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Abstract: The extraction of the beat from musical audio signals represents a foundational task in the
field of music information retrieval. While great advances in performance have been achieved due
the use of deep neural networks, significant shortcomings still remain. In particular, performance
is generally much lower on musical content that differs from that which is contained in existing
annotated datasets used for neural network training, as well as in the presence of challenging musical
conditions such as rubato. In this paper, we positioned our approach to beat tracking from a real-world
perspective where an end-user targets very high accuracy on specific music pieces and for which the
current state of the art is not effective. To this end, we explored the use of targeted fine-tuning of
a state-of-the-art deep neural network based on a very limited temporal region of annotated beat
locations. We demonstrated the success of our approach via improved performance across existing
annotated datasets and a new annotation-correction approach for evaluation. Furthermore, we
highlighted the ability of content-specific fine-tuning to learn both what is and what is not the beat in
challenging musical conditions.

Keywords: beat tracking; transfer learning; user adaptation

1. Introduction

A long-standing area of investigation in music information retrieval (MIR) is the
computational rhythm analysis of musical audio signals. Within this broad research area,
which incorporates many diverse facets of musical rhythm including onset detection [1],
tempo estimation [2] and rhythm quantisation [3], sits the foundational task of musical
audio beat tracking. The goal of beat tracking systems is commonly stated as inferring
and then tracking a quasi-regular pulse so as to replicate the way a human listener might
subconsciously tap their foot in time to a musical stimulus [4–6]. However, the pursuit of
computational beat tracking is not limited to emulating an aspect of human music percep-
tion. Rather, it has found widespread use as an intermediate processing step within larger
scale MIR problems by allowing the analysis of harmony [7] and long-term structure [8]
in “musical time” thanks to beat-synchronous processing. In addition, the imposition of a
beat grid on a musical signal can enable the extraction and understanding of expressive
performance attributes such as microtiming [9]. Furthermore, within creative applica-
tions of MIR technology, the accurate extraction of the beat is of critical importance for
synchronisation and thus plays a pivotal role in automatic DJ mixing between different
pieces of music [10], as well as the layering of music signals for mashup creation [11]. In
particular for musicological and creative applications, the need for very high accuracy is
paramount as the quality of the subsequent analysis and/or creative musical result will
depend strongly on the accuracy of the beat estimation.

From a technical perspective, computational approaches to musical audio beat tracking
(as with many MIR tasks) have undergone a profound transformation due to the prevalence
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of deep neural networks. While numerous traditional approaches to beat tracking exist,
it can be argued that they follow a largely similar set of processing steps: (i) the calculation
of a time–frequency representation such as a short-time Fourier transform (STFT) from the
audio signal; (ii) the extraction of one or more mid-level representations from the STFT, e.g.,
the use of complex spectral difference [12] or other so-called “onset detection functions” [13],
whose local maxima are indicative of the temporal locations of note onsets; and (iii) the
simultaneous or sequential estimation of the periodicity and phase of the beats from this
onset detection function (or an extracted discrete sequence of onsets) with techniques
such as autocorrelation [14], comb filtering [15], multi-agent systems [16,17] and dynamic
programming [18]. The efficacy of these traditional approaches was demonstrated via their
evaluation on annotated datasets, many of which were small and not publicly available.

By contrast, more recent supervised deep learning approaches sharply diverge from
this formulation in the sense that they start with, and explicitly depend on, access to large
amounts of annotated training data. The prototypical deep learning approach, perhaps
best typified by Böck and Schedl [19], formulates beat tracking as a sequential learning
problem of binary classification through time, where beat targets are rendered as impulse
trains. The goal of a beat-tracking deep neural network, typically by means of recurrent
and/or convolutional architectures, is to learn to predict a beat activation function from
an input representation (either the audio signal itself or a time–frequency transformation),
which closely resembles the target impulse train. While in some cases, it can be sufficient to
employ thresholding and/or peak-picking to obtain a final output sequence of beats from
this beat activation function, the de facto standard is to use a dynamic Bayesian network
(DBN) [20] approximated by a hidden Markov model (HMM) [21] for inference, which is
better able to contend with spurious peaks or the absence of reliable information. Given this
explicit reliance on annotated training data, together with the well-known property of
neural networks to “overfit” to training data, great care must be taken when evaluating
these systems to ensure that all test data remain unseen by the network in order to permit
any meaningful insight into the generalisation capabilities.

Following this data-driven formulation, the state of the art in beat tracking has im-
proved substantially over the last 10 years, with the most recent approaches using temporal
convolutional networks [22], achieving accuracy scores in excess of 90% on diverse anno-
tated datasets comprised of rock, pop, dance and jazz musical excerpts [23–26]. Yet, in spite
of these advances, several challenges and open questions remain. Deep learning methods
are known to be highly data-sensitive [27]. The knowledge they acquire is directly linked
both to the quality of the annotated data and the scope of musical material to which they
have been exposed. In this sense, it is hard to predict the efficacy of a beat tracking system
when applied to “unfamiliar” (i.e., outside of the dataset) musical material; indeed, even
state-of-the-art systems that perform very well on Western music have been shown to per-
form poorly on non-Western music [9]. Likewise, given the arduous nature of the manual
annotation of beat locations for the creation of annotated datasets, there is an implicit bias
towards more straightforward musical material, e.g., with a roughly constant tempo, 4/4
metre, and the presence of drums [28,29]. In this way, more challenging musical material,
e.g., containing highly expressive tempo variation, non-percussive content, changing me-
tres, etc., is under-represented, and its relative scarcity in annotated datasets may contribute
to poorer performance. Furthermore, the great majority of annotated datasets comprise
musical excerpts of up to one minute in duration, meaning that the ability of these systems
to track entire musical pieces in a structurally consistent manner is largely unknown.

The scope and motivation for this paper were to move away from the notion of
targeting and then reporting high (mean) accuracy across existing annotated datasets and
instead to move towards the real-world use of beat tracking systems by end-users on
specific musical pieces. More specifically, we investigated what to do when even the state
of the art is not effective and very high accuracy is required, i.e., when the extraction of the
beat is used to drive higher level musicological analysis or creative musical repurposing.
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Faced with this situation, currently available paths of action include: (i) the end-
user performing manual corrections to the beat output or even resorting to a complete
re-annotation by hand, which may be extremely time-consuming and labour-intensive;
(ii) the use of some high-level parameterisation of the algorithm in terms of an expected
tempo range and initial phase [16,30]; or (iii) adapting some more abstract parameters
that could permit greater flexibility in tracking tempo variation [31]. While at first sight
promising, this high-level information may only help in a very limited way: if the musical
content is very expressive, then knowing some initial tempo might not be useful later on
in the piece. Likewise, if the model is unable to make reliable predictions of the beat-like
structure given the presence of different signal properties (e.g., timbre), then this user
provided information may only be useful in very localised regions.

In light of these limitations, we proposed a user centric approach to beat tracking in
which a very limited amount of manual annotation by a hypothetical end-user is used to
fine-tune an existing state-of-the-art system [22] in order to adapt it to the specific properties
of the musical piece being analysed. In essence, we sought to leverage the general musical
knowledge of a beat-tracking system exposed to a large amount of training data and then
to recalibrate the weights of the network so that it can rapidly learn how to track the
remainder of the given piece of music to a high degree of accuracy. A high-level overview
of this concept is illustrated in Figure 1. However, in order for this to be a practical use case,
it is important that the fine-tuning process be computationally efficient and not require
specialist hardware, i.e., that the fine-tuning can be completed in a matter of seconds on
a regular personal computer. To demonstrate the validity of our approach, we showed
the improvement over the current state of the art offered by our fine-tuning approach on
existing datasets and by the specific examples, demonstrating that our approach can learn
what is the beat, and also what is not the beat. In addition, we investigated the trade-off
between learning the specific properties of a given piece and forgetting more general
information. In summary, the main contributions of this work were: (i) to reformulate the
beat-tracking problem to target high accuracy in individual challenging pieces where the
current state-of-the-art is not effective; (ii) to introduce the use of in situ fine-tuning over a
small annotated region as a straightforward means to adapt a state-of-the-art beat-tracking
system so that it is more effective for this type of content; and (iii) to conduct a detailed
beat-tracking evaluation from an annotation-correction perspective, which demonstrates
and quantifies the set of steps required to transform an initial estimate of the beat into a
highly accurate output.

The remainder of this paper is structured as follows: In Section 2, we discuss our
approach to fine-tuning in the context of existing work on transfer learning in MIR.
In Section 3, we provide a high-level overview of the state-of-the-art beat-tracking sys-
tem used as the basis for our approach and then detail the fine-tuning in Section 4. In
Sections 5 and 6, we present a detailed evaluation employing a widely used method along
with a recent evaluation approach specifically designed to address the extent of user cor-
rection. Finally, in Section 7, we discuss the implications and limitations of our work and
propose promising areas of future research.
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Figure 1. Overview of our proposed approach. The left column shows an audio input passed through
a deep neural network (for consistency with our approach, this is a temporal convolutional network),
which produces a weak beat activation function and erroneous beat output. The right column shows
the same audio input, but here, a few beat annotations are provided as the means to fine-tune the
network—with the black arrows implying the modification of some of the weights of the network.
This results in a much clearer beat activation function and an accurate beat-tracking output.

2. Low-Data Learning Strategies

Data scarcity represents a major bottleneck for machine learning in general, but particu-
larly for deep learning. Within the musical audio domain, data curation is often hindered by
the laborious and expensive human annotation process, subjectivity and content availabil-
ity limitations due to copyright issues, thus making the field of MIR an interesting use-case
for machine learning strategies to address low-data regimes [32]. Following success in the
research domains of computer vision and natural language processing, a wide range of
approaches have been proposed to overcome this limitation in the audio domain. In this pa-
per, we focused on one such approach, transfer learning, through which knowledge gained
during training in one type of problem is used to train another related task or domain [33].
Leveraging previously acquired knowledge and avoiding a cold-start (i.e., training “from
scratch”), it can enable the development of accurate models in a cost-effective way.

Early approaches to transfer learning in MIR were based on the use of pretrained
models on large datasets for feature extraction and have been proposed for tasks such as
genre classification and auto-tagging [34], speech/music classification or music emotion
prediction [35]. A different methodology is the use of pretrained weights as an initialization
for the parameters of the downstream model. This technique, known as fine-tuning, proposes
the subsequent retraining of certain parts of the network by defining which weights to
“unfreeze” while retaining the existing knowledge in the “frozen” components. This pa-
rameter transfer learning approach has been used for the adaptive generation of rhythm
microtiming [36] and for beat tracking, as a way to transfer the knowledge of a network
trained on popular music into tracking beats in Greek folk music [37].

Another strategy for low-data regimes is known as few-shot learning, which aims at
generalizing from only a few examples [38]. Both paradigms have been studied for mu-
sic classification tasks [39]. Lately, the association between both approaches has become
widespread, with transfer learning techniques being widely deployed in few-shot classi-
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fication, achieving high performance with a simplicity that has made fine-tuning the de
facto baseline method for few-shot learning [40], in what is known as transductive transfer
learning [33].

Within the context of musical audio beat tracking, we employed fine-tuning not for
the adaption to a new task per se, but rather to new content within the same task. In formal
terms, this can be considered sequential inductive transfer learning. Our approach differs
from that of Fiocchi et al. [37] since we targeted a kind of controlled overfitting to a specific
piece of music rather than a collection of musical excerpts in a given style. In this sense,
our approach bears some high-level similarity to the use of “bespoke” networks for audio
source separation [41]. While the need to rely on some minimal annotation effort could
be seen as an inefficiency in a processing pipeline, which, in many MIR contexts, is fully
automatic [42], our approach may offer the means to address subjectivity in beat perception
via personalised analysis.

3. Baseline Beat-Tracking Approach

A key motivating factor and contribution of this work is to look beyond what is
possible with the current state of the art in beat tracking, and hence to explore fine-tuning
as a means for content-specific adaptation. To this end, we restricted the scope of this work
to an explicit extension of the most recent state-of-the-art approach [22], and thus used this
as a baseline on which to measure improvement.

The baseline approach uses multi-task learning for the simultaneous estimation of
beat, downbeat and tempo. The core of the approach is a temporal convolutional network
(TCN), which was first used for beat tracking only in [43], and then expanded to predict
both tempo and beat [44]. Compared to previous recurrent architectures for beat tracking
(e.g., [45]), TCNs have the advantage that they retain the high parallelisation property of
convolutional neural networks (CNNs), and therefore can be trained more efficiently over
large training data [43]. With the long-term goal of integrating in situ fine-tuning within a
user based workflow for a given piece of music, we considered this aspect of efficiency to
be particularly important, and this therefore formed a secondary motivation to extend the
TCN-based approach.

To provide a high-level overview of this approach ahead of the discussion of fine-
tuning, and to enable this paper to be largely self-contained, we now summarise the
main aspects of the processing pipeline, network architecture and training procedure.
For complete details, see [22].

Pre-processing: Given a mono audio input signal, sampled at 44.1 kHz, the input rep-
resentation is a log magnitude spectrogram obtained with a Hann window of 46.4 ms
(2048 samples) and a hop length of 10 ms. Subsequently, a logarithmic grouping of fre-
quency bins with 12 bands per octave gives a total of 81 frequency bands from 30 Hz up to
17 kHz.

Neural network: The neural network was comprised of two stages: a set of three
convolutional and max pooling layers followed by a TCN block. The goal of the convolu-
tional and max pooling layers was to learn a compact intermediate representation from
the musical audio signal, which could then be passed to the TCN as the main sequence
learning model. The shapes of the three convolutional and max pooling layers were as
follows: (i) 3 × 3 followed by 1 × 3 max pooling; (ii) 1 × 10 followed by 1 × 3 max pooling;
and (iii) 3 × 3 again with 1 × 3 max pooling. A dropout rate of 0.15 was used with the
exponential linear unit (ELU) as the activation function.

This compact intermediate representation was then fed into a TCN block that operated
noncausally (i.e., with dilations spanning both forwards and backwards in time). The TCN
block was composed of two sets of geometrically spaced dilated convolutions over eleven
layers with one-dimensional filters of size five. The first of the dilations spanned the
range of 20 up to 210 frames and the second at twice this rate. The feature maps of the
two dilated convolutions were concatenated before spatial dropout (with a rate of 0.15)
and the ELU as activation function. Finally, in order to keep the output dimensionality
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of the TCN layer consistent, these feature maps were combined with a 1 × 1 convolution.
Within the multitask approach (and unlike the simultaneous estimation in [45]), the beat
and downbeat targets were separate, each produced by a sigmoid on a fully connected
layer. The tempo classification output was produced by a softmax layer. In total, twenty
filters were learned within this network, giving approximately 116 k weights. A graphical
overview of the network is given in Figure 2.

Training: The network was trained on the following six reference datasets, which
totalled more than 26 h of musical material: Ballroom [26,46], Beatles [24], Hainsworth [23,44],
HJDB [45,47], Simac [48] and SMC [28]. In order to account for gaps in the distribution
of the tempi of these datasets, a data augmentation strategy was adopted, by which the
training data were enlarged by a factor of 10, by varying the overlap rate of the frames
of the STFT (and hence the tempo) and by sampling from a normal distribution with the
5% standard deviation around the annotated tempo and updating the beat, downbeat
and tempo targets accordingly. Furthermore, to account for the high imbalance between
positive and negative examples (i.e., that frames labelled as beats occurred much less often
than nonbeat frames), the beat and downbeat targets were widened by ±2 frames and
weighted by 0.5 and 0.25 as they diverged from the central beat frame.
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Figure 2. Overview diagram of the architecture of the baseline beat-tracking approach.

The training was conducted using eight-fold cross validation (6 folds for training,
1 fold for validation, and 1 fold held-back for testing), with excerpts from each dataset
uniformly distributed across the folds. A maximum of 200 training epochs per fold were
used with a learning rate of 0.002, which was halved after no improvement in the validation
loss for 20 epochs, and early stopping was activated with no improvement after 30 epochs.
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The RAdam optimiser followed by lookahead optimization were used with a batch size of one
and gradient clipping at a norm of 0.5.

Postprocessing: To obtain the final output, the beat activation and downbeat activations
were combined and passed as the input to a dynamic Bayesian network approximated via
an HMM [45], which simultaneously decoded the beat times and labels corresponding to
metrical position (i.e., where the all beats labelled 1 were downbeats). However, given only
the beat activation function, it was possible to use the beat-only HMM for inference [21].

4. Fine-Tuning

Departing from the network architecture described above, we now turn our attention
toward how we could adapt it to successfully analyse very challenging musical pieces.
It is important to restate that our interest was specifically in musical content for which the
current state-of-the-art approach is not effective and for which high accuracy is desired by
some end-user. Within this scenario, it is straightforward to envisage that some form of
user input could be beneficial to guide the estimation of the beat.

In a broad sense, our strategy was to take advantage of the transferability of features
in neural networks [49], in effect to leverage the global knowledge about beat tracking
from the baseline approach and the datasets upon which it has been trained, and to
recalibrate it to fit the musical properties of a given new piece. By connecting this concept of
transferability with an end-user who actively participated in the analysis and a prototypical
beat annotation workflow, we formulated the network adaption as a process of fine-tuning
based on a small temporal region of manually annotated beat positions. From the user
perspective, this implies a small annotation effort to mark a few beats by hand, and then
using this information as the basis for updating the weights of the baseline network such
that the complete piece can be accurately analysed with minimal further user interaction.

Within this paper, our primary interest was to understand the viability of this ap-
proach, rather than testing it in real-world conditions. To this end, we simulated the annotation
effort of the end-user by using ground truth annotations over a small temporal region
and examining how well the adapted network could track the remainder of the piece.
From a technical perspective, we began with a pretrained model from the baseline ap-
proach described in the previous section. Then, for a given musical excerpt (unseen to the
pretrained model), we isolated a small temporal region (nominally near the start of the
excerpt), which we set to be 10 s in duration, and retrieved the corresponding ground truth
beat annotations. Together, these three components formed the basis of our fine-tuning
approach, as illustrated in Figure 1. In devising this approach, we focused on: (i) how to
parameterise the fine-tuning; (ii) when to stop the fine-tuning; and (iii) how to cope with
the very limited amount of new information provided by the small temporal region.

Fine-tuning parameterisation: The first consideration in our fine-tuning approach was
to examine which layers of the baseline network to update. It is commonplace in transfer
learning to freeze all but the last layers of the network [50]. However, in our context, one
important means for adapting the network resides in modelling how the beat is conveyed
within the log magnitude spectrogram itself (i.e., unfamiliar musical timbres such as the
human voice). To this end, we allowed all the layers of the network to be updated by
the fine-tuning process. Since our focus in this paper was restricted to beat tracking, we
masked the losses for the tempo and downbeat tasks. From a practical perspective, this
also means that we did not require downbeat or tempo annotations across the 10 s temporal
region. Concerning the parameterisation of the fine-tuning, we followed common practice
in transfer learning and reduced the learning rate, setting it to 0.0004 (i.e., one fifth of the
rate used in the baseline).

Stopping criteria: The next area was to address when to stop fine-tuning. In more
standard approaches for training deep neural networks, e.g., our baseline approach, cross-
fold validation is used with the validation loss driving the adjustment of the learning
rate and the execution of early stopping. In our approach, if we were to use the entire
10 s region for training, then it would be difficult to exercise control over the extent of
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the network adaption. Using a small, fixed number of epochs might leave the network
essentially unchanged after fine-tuning, and by contrast, allowing a large number of epochs
might cause the network to overfit in an adverse manner. Furthermore, the hypothetically
optimal number of epochs is likely to vary based on the musical content being analysed.
Faced with this situation, we elected to split the 10 s region into two adjacent, disjoint,
5 s regions, using one for training and the other for validation. In this way, we created
a validation loss that we could monitor, but at the expense of reducing the amount of
information available for updating the weights. We set the maximum number of epochs to
fifty and reduced the learning rate by a factor of two when there was no improvement in
the validation loss for at least five epochs, and we stopped training when the validation
loss plateaued for five epochs.

Learning from very small data: The final area for consideration in our approach relates to
strategies to contend with the very limited amount of information in the 5 s temporal region
used for training, which may amount to as few as 10 annotated beat targets. Given our
interest in challenging musical content (which is typically more difficult to annotate [28]),
we should consider the fact that these observable annotations may be poorly localised, and
furthermore that the tempo may vary throughout the piece in question. To help contend
with poor localisation, we used a broader target widening strategy than the baseline
approach, expanding to three adjacent frames on either side of each beat location, with
decreasing weights of 0.5, 0.25 and 0.125, from the closest to the farthest frame. On the issue
of tempo variability, we reused the same data augmentation from the baseline approach:
altering the frame overlap rate by sampling from a normal distribution with a 5% standard
deviation from the local tempo (calculated by means of the median inter-beat interval
across the annotated region).

In summary, when considering each of these steps, we believe that our fine-tuning
formulation was quite general and could be applied to any pretrained network for beat
tracking, and was thus not specific to the TCN-based approach we chose to extend.

5. User Workflow-Based Evaluation

In recent work [51], we introduced a new approach for beat tracking evaluation,
which formulates it from a user workflow perspective. Within this paper, it formed a key
component within our evaluation, and thus, to make this paper self-contained, we provide
a full description here.

We posed the problem in terms of the effort required to transform a sequence of
beat detections such that they maximise the well-known F-measure calculation when
compared to a sequence of ground truth annotations. By viewing the evaluation from
a transformation perspective, we implicitly used the commonly accepted definition for
the similarity between two objects (i.e., the beat annotations and the beat detections) in
the field of information retrieval [52], in effect to answer: How difficult is it to transform
one into the other? By combining this perspective with an informative visualisation, we
sought to support a better qualitative understanding of beat-tracking algorithms, and
thus, we adopted the same approach in this work. Within our current work, we did not
attempt to explicitly incorporate this evaluation method within our fine-tuning approach
via backpropagation, rather we used it only as a guide to interpret the end result.

In musical audio analysis, the manual alteration of automatically detected time-precise
musical events such as onsets [53] or beats [54] is an onerous process. In the case of musical
beat tracking, the beat detections may be challenging due to the underlying difficulty of
the musical material, but the correction process can be achieved using two simple editing
operations: insertions and deletions—combined with repeated listening to audible clicks
mixed with the input. The number of insertions and deletions correspond to counts of false
negatives and false positives, respectively, and form part of the calculation of the F-measure.
While this is routinely used in beat tracking (and many other MIR tasks) to measure
accuracy, we can also view it in terms of the effort required to transform an initial set of
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beat detections to a final desired result (e.g., a ground truth annotation sequence). In this
way, a high F-measure would imply low effort in manual correction and vice versa.

In practice, correcting beat detections often relies on a third operation: the shifting of
poorly localised individual beats. This shifting operation is particularly relevant when
correcting tapped beats, which can be subject to human motor noise (i.e., random distur-
bances of signals in the nervous system that affect motor behaviour [55]), as well as jitter
and latency during acquisition. Under the logic of the F-measure calculation, shifting beat
detections that fall outside tolerance windows are effectively counted twice: as a false
positive and a false negative. We argue that for beat tracking evaluation, this creates a
modest, but important, disconnect between common practice in annotation correction and
a widely used evaluation method. On this basis, we recommend that the single operation
of shifting should be prioritised over a deletion followed by an insertion.

In parallel, we also devised a straightforward calculation for the annotation efficiency
based on counting the number of shifts, insertions and deletions. In our approach,
we weighted these different operations equally. Although valid in an abstract way, in
practice, the real cost of such operations depends on the annotation workflow of the user,
in which we included the supporting editing software tool (e.g., in a particular software,
evenly spaced events could be annotated by providing only an initial beat position, the
tempo in BPM and the duration, while in another software, each beat event may have to be
annotated individually).

We provide an open-source Python implementation (Available at https://github.
com/MR-T77/ShiftIfYouCan (accessed on 25 May 2021)), which graphically displays the
minimum set and type of operations required to transform a sequence of initial beat
detections in such a way as to maximise the F-measure when comparing the transformed
detections against the ground truth annotations. It is important to note that our goal
was not to transform the beat detections such that they were absolutely identical to the
ground truth (although such transformations are theoretically possible), but rather to
perform as few operations as possible to ensure F = 1.00, subject to a user defined tolerance
window.Nevertheless, in its current implementation, the assignment of estimated events
(beats) to one of the possible operations was performed by a locally greedy matching
strategy. In future work, we will explore the use of global optimization using graphs,
as in [56].

We now specify the main steps in the calculation of the transformation operations:

1. Around each ground truth annotation, we created an inner tolerance window (set to
±70 ms) and counted the number of true positives (unique detections), t+;

2. We marked each matching detection and annotation pair as “accounted for” and re-
moved them from further analysis. All remaining detections then became candidates
for shifting or deletion;

3. For each remaining annotation:

(a) We looked for the closest “unaccounted for” detection within an outer tolerance
window (set to ±1 s), which we used to reflect a localised working area for
manual correction;

(b) If any such detection existed, we marked it as a shift along with the required
temporal correction offset;

4. After the analysis of all “unaccounted for” annotations was complete, we counted the
number of shifts, s;

5. Any remaining annotations corresponded to false negatives, f−, with leftover detec-
tions marked for deletion and counted as false positives, f+.

To give a measure of annotation efficiency, we adapted the evaluation method in [16]
to include the shifts:

ae = t+/(t+ + s + f+ + f−). (1)

https://github.com/MR-T77/ShiftIfYouCan
https://github.com/MR-T77/ShiftIfYouCan
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Reducing the inner tolerance window transforms true positives into shifts and thus
sends t+ and hence ae to zero. In the limit, the modified detections are then identical to the
target sequence.

To allow for metrical ambiguity in beat tracking evaluation, it is common to create a
set of variations of the ground truth by interpolation and subsampling operations. In our
implementation, we flipped this behaviour, and instead created variations of the detections.
In this way, we could couple a global operation applied to all detections (e.g., interpolating
all detections by a factor of two), with the subsequent set of local correction operations;
whichever variation has the highest annotation efficiency represents the shortest path to
obtaining an output consistent with the annotations.

The fundamental difference of our approach compared to the standard F-measure is
that we viewed the evaluation from a user workflow perspective, and essentially, we shifted
if we could. By recording each individual operation, we could count them for evaluation
purposes, as well as visualising them, as shown in Figure 3, which contrasts the use of
the original beat detections compared to the double variation of the beats. The example
shown is from the composition Evocaciòn by Jose Luis Merlin. It is a solo piece for classical
guitar, which features extensive rubato and is among the more challenging pieces in the
Hainsworth dataset [23]. By inspection, we can see the original detections were much closer
to the ground truth than the offbeat or double variation. They required just 2 shifts and
1 insertion, compared with 12 shifts, 3 insertions and 1 deletion for the offbeat variation
(without any valid detection), and 3 shifts and 12 deletions for the double variation,
corresponding to very different annotation efficiency scores on the analysed excerpt: 0.8,
0.0 and 0.4, respectively.

S SI

ae:0.800  #det: 12  #ins:  1  #del:  0  #shf:  2  #ops:  3
Original

S S S S S S S S S S S S DI I I

ae:0.000  #det:  0  #ins:  3  #del:  1  #shf: 12  #ops: 16
Offbeat

60 62 64 66 68 70 72 74 76 78 80
time (seconds)

D D D D D D D S D S D S D D D

ae:0.444  #det: 12  #ins:  0  #del: 12  #shf:  3  #ops: 15
Double

Detections Insertions Deletions Shifts

annotations inner tol.win.:±0.07s outer tol.win.:±1.0s

Detections Insertions Deletions Shifts

Figure 3. Visualisation of the operations required to transform beat detections to maximise the
F-measure when compared to the ground truth annotations for the period from 60–80 s, of Evocaciòn.
(Top) Original beat detections vs. ground truth annotations. (Middle) Offbeat—180 degrees out of
phase from the original beat locations—variation of beat detections vs. ground truth annotations.
(Bottom) Double—beats at two times the original tempo—beat detections vs. ground truth annotations.
The inner tolerance window is overlaid on all annotations, whereas the outer tolerance window is
only shown for those detections to be shifted.

The precise recording of the set of individual operations allowed an additional deeper
evaluation, which could indicate precisely which operations were most beneficial and in
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which order. For the F-measure, shifts were always more beneficial than the isolated in-
sertions or deletions, but for other evaluation methods, i.e., those that measure continuity,
the temporal location of the operation may be more critical. By viewing the evaluation from a
transformation perspective combined with an informative visualisation, we hope our imple-
mentation can contribute to a better qualitative understanding of beat-tracking algorithms.

6. Experiments and Results

In this section, we start by detailing the design of our experimental setup, after which
we measured the performance on a set of existing annotated datasets. We then explored the
impact of fine-tuning in two specific highly challenging musical pieces. Finally, we investi-
gated the presence and extent of catastrophic forgetting. When combined, we considered
that these multiple aspects constituted a rigorous analysis of our proposed approach.

6.1. Experimental Setup

As detailed in Section 4, our fine-tuning process relied on a short annotated region
for training and an additional region of equal duration for validation. We reiterate that in
this work where we sought to broadly investigate the validity of fine-tuning over a large
amount of musical material, we simulated the role of the end-user, and to this end, we
obtained these annotated regions from existing beat tracking datasets rather than direct user
input. While the duration and location of these regions within the musical excerpt were
somewhat arbitrary compared to a practical use case with an end-user, for this evaluation,
we chose them to be 5 s in duration each and adjacent to one another starting from the first
annotated beat position per excerpt. By choosing the first beat annotation as opposed to the
beginning of the excerpt, we could avoid any degenerate training that might otherwise arise
if no musical content occurred within the first 10 s of an excerpt (e.g., a long nonmusical
intro). For the purposes of evaluation, the impact of this configuration of fine-tuning across
the early part of the excerpt had the advantage that it was straightforward to trim these
regions to which the network had been exposed prior to inference with the HMM and then
offset the annotations accordingly. In this way, we could contrast the performance of the
fine-tuned version with the baseline model [22] without any impact of the sharp peaks in
the beat activation functions across the training region. Note that due to the removal of the
training and validation regions when evaluating, the results we obtained were not directly
comparable to those in [22], which used the full-length excerpts. To summarise, our goal in
formulating the evaluation was to see the extent to which the adaptation of the network
over a short region near the start of each excerpt was reflected through the rest of the piece.

6.2. Performance Across Common Datasets

While our long-term interest in this work was towards a workflow setting with an
end-user, we believe that it is valuable to first investigate the effectiveness of our approach
on existing datasets and hence to obtain insight into its validity over a wide range of
musical material. To this end, we used four datasets: two from the cross-fold validation
training methodology in the baseline model [22]: the SMC dataset [28] and the Hainsworth
dataset [23]; and two totally unseen by the original model: the GTZAN dataset [25,57],
which was held back for testing, and the TapCorrect dataset [54], upon which the baseline
model has never been evaluated. In terms of the musical make-up of these datasets,
Hainsworth includes rock/pop, dance, folk, jazz, classical and choral. SMC contains classical,
romantic, soundtracks, blues, chanson and solo guitar. GTZAN spans 10 genres, including:
rock, disco, jazz, reggae, blues and classical. TapCorrect is comprised of mostly pop and
rock music. Of particular note for the TapCorrect dataset is the fact that it contains entire
musical pieces rather than the more customary use of excerpts from 30–60 s, and therefore,
this could provide insight concerning the propagation of the acquired knowledge from
the short training region over much longer durations. A summary of the datasets used is
shown in Table 1. When performing fine-tuning on SMC and Hainsworth, we respected the
original splits in the cross-fold validation in [22] and used the appropriate saved model
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file, which was held out for testing. As stated above, the GTZAN dataset was not included
in the splits for cross-validation, meaning we could not make a deterministic selection of
which pretrained model to fine-tune. In the evaluation in [22], the final output per excerpt
was obtained by predicting a beat activation function with the model from each fold of
the cross-validation and then taking their temporal average (so-called “bagging”) prior
to inference with the HMM. While we could pursue this strategy here, it would involve
fine-tuning eight separate times (once per fold) and therefore would significantly increase
the computation time. Instead, we made a random selection among the trained models
and only performed fine-tuning once. Informal evaluation over repeated runs revealed the
specific choice of model to have little impact on the results.

Table 1. Overview of the datasets used for the evaluation.

Dataset # Files Full Length Mean File Length

Hainsworth 222 3 h 19 m 53 s
SMC 217 2 h 25 m 40 s

GTZAN 999 8 h 18 m 30 s
TapCorrect 101 7 h 15 m 4 m 18 s

To measure performance across these datasets, we used the F-measure with the
standard tolerance window of ±70 ms. The results for each dataset are shown in Table 2.

Table 2. Mean F-measure scores across datasets for the baseline and fine-tuning approaches.

Dataset
Baseline Fine-Tuned

F-Measure F-Measure

Hainsworth 0.899 0.945
SMC 0.551 0.589

GTZAN 0.879 0.917
TapCorrect 0.911 0.941

Inspection of Table 2 demonstrates that the inclusion of fine-tuning exceeded the
performance of the baseline state-of-the-art approach for all datasets—even accounting for
the deterministic choice of region for fine-tuning. However, while some broad interpreta-
tion could be made by observing accuracy scores at the level of datasets, we could better
understand the impact of the fine-tuning via a scatter plot of the baseline vs. the fine-tuned
F-measure per excerpt and per dataset, as shown in Figure 4.
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Figure 4. Comparison of the F-measure for the baseline and fine-tuning approaches on in-training
datasets Hainsworth and SMC and out-of-training datasets GTZAN and TapCorrect.

To observe a positive impact of fine-tuning in the scatter plots, we looked for F-
measure scores that are above the main diagonal, i.e., the F-measure per excerpt with
fine-tuning improved over the baseline. Contrasting the scatter plots in terms of this
behaviour, we observe that for Hainsworth and TapCorrect, very few pieces fall below the
main diagonal, indicating that the fine-tuning was almost never worse. At this stage, it
is worthwhile to reaffirm that if the performance was already very high for the baseline
approach, then there was very limited scope for improvement with fine-tuning. Indeed,
such cases fell outside our main use-case of interest, which was to consider what action to
take when the state-of-the-art approach failed. In terms of the nature of the improvements,
we can observe some explainable patterns. For example, those pieces for which the F = 0
for the baseline and F = 1 for the fine-tuning were almost certainly phase corrections from
offbeat (i.e., out-of-phase) to onbeat (i.e., in-phase) at the annotated metrical level. Likewise,
any improvement of F = 0.67 to F = 1 was very likely a correction in the choice of metrical
level by doubling or halving, i.e., a change to the metrical level corresponding to twice or
half the tempo, respectively. Alternatively, we can see that for those pieces that straddle
the main diagonal, the impact of the fine-tuning is negligible. Finally, at the other end
of the spectrum, we can observe that for SMC and GTZAN, there are at least some cases
for which the fine-tuning negatively impacted performance. However, we should note
that there are very few extreme outliers where it was catastrophically worse to fine-tune.
Ultimately, the cases of most interest to us were those which sit on or close to the line F = 1
after fine-tuning, as these represent those for which there was the clearest benefit.

To obtain a more nuanced perspective, we reported the counts of all the operations
necessary to calculate the annotation efficiency, namely the insertions, deletions and shifts
required to transform a set of detections so as to maximize the F-measure. This information
is displayed in Table 3. By contrasting the baseline and fine-tuned approaches, we see
that across all datasets, fewer total editing operations were required. Indeed, per class
of operation, the use of fine-tuning also resulted in fewer insertions, deletions and shifts.
In this sense, we interpreted that the impact of fine-tuning was more pronounced than
merely correcting the metrical level or phase of the detected beats. Thus, even accounting
for the fact that, from a user perspective, each of these operations might not be equally
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easy to perform, and a reduction across all operation classes highlighted the potential for
the improved efficiency of an annotation-correction workflow.

Table 3. Global number of atomic edit operations: correct detections (#det), insertions (#ins), deletions
(#del), shifts (#shf) and total edit operations (#ops) for the different test datasets.

Dataset Model #det #ins #del #shf #ops

Hainsworth Baseline 16,498 923 455 837 2215
Fine-Tuned 17,241 500 246 517 1263

SMC Baseline 4593 810 1337 2457 4604
Fine-Tuned 5028 670 1107 2162 3939

GTZAN Baseline 33,505 3348 1132 2235 6715
Fine-Tuned 35,403 1911 492 1774 4177

TapCorrect Baseline 35,072 3285 1622 910 5817
Fine-Tuned 36,659 2115 1236 493 3844

6.3. Impact on Individual Excerpts

In this section, we take a more direct look at the impact of fine-tuning by focussing
on two specific pieces, a choral version of the song Blue Moon, taken from the Hainsworth
dataset, and a full-length performance of the Heitor Villa-Lobos composition Choros №1,
as performed by the Korean guitarist Kyuhee Park.

6.3.1. Blue Moon

Blue Moon (Excerpt Number 134 from the Hainsworth dataset [23]) is an a cappella perfor-
mance and thus contains no drums or other musical instrumentation besides the voices
of the performers. Nevertheless, the performance has a clear metrical structure driven
not only by the lyrics and melody, but also the orchestration of different musical parts
by the singers. On this basis, it represents an interesting case for further exploration, as
choral music is well known to be extremely challenging for musical audio beat-tracking
systems [28]. In Figure 5, we plot the log magnitude spectrogram with beat annotations
overlaid as white dotted lines. As can be seen, there is very little high-frequency informa-
tion with most energy concentrated under 4 kHz—and thus consistent with singing. In the
middle plot, we can observe the beat activation function produced by the baseline approach
together with the ground truth annotations. By inspection, we can see that the peaks of
the beat activation function are very low, which is indicative of the low confidence of the
baseline model in its output. Following the same strategy used for the evaluation across
the datasets, we used the ground truth annotations and performed fine-tuning across the
period in the first 10 s of the recording, validating on the first period of 5 s and training on
the second period of 5 s, with the resulting beat activation function shown in the lowest
plot of the figure. Contrasting the two beat activation functions, we can observe a profound
difference. Once we allowed the network to adapt itself to the spectrotimbral properties of
the beat structure of this specific piece, we can see a series of regular sharp peaks in the
beat activation, which visually correspond to the overlaid manual annotations.
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Figure 5. Network outputs for the baseline and fine-tuning approaches on Blue Moon. The validation
region is composed by the 5 s after the first beat annotation (red), the finetune region by the following
5 s (blue) and the test region starting immediately after and going until the end of the file (green).

In terms of quantifying the improvement, we can see in Table 4 that when we fine-
tuned, the number of required editing operations fell from eighty-three to eight, thus
demonstrating the impact that a small number of annotations can have in transforming
the efficacy of the baseline network for challenging content. To see this effect visually, we
can plot precisely which operations are required and at which time instants both for the
baseline and fine-tuned approach, as shown in Figure 6. In the upper plot of the figure, we
can observe the high number of insertions, which is indicative of the baseline approach
estimating a slower metrical level than the annotations. While it is possible to interpolate a
set of beat detections to twice the tempo, this is only straightforward in cases where the
tempo is largely constant. From the regions around 8 s–11 s and likewise from 25 s–32 s,
there are numerous shift operations as well, indicating that the HMM was not able to make
reliable beat detections in this region. By contrast, we see far fewer operations in the lower
plot with the fine-tuned beat activation function, all of which are shifts in the form of minor
timing corrections. Indeed, close inspection of the region right at the end of the excerpt
(beyond the 50 s mark) highlights an interesting facet that the peaks of the beat activation
function are strong, but misaligned with the annotations. Listening back to the manual
annotations and the source audio, we could confirm that these specific annotations were
drifting out of phase and should be corrected.

Table 4. Annotation efficiency (ae), correct detections (#det) and insertions (#ins), deletions (#del),
shifts (#shf) and total edit operations (#ops) for Blue Moon.

ae #det #ins #del #shf #ops

Baseline 0.272 31 56 0 27 83
Fine-Tuned 0.930 107 0 1 7 8
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Figure 6. Network outputs for the baseline and fine-tuning approaches on Blue Moon. The validation
region is composed by the 5 s after the first beat annotation (red), the finetune region by the following
5 s (blue) and the test region starting immediately after and going until the end of the excerpt (green).
The dark blue solid line indicates the network prediction. The vertical grey dotted lines show
the ground truth annotations. The vertical light blue solid lines show the correct beat detections.
The incorrect beat outputs are notated with the required operation colour (delete—orange, shift—pink,
insert—green).

6.3.2. Choros №1

The Blue Moon example from the previous section was selected in part due to its
challenging musical properties, but also since it could be identified as among the excerpts
from the Hainsworth dataset whose F-measure score was most improved by fine-tuning.
In this section, we move away from excerpts in existing annotated datasets and instead
look towards a simulation of our real-world use case. For this example, we chose a highly
expressive solo guitar performance of the Heitor Villa-Lobos composition Choros №1 as
performed by Kyuhee Park (for reference, the specific performance can be found at the
following url: https://www.youtube.com/watch?v=Uj_OferFIMk (accessed 25 May 2021)).
Rather than using a minute-long excerpt, we examined the piece in its full duration of
4 m 51 s. A particular characteristic of this piece and something that is especially prominent
in this specific performance is the extreme use of rubato—a property that is challenging
for musical audio beat-tracking systems since it diverges strongly from the notion of a
regular pulse. Indeed, the ground truth annotation of this piece, conducted entirely by
hand in Sonic Visualiser [58], was very time-consuming and required frequent reference to
the score to resolve ambiguities.

In Figure 7, we show the score representation of the beginning of the piece, including
the anacrusis and the first complete bar. The anacrusis is important as it represents the main
motif of the piece, recurring in several locations across its duration. It is composed of three
sixteenth notes with fermata, indicating that the notes should be prolonged beyond the
normal duration—at the discretion of the performer. This notation instructs the performer
to an almost ad libitum interpretation, which results in extensive rubato across the full
piece. Within the recording, these three sixteenth notes are clearly sounded by plucking,
and given the absence of other instruments, they would be straightforward to detect even
for a naive energy-based onset detection scheme. However, in the recording, they last over
4 s in duration and are thus highly problematic for beat tracking, because by reference to
the score, all three occur within one notated beat.

https://www.youtube.com/watch?v=Uj_OferFIMk
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Figure 7. Excerpt of the Choros №1 score (until the end of the first complete bar).

Since the analysis of this piece is not within the domain of annotated datasets,
we adapted our fine-tuning strategy and expanded the region for fine-tuning to cover
the first 15 s of the piece without validation and used the maximum number of epochs.
Besides this alteration, we left all other aspects of the fine-tuning process described in
Section 4 identical.

In the plots in Figure 8, the occurrences of this musical phrase are clearly depicted by
a pattern in the log magnitude spectrogram input of the network in conjunction with the
absence of beat annotations. The beat activation function of the baseline network output
shows a strong indication of beats at these locations, whereas when performing fine-tuning,
the beat activation is close to zero across all occurrences of the motif, despite the existence
of clear onsets. In contrast to the Blue Moon example in which we observed the network
adapt to a specific kind of spectrotimbral pattern to convey the beat, here we find evidence
that the fine-tuning process has allowed the network to learn what is not the beat.
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Figure 8. Network input and outputs for the baseline and fine-tuning approaches on Choros №1.
Finetune region 0–15 s (blue) and the test region starting at 15 s (green).

The adaptation produced by the fine-tuning process has a clear impact from a practical
point of view, as shown in Figure 9 and Table 5, with fewer editing operations required.
From the zoomed in plot in Figure 9, we can see how well the fine-tuned network learned
to ignore the motif once it occurred again just after the 30 s point. Indeed, here we observe
a potential downside of the normally advantageous property of the HMM to fill gaps in a
plausible way, as we see spurious detections from the fine-tuned network, which must be
deleted. This behaviour, while specific to this piece, indicates that for highly expressive
music including pulse suspensions, it may be worthwhile to consider a piecewise use of
the HMM to prevent these gaps from being filled, e.g., based on the manual selection
of temporal regions for inference, or in an automatic way by segmenting and excluding
so-called “no beat” regions, as in [59].
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Figure 9. Network outputs for the baseline and fine-tuning approaches on Choros №1 (zoomed over
the initial 40 s). Finetune region 0–15 s (blue) and the test region starting at 15 s (green). The dark blue
solid line indicates the network prediction. The vertical grey dotted lines show the ground truth
annotations. The vertical light blue solid lines show the correct beat detections. The incorrect beat
outputs are noted with the required operation colour (delete—orange, shift—pink, insert—green) to
correct the annotation.

Table 5. Annotation efficiency (ae), correct detections (#det) and insertions (#ins), deletions (#del),
shifts (#shf) and total edit operations (#ops) for Choros №1.

ae #det #ins #del #shf #ops

Baseline 0.555 207 0 69 97 166
Fine-Tuned 0.654 236 0 57 68 125

6.3.3. Catastrophic Forgetting

In the final part of our evaluation, we considered the impact of fine-tuning from
a different perspective. Having established that fine-tuning is beneficial at the level of
individual pieces, we now re-assess the performance of a fine-tuned network adapted to a
given piece on other data. To this end, we investigated the presence and extent of “catas-
trophic forgetting.” Known also as catastrophic interference, catastrophic forgetting is a
well-known problem for backpropagation-based models [60] and is characterized by the
tendency of an artificial neural network to abruptly forget previously learned information
upon learning new information. Despite the sequential learning nature of our fine-tuning
adaptation, this is merely episodic, as opposed to the continual acquisition of incrementally
available information, which is more commonly addressed in catastrophic interference [61].
Nevertheless, it is of interest in the context of this work to examine what a fine-tuned net-
work loses in terms of general knowledge about the beat when adapted to the properties of
a specific piece of music.

To explore this behaviour, we return to the Blue Moon excerpt from the Hainsworth
dataset. Across the training epochs of this excerpt, we evaluated the performance of each
of the corresponding 24 models over the GTZAN and TapCorrect datasets. More specifically,
for every epoch of the fine-tuning of Blue Moon, we saved the intermediate network and
used it to estimate the beat in every excerpt of the GTZAN and TapCorrect datasets. In this
way, we repeated the evaluation over these datasets 24 separate times.

Thus far, we have shown that, for this piece, there is a dramatic improvement in
the F-measure once the fine-tuning has completed. However, we have not observed the
manner in which the F-measure improves over the intermediate training epochs, nor how
the fine-tuning process (i.e., specific to this musical excerpt) impacts performance on other
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musical content. In the presence of catastrophic forgetting, we should expect some kind
of inverse relationship in performance, with the improvement on Blue Moon coming at
the expense of that on GTZAN and TapCorrect. In Figure 10, we plot this relationship over
24 epochs and indicate that early stopping occurs at Epoch 18.
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Figure 10. Evolution of F-measure during fine-tuning of Blue Moon on the GTZAN and TapCorrect
datasets. Solid lines correspond to the fine-tuned model and dotted lines to the baseline model.

From the inspection of Figure 10, we can observe a rather nonlinear, and indeed
nonmonotonic, increase in performance for Blue Moon. Between Epochs 15 and 16, there is
a sudden jump in performance, after which the F-measure saturates above 0.90. Looking
at the performance across the annotated datasets, we can see that the performance for
GTZAN is essentially unchanged, and for TapCorrect, the F-measure falls by fewer than
three percentage points. While our analysis was limited to fine-tuning on a single excerpt,
it would appear that there was a very limited drop in performance due to the adaption
of the network to Blue Moon. Indeed, if we considered that there were approximately
116 k weights in the baseline model and that we gave the network a very small temporal
observation of 5 s, to which the network adapted with a reduced learning rate (one-fifth
of the baseline training), we should perhaps not be surprised that a great proportion of
the network weights remained unchanged. At this stage, we leave deeper analysis of this
aspect as a topic for future work.

7. Discussion and Conclusions

In this paper, we explored the use of excerpt-specific fine-tuning of a state-of-the-art
beat tracking system based on exposure to a very small annotated region. Across existing
datasets, we demonstrated that this approach can lead to improved performance over
the state of the art, and furthermore, we illustrated its potential to adapt to challenging
conditions in terms of timbre and musical expression. We believe that the principal
contribution of this work was to demonstrate the potential of fine-tuning within a user-
driven annotation workflow and thus to provide a path towards very accurate analysis on
highly challenging musical pieces. Within the wider context of beat tracking, we foresee
that this type of approach could be used as a means for rapid, semi-automatic annotation
of musical pieces to expand the amount of challenging annotated data for training new
approaches. To this end, we will pursue the integration of our fine-tuning approach within
a dedicated user interface for annotation, e.g., Sonic Visualiser [58].

In spite of the promising results obtained, it is important to recognise several limita-
tions of our work and how they may be addressed in the future. First, our comparison
against the state of the art was arguably tilted in favour of the fine-tuned approach, since
per excerpt, we essentially created a new model and compared it to a single general model
trained over a large amount of data. That said, our evaluation was carefully designed to
exclude the interaction of the trained part of the input signal at inference, and furthermore,
we did not claim that our fine-tuned approach represents a new state of the art. We simply
sought to demonstrate that fine-tuning can be successfully applied across a large amount
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and variety of musical material. Second, our evaluation was dependent on a rather arbi-
trary selection of two 5 s regions for training and validation; of course, we can expect that
as we increase the duration of these regions, then we will likely obtain better performance
for the piece in question, but doing so would require increased annotation effort on the
part of the user, which we sought to minimize as much as possible. Indeed, in the limit, this
would resolve to the user annotating the entire piece without any need for an automated
solution at all.

Concerning the location of these regions, this was largely dictated by the goal of
providing a “fair” comparison with the baseline network. A specific limiting factor of
this deterministic assignment of the training region is that if the musical content in the
remainder of the piece differs greatly from the information available for fine-tuning, then
we should not expect it to be beneficial. To this extent, we may be underestimating the
performance of our approach.

Within a real-world context, we foresee two main differences: (i) the end-user could
choose where to annotate and for what proportion of the piece; and (ii) it would likely
be advantageous not to exclude the region that has been exposed to the network at the
time of inference. Beyond the presence of sharp peaks in the beat activation function,
the user-provided beat annotations could also be harnessed for a more content-specific
parameterisation of the inference technique, e.g., by setting an appropriate tempo range or
some other parameterisation targeted for the presence of expressive timing [31]. As such,
we believe that the real validation of our approach is not rooted in existing annotated
datasets, but in a future user study that investigates how this approach can aid the annota-
tion workflow. At this stage, we considered such an evaluation premature and reliant on
first establishing, in quantitative terms, that fine-tuning is viable. However, in the future,
we intend to gain deeper insight into how this approach could be used for data annotation,
as well as understanding the impact and effort of the different correction operations. At the
moment, we treated insertions, deletions and shifts as if they were equal for the calculation
of the annotation efficiency, but we recognise that this is a simplification.

From a technical perspective, our approach to fine-tuning could be advanced in
several ways. In our current implementation, we diverted from common practice in
transfer learning between different tasks, which typically freezes all but the very last
network layers, and instead unfroze all layers. In particular, we believe this is beneficial
when it comes to analysing music that is unfamiliar from a timbre perspective and thus
requires the adaptation of layers closer to the musical signal. However, we contend that
there is significant potential to explore more advanced strategies including discriminative
fine-tuning and gradual unfreezing [50], as well input-dependent fine-tuning, which
could automatically determine which layers to fine-tune per target instance [62]. When
considering the training regime, we also intend to explore novel ways in which the network
adaptation could observe the entire piece, e.g., via semi-supervised learning, and thus
overcome the limitations associated with fine-tuning based only on a partial observation of
the input. Finally, looking beyond the task of musical audio beat tracking, we hope that
our proposed fine-tuning methodology could be applied within other annotation-intensive
MIR tasks.
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