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Abstract: True random number generators (TRNGs) have been a research hotspot due to secure
encryption algorithm requirements. Therefore, such circuits are necessary building blocks in state-of-
the-art security controllers. In this paper, a TRNG based on random telegraph noise (RTN) with a
controllable rate is proposed. A novel method of noise array circuits is presented, which consists
of digital decoder circuits and RTN noise circuits. The frequency of generating random numbers is
controlled by the speed of selecting different gating signals. The results of simulation show that the
array circuits consist of 64 noise source circuits that can generate random numbers by a frequency
from 1 kHz to 16 kHz.

Keywords: random telegraph noise; true random numbers; information security; controllable frequency

1. Introduction

With the development of information technology, information security technology has
become a significant research hotspot. The application of random numbers is the basis of
the entire encryption process in the field of information security. Therefore, it is useful for
information security to generate high-quality and high-throughput-rate random numbers.

True random numbers (TRNs) are generally based on a real physical random phe-
nomenon and has a true source of random entropy. This includes metastable phenomena
of digital circuits, thermal noise, jitter, and other random physical phenomena. TRN has
unpredictable characteristics, which means that no attacker can observe and manipulate
it [1].

The method of using the physical noise of the circuit as the source of entropy has
better randomness and higher operability at the level of the circuits. Several mode TRNGs
based on RTN have been studied to obtain hardware devices with better randomness [2–5].
Most TRNGs based on RTN are focused on generating random numbers with low power
or better randomness. In addition, the frequency of random numbers generation is an
important performance indicator. Previous research on the frequency of random number
generation has focused on increasing fixed frequency. In fact, the controllable frequency of
random number generation has great significance in circuit applications.

We designed a TRNG by the combination of digital and analog circuits. The analog
circuits consist of noise array circuits for generating RTN, a low-noise operational amplifier
circuit for acquiring noise signals, a high-pass filter circuit for filtering noise signals,
and a comparator circuit for comparing random signals. The digital circuits include a
digital decoder circuit for gating noise array circuits and a memory circuit for storing
random signals.
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2. Materials and Methods
2.1. Noise Source Circuits
2.1.1. Principle of RTN Generation

RTN is one of the important dynamic sources of change in metal-oxide semiconductor
field effect transistors (MOSFETs). The drain current of MOSFETs will fluctuate randomly
between several discrete numbers over a wide time range if the MOSFET channel has a
defect or trap [6].

RTN is a type of charge migration disturbance caused by trap trapping and releasing
charge in single or multiple traps, which causes macrocurrent fluctuation. The probability
of a single trap appearing in the oxide layer on the surface of the channel is high in short
channel MOSFETs. Therefore, this paper focuses on the RTN caused by a single trap in
short-channel MOSFETs.
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The physical characteristics of random telegraph noise are mainly determined by three
parameters: the average capture time τc, the average emission time τe, and the difference
in current between the two states ∆ID. The normalized amplitude of current fluctuation
between trap capture and emission electrons is described by Equation (1) [7,8].

2.1.2. RTN Source Circuit

The fluctuation current is difficult to accurately collect by the signal processing cir-
cuit since the macroperformance of the RTN is a small fluctuation of the drain current.
Therefore, a method of converting the fluctuating current into a large-voltage fluctuation
was adopted, as shown in Figure 1. The voltage fluctuations can be adjusted to a greater
order of magnitude by selecting an appropriate circuit structure. Therefore, the input noise
requirement for the subsequent signal-processing circuit is much lower since the amplitude
of the output voltage is large.
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Figure 1. Random telegraph noise (RTN) source circuit structure.

Considering that the RTN appears when the MOSFET oxide layer has a defect or trap,
the occurrence of the trap is a probabilistic event in the production process of the integrated
circuits. Therefore, the redundancy design of the noise source unit circuit is required. A
strobe circuit is added to control different noise source units, as shown in Figure 1, where
Ctrl is the strobe control signal. M3 is an N-type MOSFET that generates RTN. M4 is a load
to convert the drain current into a voltage signal.

Simulation analysis was performed using the simulation tool MMSIM under Ca-
dence’s integrated environment IC617. The input of the circuit is Nbia = 650 mV for the
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bias voltage input of the N-type MOSFET and Pbia = 400 mV for the bias voltage input of
the P-type MOSFET. The transient simulation time is 50 ms.

The results are shown in Figure 2. It can be seen from the simulation waveform that
the fluctuation of the drain current caused by the RTN phenomenon produces a voltage
fluctuation. Furthermore, the RTN simulation model can precisely describe the RTN
phenomenon in the transistor.
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2.2. Noise Signal Processing Circuits

The structure of processing noise signals includes analog and digital circuits, as shown
in Figure 3. The main function of the digital circuit is to gate the noise source circuits and
store the random numbers. The main function of the analog circuit is to amplify, filter,
and compare the noise source signals. The decoder strobes the noise source circuits, the
operational amplifier (OA) amplifies the RTN signals, and the amplified signals are filtered
by the filter to remove the DC offset and the low-frequency other 1/f noise. The output of
the filter is compared to a reference voltage by comparators, which ultimately produces a
random bit stream. Finally, the memory circuits store the random bit stream.
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2.2.1. Operational Amplifier

The OA uses a two-stage amplification structure, as shown in Figure 4. The cascode
devices of M4 and M5 can effectively increase the gain of the first stage, which can increase
the small-signal transconductance and reduce the thermal noise of the circuit. The differen-
tial stage inputs, M2 and M3, are P-type MOSFETs because P-type MOSFETs have lower
frequency flicker noise than N-type MOSFETs. M1 and M0 provide mirror current. M6 and
M7 are used as loads. It should be noted that the gate length of the load transistor is larger
than that of the input transistor, which is more helpful in reducing flicker noise [9].
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2.2.2. High-Pass Filter

The RTN signals need to be filtered to remove the DC component and other low-
frequency flicker noise after amplifying. The high-pass filter can implement the function of
filtering. The high-pass filter structure is shown in Figure 5. It uses a MOSFET instead of
a capacitor and a resistor since the gate of the MOSFET can be regarded as a pole of the
capacitor, while the remaining source, drain, and substrate are terminated together as the
other pole of the capacitor. In addition, two MOSFETs are connected in series instead of
resistors. A high-pass filter of the desired cutoff frequency can be achieved by appropriately
selecting the ratio of the channel width to length of the MOSFET.
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2.2.3. Latch Comparator

The structure of the comparator has been optimized, while the traditional dynamic
latched comparator structure has defects. The dynamic comparator structure is shown in
Figure 6. The bias currents of the input and latch stages are provided by M1 and M2. This
also reduces the stack of transistors between the power supply and ground compared to a
conventional dynamic latched comparator structure. Therefore, it is suitable for operation
at low-supply voltages.
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The working process of the high-speed dynamic latched circuit is divided into two
phases, a reset phase and a comparison phase. In the reset phase, CLK is in a logic-low
state, M0 is turned off, M3 and M4 are turned on, node A and node B are pulled to voltage
VDD, M11 and M12 are turned off, M5 and M8 are turned on, and Outn and Outp are
pulled to zero potential. The latch consisting of M6, M9, M7, and M10 is in the hold state;
the output of the comparator is kept at zero potential.

In the comparison phase, CLK is in a logic-high state, M0 is turned on, M3 and M4
are turned off, node A and node B discharge at different rates depending on the input
voltages, Vinn and Vinp. When the voltages of node A and node B are successively placed
on VDD-|VTH|, which is the turn-on voltage of the P-type MOSFET, M11 and M12 start
to conduct and operate in the saturation region. Node C and node D then begin to charge
until M9 and M10 are turned on. Then, Outn and Outp are charged until M6 and M7 are
turned on. There must be a voltage difference between nodes A and B at the same time
since the discharge rates of node A and node B are different at the beginning. Therefore,
the Outn and Outp have a voltage difference. This differential voltage is rapidly amplified
to the supply voltage and zero potential as the initial differential of the latch. The Outn will
output a logic 1, and the Outp will output a logic 0, if the voltage value of Vinn is greater
than Vinp. Similarly, Outn will output a logic 0, and Outp will output a logic 1, if the voltage
value of Vinn is less than Vinp.

2.2.4. Asynchronous FIFO

The asynchronous first input first utput (FIFO) is connected after the comparator
output. The aim of the asynchronous design is to deal with the problem that the read clock
of the digital circuits is not synchronized with the write clock of the analog circuits.

The asynchronous FIFO is generally composed of a write controller, a read controller,
a synchronization unit, and a storage array, as shown in Figure 7. The write controller is
responsible for receiving the write enable signal in the write clock domain, providing the
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write address and generating a full signal. In Figure 7, full is the write FIFO full signal,
wr_en is the write enable signal, wr_clk is the write clock, and wr_addr is the write address.
The read controller is responsible for receiving the read enable signal, providing the read
address and generating a null signal in the read clock domain. Additionally, empty is
the read FIFO empty signal, rd_en is the read enable signal, rd_clk is the read clock, and
rd_addr is the read address. The storage array is responsible for writing and reading data.
The din is the data input, dout is the data output, and rst_n is the asynchronous reset
signal. The synchronization unit is responsible for synchronizing the read address signal
of the read clock domain to the write clock domain and synchronizing the write address
of the write clock domain to the read clock domain. The syn_rd_addr is a read address
signal synchronized to the write clock domain, and syn_wr_addr is a write address signal
synchronized to the read clock domain. The purpose of the synchronization process is to
compare the read address with the write address to generate a full or empty signal.
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3. Results

The analog system of the designed noise source circuit, operational amplifier circuit,
high-pass filter circuit, and latched comparator circuit is verified by post-simulation. The
simulation results are shown in Figure 8.
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In Figure 8, (a) is the clock input signal of the dynamic latched comparator, (b) is the
output voltage signals of the RTN source circuit, and (c) is the output voltage signals of the
dynamic latched comparator. It can be concluded that the comparator will output logic
1 if the output voltage fluctuation value of the RTN source circuit is high by analyzing
the post-simulation waveform. Similarly, the comparator will output logic 0 if the output
voltage fluctuation value of the RTN source circuit is at a lower value. The output of the
comparator produces a random sequence after a period of simulation. In summary, the
entire true random number analog circuit system implements the process from the random
signals of the RTN source to the random sequence output.

The design contains digital and analog circuits, so it is necessary to perform mixed
post-simulation to verify system functions. Figure 9 shows a schematic of the top-level
circuit for digital-analog mixed simulation. The digital-to-analog interface part needs to
convert the digital signal into a corresponding analog signal, the digital logic 1 is converted
into a power voltage of the noise source part by 1.1 V, and the digital logic 0 is converted
into a ground voltage value of 0 V.
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Figure 9. Schematic of digital-analog mixed post-simulation.

In Figure 10, (a) shows the input of the digital decoder, and the number represents
the logical value of the input; (b) is the input clock signal of the dynamic latch comparator
in the analog system circuit; (c) is the output signal of the RTN source unit; and (d) is the
output comparison result of the dynamic latched comparator. It can be confirmed that
there is a trap in the MOSFET oxide layer of the noise source circuit when the input logic
value of the decoder is one or three, which can generate RTN and a random sequence. On
the contrary, there is no trap in the MOSFET oxide layer of the noise source circuit when
the input logic value of the decoder is zero or four. Therefore, the output value of the
comparator is always zero. It can be seen from the mixed simulation that the digital circuits
can match the analog circuits to achieve the expected function.

Figure 11 shows the waveform of random bit streams generated by TRNGs with
different frequencies of selecting noise array circuits in 20 ms. It can be found that the
frequency of random bit streams remains steady when the frequency of selecting noise
circuits is lower than 1 kHz. This is the frequency of the RTN noise. The frequency of
random bit streams will increase significantly when the frequency of selecting noise circuits
increases. Additionally, within a certain range, the frequency of random bit streams is equal
to the frequency of selecting noise circuits, where (a) is the random bit streams generated
by selecting one noise circuit; (b) is the random bit streams generated by selecting noise
circuits with a frequency of 1 kHz; (c) is the random bit streams generated by selecting
noise circuits with the frequency of 4 kHz; and (d) is the random bit streams generated by
selecting noise circuits with a frequency of 16 kHz.
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4. Discussion

The method of probability and statistics was used to detect random numbers. The test
procedure issued by the National Institute of Standards and Technology (NIST) is one of
the standards for randomness testing [10]. The random numbers of 100 Mbit generated by
the TRNG were tested. The results of the randomness testing are shown in Table 1.
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Table 1. National Institute of Standards and Technology (NIST) randomness testing results.

Random Detection p-Value Random Detection p-Value

Frequency Test 0.4372 Maurer Test 0.6787

Frequency Test within a Block 0.1909 Lempel-Ziv Compression Test 0.2023

Runs Test 0.6329 Linear Complexity Test 0.7792

Test for the
Longest Run of Ones in a Binary Matrix Rank Test 0.9114 Serial Test 0.4001

Binary Matrix Rank Test 0.4373 Approximate Entropy Test 0.4453

Discrete Fourier Transform Test Matching Test 0.1025 Cumulative Sums Test 0.8141

Non-overlapping
Template Matching Test 0.9879 Random Excursions Test 0.5955

Overlapping
Template Matching Test 0.1816 Random

Excursions Variant Test 0.7981

The NIST algorithm includes 16 detection items which describe the randomness of the
sequence from different aspects. The final judgment of each detection item usually uses the
p-value method. It can be confirmed that a detection item passes the randomness testing if
its p-value is larger than the value of α. The significance level of α is 0.1 [10].

The results showed that the random numbers generated by the TRNG which was been
designed in this paper passed the randomness testing. The quality of random numbers
is higher.

The processes of collecting, processing, converting, and storing RTN signals are
focused on in this paper. The design and implementation of low-noise budget ampli-
fiers, high-pass filters, and dynamic latch comparators were studied. There is also an
asynchronous FIFO module which stores the random number sequence. The method of
controllable frequency for the final random number sequence was proposed by using noise
source arrays and switch gating. The conformity between the RTN signal in the actual
circuits and the adopted model and the randomness of the RTN signals are not the focus of
this paper.

5. Conclusions

The proposed TRNG designed by combining digital and analog circuits achieved
controllable frequency by generating random numbers. The simulation showed that the
frequency can be controlled by the speed of selecting noise array circuits. It was verified
that more noise circuits can be used in the array circuits to increase the throughput rate.
The randomness testing of the random numbers generated by the TRNG indicates that
they are true random numbers.
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