the initial vehicle mass is
identified as 1000 kg, while the real vehicle mass is 1420 kg. The simulation time is set to
20 s.
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Figure 13. The steering-wheel angle on low friction coefficient road.

Figure 14 demonstrates the estimation results of vehicle mass based separately on EKF
and EH∞KF methods. As described in Figure 14, the vehicle mass estimation curve of the
EKF algorithm rises rapidly after 2 s. After about 18 s, the vehicle mass estimation based on
the EKF algorithm converges to 1350 kg. It is obvious that there is a difference of 70 kg from
the reference value. For the EH∞KF algorithm, the vehicle mass estimation curve rises
rapidly after 3.5 s. The vehicle mass estimation converges quickly to 1380 kg after 6 s. At
the moment of 14 s, the vehicle mass estimation curve of the EH∞KF fluctuates again. The
vehicle mass estimation converges quickly to 1422 kg at the moment of 16 s. The EH∞KF
method is closer to the reference value than the EKF method under the above conditions.

Figure 14. Vehicle mass estimation on low friction coefficient road.

The estimation results of yaw rate, sideslip angle, and vehicle speed using the EKF and
the EH∞KF on low friction coefficient road are shown in Figures 15–17. As these figures
show, during the simulation process, the yaw rate and sideslip angle estimation curves
of the EH∞KF are closer to the reference value comparing with the EKF. Especially in
Figure 17, the vehicle speed estimation curve of the EKF cannot follow the reference value
better, the vehicle speed estimation using the EKF has a large fluctuation at the moment of
the 1.5 s, and a huge estimation deviation with reference value after about 3.5 s. On the
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other hand, from the locally enlarged view in Figures 15 and 16, it can be seen that the effect
of EH∞KF is better than EKF. From Figures 18–20, we can see that the mean absolute error
of vehicle state estimation using the EH∞KF is lower than the EKF. The RMSE index of the
vehicle state is shown in Table 3. The EH∞KF consistently outperforms the EKF. Based on
the simulation results above, we can see that the proposed method demonstrates higher
precision than the traditional EKF method when system noise and model parameters are
uncertain at the same time.

Table 3. RMSE of estimation results on low friction coefficient road.

RMSE Yaw Rate Sideslip Angle Vehicle Speed

EKF 0.2797 0.0619 1.4126
EH∞KF 0.0336 0.0190 0.1943

Figure 15. Yaw rate estimation on low friction coefficient road.

Figure 16. Sideslip angle estimation on low friction coefficient road.
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Figure 17. Vehicle speed absolute error on low friction coefficient road.

Figure 18. Yaw rate absolute error on low friction coefficient road.

Figure 19. Sideslip angle absolute error on low friction coefficient road.
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Figure 20. Vehicle speed absolute error on low friction coefficient road.

5. Conclusions

In this paper, a comprehensive estimation scheme is proposed to estimate vehicle
state when the noise statistics are unknown and model parameters are inaccurate. The
test results indicate that the proposed method has higher estimation accuracy than the
existing EKF method. Nevertheless, there are some limitations to this study. We neglect
the effect of the road-bank angle in this study. In addition, verification of the algorithm in
more complex driving scenarios will also further highlight the superiority of our approach.
We will consider the above issues and further optimize our algorithm to improve the
estimation accuracy in our future work.
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