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Abstract: Recently, intelligent control techniques have received considerable attention. In most
studies, the systems’ model is assumed to be without any delay, and the effects of faults and failure
in actuators are ignored. However, in real practice, sensor malfunctioning, mounting limitation,
and defects in actuators bring about faults, failure, delay, and disturbances. Consequently, applying
controllers that do not consider these problems could significantly deteriorate controllers” perfor-
mance. In order to address this issue, in the current paper, we propose a new neural network-based
fault-tolerant active control for fractional time-delayed systems. The neural network estimator is
integrated with active control to compensate for all uncertainties and disturbances. The suggested
method’s stability is achieved based on the concept of active control and the Lyapunov stability
theorem. Then, a fractional-order memristor system is investigated, and some characteristics of
this chaotic system are studied. Lastly, by applying the proposed control scheme, synchronization
results of the fractional time-delayed memristor system in the presence of faults and uncertainties
are studied. The simulation results suggest the effectiveness of the proposed control technique for
uncertain time-delayed nonlinear systems.

Keywords: chaos control; RBF neural network; active control; delayed system; non-integer calculous;

memristive system

1. Introduction

In recent decades, the control and synchronization of nonlinear systems has been the
focus of numerous research studies [1-11]. Researchers from different points of view have
tried to propose effective methods for controlling various systems [12,13]. In this regard,
stabilization, regulation, and synchronization of chaotic systems has always been a hot
topic among researchers in the field of control [14-17].
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The superiority of fractional calculus over its integer counterparts has recently made
it an attractive tool for modeling in many studies [18-20]. The ability to describe the
hereditary characteristics of systems, and their memory, makes fractional calculus an
advantageous method for modeling systems, processes, and phenomena [21,22]. Con-
sequently, along with the increase in research studies on fractional systems, the design
of controls for such systems has been on the rise. Various control techniques, including
fuzzy [22], adaptive [23], optimal [24], sliding mode [25], terminal sliding mode [26],
model predictive [27], and active control [28], as well as their combination [29], have been
proposed for fractional systems.

Uncertainties and disturbances are indispensable in most systems in practice [30].
Indeed, in nonlinear systems, disturbances and uncertainties cannot be directly mea-
sured [31,32]. This issue necessitates the application of robust and intelligent controllers
for such complex nonlinear systems [33,34]. Hence, to date, various kinds of observers
and estimators have been proposed to compensate for uncertainties and unexpected dis-
turbances [35-37]. Among all of the proposed disturbance observers, those that are based
on neural networks have some fruitful advantages (for further details, see [38—40]). To
date, RBF neural networks have been used in various engineering fields, including control
engineering [41], civil engineering [42], mechatronic engineering [43], petroleum engineer-
ing [44], and electrical engineering [45].

Studies on robust control techniques for fractional time-delayed systems are rare.
Developing more effective control techniques is essential for achieving more accurate
and appropriate results in stabilizing and synchronizing nonlinear delayed systems. This
issue motivated the current research. As a novel approach, within the present research,
a combination of active control and neural network estimator is suggested, while taking
the effects of faults in actuators into account, in order to achieve appropriate control
objectives for uncertain nonlinear fractional time-delayed systems. As compared with
other controllers for fractional time-delayed systems, the significant advantage of the
proposed scheme is its robustness against faults, failures, and disturbances. Additionally,
the stability of the proposed technique is proven on the basis of the Lyapunov theorem and
the principle of active control. Finally, the proposed control in the current study is applied
to time-delayed memristor systems, and its luminous results are demonstrated.

2. Similar Studies on the Control of Fractional Time-Delayed Systems

Due to the differences between the stability of fractional systems and that of classi-
cal integer-order ones, it is difficult to generalize the results for the synchronization of
time-delayed integer-order systems to time-delayed fractional-order systems [46]. Hence,
developing methods for time-delayed fractional-order systems is of crucial importance.
Although there are several excellent methods for synchronization of time-delayed integer-
order systems in the literature, studies on fractional-order systems with delays are rare,
and most of them have significant drawbacks that make their application to real-world
systems challenging. In the following paragraph, the most important studies on the control
of time-delayed fractional-order systems are presented.

In [47], a developed PID controller was proposed for time-delay fractional-order
systems. In [48], a robust sliding-mode control was proposed for uncertain time-delayed
fractional-order chaotic systems. Additionally, Wang et al. [46] proposed a control method
based on linear stability for the synchronization of time-delayed fractional-order chaotic
systems. A modified projective synchronization for different fractional-order chaotic
systems with variable time delays was proposed by Behinfaraz et al. [49].

In most of the above-mentioned studies, the robustness of the controller against
time-varying uncertainties, disturbances, and faults was completely ignored. Hence, the
performance of these methods will be decreased in real-world applications. On the other
hand, neural networks have provided promising achievements in dealing with unknown
functions. These issues motivate the current study.
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3. Preliminaries

Some concepts and preliminaries regarding fractional calculus, the stability of frac-
tional time-delayed systems, and RBF neural networks are presented in this section.

3.1. Fractional Calculus
The Caputo method is used for fractional integrals and derivatives.

Definition 1 [50]. The fractional integral of function f(t) is defined as

1F6) = o7 [ (=) Fs)s 0

where t > ty and g > 1 is integral order. Moreover, I'(q) stands for the Gamma function, and is
calculated through the following equation:

I(s) = /O Yoty @)

Definition 2 [50]. The fractional derivative of function f(t) € C"([to,+o),R), where the
fractional order is more than one, i.e., ¢ > 1, is given by

t (n)
1 1)
n—q) Ji (t—s)7 "1

DI(D) = )

where n indicates a positive integer constant, for whichn —1 < q < n. Additionally, for0 < g <1,
the fractional derivative of function f(t) is

DO = gy o g @

3.2. Stability Conditions for Fractional Time-Delayed Systems
Let a linear fractional time-delayed system be as follows

D{'zi(t) = anzi(t — 1) + apza(t — T) + - + amzi(t — Tiy) (5)

where z; (i = 1,2,...,n) denotes the state of the system. g; and 7;; > 0 are the fractional
derivative and the time delay, respectively. The coefficient matrix of the system is repre-
sented by A = [a;;] € R™*". Taking the Laplace transformation of System (5) results in

AS.Z(s) =b(s) (6)

where Z(s) = [Zy(s), Za(s), ..., Zu(s)]" stands for the Laplace transform of z(t) =
[z1(1), 22(t), ..., za(t)]T and b(s) = [b1(s), b2(s), ..., bn(s)]" are the vectors of the re-
maining nonlinear components, in which the characteristic matrix of the system is given by

$T11 ST1p STy

s — aq1e™ —appe” —aye”

751213_5721 5171 — a22e_ST22 e 7a2ne_572n
AS= : . ) : @)

_anle_STnl _anze_STnZ oo gin — anne_STnn
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Theorem 1 [51]. In fractional System (5), if the real parts of all the roots of the characteristic
equation det(A(s)) = 0 are negative, then as a result, the trivial solution of System (5) will be
asymptotically stable.

Corollary 1 [51]. If all eigenvalues A of the coefficient matrix A fulfill |arg(A)| > qm/2, then as
a result, the trivial solution of System (5) is globally asymptotically stable, and the characteristic
equation (det(A(s)) = 0) has no purely imaginary roots for any 7;; >0, i, j=1,2, ..., n.

For the proof of Corollary 1, see Refs. [51,52].

Theorem 2 [53,54]. Let a general fractional system (linear or nonlinear) be described as

Dix(t) = f(t,x) ®)

where f(t, x) satisfies the Lipschitz condition. If there is a positive definite Lyapunov function that
fulfills the following condition
DIV (t,x(t)) <0 ©)

then it can be concluded that the trivial solution of System (8) is asymptotically stable.

Lemma 1 [55]. Let x(t) € R" be a continuous differentiable function. For t > 0, we have

DIxT(t)x(t) < 2xT(t)D]x(t) (10)

Lemma 2 [56]. (Comparison principle) Let a fractional time-delayed differential inequality be
as follows

To(t) < —av(t) + bo(t - 7)
{ o(t) = h(1) > 0t € |-7,0] D

moreovet, consider a linear system to be

{ Dw(t) = —aw(t) + bw(t — 1) (12)

w(t) =h(t) >0,t € [-7,0]
where functions v(t), w(t) € R are continuous and nonnegative on (0, o), and function h(t) > 0

is continuous on [—t, 0]. If a,b > 0, then as a result: v(t ) < w(t), YVt € [0, o).

Lemma 3 [511. Suppose arbitrary functions x(t ) = [x1(t), x2(t), ..., x,(¢£)] T and y(t) =
(), yalt)s e ya(t)]T € R Forall Q = (), it holds that

YT QX < Guaxy"Y + G X" X, (13)
in which qmax = %H Q lleo~ Tmax = %” Q ||1

3.3. RBF Neural Network Estimator

RBF neural networks are strong candidates for many uses, such as time series pre-
diction, classification, function approximation, and system control [57,58]. In the current
study, the RBF neural network estimates any disturbances and uncertainties, and then its
output is used to enhance the performance of the fault-tolerant control. The output of the
RBF neural network (f;) is calculated as

m
fi=fl+e= Zw§j<pi,j(Ei)+e: Wi gi+ei=1,2,...n (14)
=1
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IEi =il .
¢i;(Ei) = exp >l B 1,2,...,m, (15)
]
where the radial basis function’s ideal constant weight is shown by wy;, and the number
of hidden nodes is represented by m. Additionally, 1, denotes the number of outputs, N
represents the number of inputs, ¢; ; is the radial basis function of hidden nodes, ¢ shows
the bounded estimation error, E; = [E;1, E;»,...,Ejn]| is the input vector of the radial
basis function. bj and ¢ indicate the width value and the center of the basis function,

respectively [41]. Figure 1 shows the structure of the RBF neural network.

Input units

Hidden units
Figure 1. The scheme of the RBF neural network.

3.4. Problem Formulation

Following the definitions of faults and failures in [59-61], their effects on the system
can be considered as follows:

wp=ug+b; (H)((ej —Vug+u;) i=12,...,n (16)

where u; and u.; denote the actual and desired control input, respectively. Additionally,
u; is the uncertain fault input. 0 <e; < 1 represents the effectiveness of the actuator. In
addition, b; (t) is given by:

. 0, t < to;
bi (t) - { 1— e*ﬂ,’(tftol' ) F> tOi (17)

where a; > 0 denotes the fault evolution rate; additionally, the time at which the fault
occurs is shown by fy;. Small and large values of a; correspond to incipient and abrupt
faults, respectively. Using this definition of faults and/or failures results in the following
governing equation of the fractional response system:

Dix =h(x(t),x(t—7))+d+uu=u.+B (t)((E—IDuc+1u) (18)
where d is unknown disturbances and x = [x1, xp, .. .,xn]T, q=191,92--- ,qn]T and d =
[d1,da, ..., dn]T.

Assumption 1. The bounds of disturbances are assumed to be limited, i.e., there is a positive
constant dy fulfilling || d || < dy.

Assumption 2. Since there are limitations on the actuators, control actions and additive fault are
constrained, i.e., | U | < Umax and | Uy | < ug.
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Let the driving/desired system be as follows:

Dy =w(y(t) y(t - 1)), (19)
where y = [y1, Y2,...,Yn 17

4. Control Design

Herein, the neural network-based fault-tolerant active control is developed to control
and synchronize fractional time-delayed systems. Let us consider the response systems as

Dlx(t) = h(x(t),x(t — 7)) + uc + Ny (20)

where
Nf:B(t)((E—I)uc—i-ﬁ)—i-d (21)

Moreover, we define the synchronization error as follows:
e=y—x (22)

Defining diagonal matrices B and B/, respectively, for the response and driving system,
we can rewrite the equation of the systems as follows:

D]x(t) = B(x,t) + B (x,t — 7) + f(x(t),x(t — 7)) + Ny + uc (23)

D]y(t) = B(y,t) + B'(y,t — 7) + g(y(t), y(t — 7)) (24)

On the basis of Equations (19) and (20), the nonlinear functions f(x(t), x(t — 7)) and
g(y(t),y(t — 1)) are as follows:

f(x(t),x(t—1)) = h(x(t),x(t — 7)) — B(x,t) — B'(x,t — 7T) (25)
gy(),y(t=7)) = w(y(t),y(t=7)) = B(y,t) = B'(y,t = 1) (26)
Based on Equation (22), the error dynamic is given by
Dfe(t) = Be(t) + Be(t — 1) + g(y(t), y(t — 7)) — f(x(t), y(t = 7)) =Ny —uc ~ (27)

where e(t — 7) = y(t — T) — x(t — 7). We design the neural network-based fault-tolerant,
active control as

ue = —ne(t) —de(t —7) + g(y(t), y(t — 7)) — f(x(t), y(t — 7)) — Nsign(e(t)) — Ny, (28)

where 7 = [ij1; 172, ; 7a)" and & = [61;0,, -+ ; 6,)" are user-defined parameters that
must be selected to satisfy the stability condition of the closed-loop system, which will
be given in the following. Additionally, N = W¢; denotes the estimation of W*. The
adaptation law is given by

Wi = —gieipi (29)
We determine the error of the weight approximation as
W, = Wi — W, (30)

where ¢; is a used-defined parameter. According to the proposed control, the error dynamic
of the synchronization is

DJe(t) = Me(t) + M'e(t — T) + Nsign(e(t)) + e4, (31)

whereed:Nf—Nf+£:W(pi—Wl-*cpl-—f—s,M:B+17andM’:B’+(5.
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Theorem 3. Suppose Kpay is the greatest eigenvalue of M, dpax = %H M’ || and by =

3 M ||y If the user-defined vector M holds the following condition
- (dmax + Kmax) > bpax >0 (32)

as a result, the trajectories of the fractional delayed System (23) will converge to the desired value.

Proof. Suppose the following Lyapunov function:

1

V=V.+—
5

W2 (33)

where V. = 1eT(t)e(t). The time derivative of the Lyapunov function is as follows:

1

D]V = D}V, + —D]W;W; (34)
1

Considering adaption law (29) and Equation (31), we have
DIV < DIV, + e;Wip; = €T (t) (Me(t) + M'e(t — T) 4+ Nsign(e(t)) + €) (35)

Using the RBF neural network, the approximation error (g) is bounded. Based on
Lemma 3, we have

el (WM'e(t — 1) < dpaxe’ (H)e(t) + byaxe’ (t—1T)e(t—1). (36)

By designing parameter N in such a way that N > |e|, and substituting Equation (36)
to Equation (35), we have

D]V < eT(t)(Me(t) + M'e(t — 7))
T(t)e(t) + dmaxel (t)e(t) + bpaxe” (t— T )e(t —T)
(M + dyax )eT ()e(t) + bpaxe” (t— T )e(t — 1)
< “RyVe(t) + RoVe(t— 1),

< Me
< (37)

where Ry = —2(M + djax) and Ry = 2by,0,. Now, suppose a linear time-delayed
system as follows

{ Diw(t) = —Ryw(t) + Ryw(t — 1) (38)

w(t) = ¢(t) > 0,t € [—1,0]

Following Corollary 1, if the characteristic equation of System (38) does not possess
any purely imaginary root, System (27) is asymptotically stable. For Equation (38), the
characteristic equation is given by

ST+ Ry — Rpe™7, (39)
Suppose Equation (39) has a purely imaginary root, which is given by
s =wi= |w|<cos(§) +isin(i§)). (40)
Substituting s = wi into Equation (40) results in
(wi)? + Ry — Rpe @™ =0 (41)
Hence, it can be concluded that

|(wi)T + Ry |* = (Rasin(wt))? + (Rocos(wT))? (42)
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Then, by simple calculation, we have
QT
|w|2q+2R1cos(7)|wy”+R% = RZ (43)

where cos(%ff) > 0, |w|? > 0,and Ry > 0. If Ry > Ry, we can conclude that Equation (39)
does not have any real roots. Consequently, the characteristic equation of System (38)
will not have any purely imaginary root. Thus, on the basis of Equation (43), Corollary 1,
and Lemma 2, the synchronization error (27) becomes zero, and the closed-loop system is
asymptotically stable, which wraps up the proof. The pseudocode for the proposed control
scheme is presented in Algorithm 1.

Algorithm 1. RBF neural network-based fault-tolerant active control.

For each time step:

1. Receive values of states of driving and response system

2. Calculate the errors of synchronization

3. Update the weights of the RBF neural network based on Equation (29).

4. Calculate the output of neural network (N ) based on Equations (14) and (15) and using
the recently obtained wights

5. Calculate the control input based on Equation (28)

6. Apply the obtained control input to the response system
Until the stopping time.

5. Fractional Time-Delayed Memristor System

In [62], a fractional memristor oscillator is presented as

Dix =a1(y — x),
Dy = arx —y — xz + asw — Ty,
Dz = agz + xy,
Diw = asy +w + agxM(x),

(44)

where 0 < g < 1 denotes the fractional derivatives. This model is non-dimensional, and
consequently, all variables and parameters are dimensionless. Figure 2 displays 2D phase
plots of System (44).

30 70 . . : 300
20 e e \'I 60 o
— ) )
i el ) 1) / 50
10 - ﬁj / -
a S 40 \
- i’ e X1 z 0
10} /| = 30
{ -100
-20¢| 20
A\ 200
o 10
-40 040 20 o 20 w0 % 3 5
20 -0 E 10 = . 0 10 20 30 0 50 60
A

Figure 2. Phase plots of the fractional memristor system with g = 0.97.

Parameter qu determines the stability conditions of the system, whereas the rest
of the parameters are defined as a; = 10, ap = 28, a3 = 1, a4 = —2, a5 = 27, and
ag = —1, respectively. The Lyapunov exponents for System (44), assuming T; = 0,
are LE; = 0.667, LE; = 0.021, LE; = 0 and LE; = —15.517. The wolf algorithm was
considered to compute the Lyapunov spectrum [48]. Figure 3a,b shows the bifurcation
diagrams of the fractional System (44) considering a fractional order g = 0.9. The bifurcation
diagrams were obtained by plotting the local maxima of state variable x denoted as %1. As
is evident in Figure 3a, when —0.5 < T,; < 3, chaos is observed. At the same time, chaotic
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behavior is observed when the parameter a; € [5,17] as shown in Figure 3b. Additionally,
in Figure 4a, the bifurcation diagram with respect to the fractional order q is presented. For
0.98 < g < 0.99, a periodic behavior is observed, and then the system gradually reverts
to chaos. Additionally, for (0.84 < q < 0.98) U (0.99 < g < 1) complex behaviors are
observed. After that, for g < 0.85, the chaotic behavior disappears gradually. Furthermore,
the Poincaré map is displayed in Figure 4b considering a plane at z = 30.

20 : : : : : : 20

20
11, q a)
(a) (b)
Figure 3. Bifurcations diagrams of System (44) with g = 0.9. (a) for T,q with a; = 10, (b) for a; with Toy = 0.
25 - " 150 T
20 100
Ao ‘ 50
10 F-d 3-iind . e
(::. SR G ee s RGN h' i\ 3 0 [
5
-850
0
-5 [ -100 |
0.85 0.9 0.95 1 -15 -10 -5 0 5 10 15
q x
(a) (b)

Figure 4. (a) Bifurcations diagrams of System (44) for g with T,; = 0, and a; = 10. (b) Poincaré section on x — w plane at
z = 30.

6. Synchronization Results

Now, we consider the fractional time-delayed memristor system with different initial
conditions, considered as response and driving systems. Accordingly, the response system
in consideration of the control input and the effects of disturbances is given by

Dix = ﬂl(x2(t) - X1 (t)) +uy +dy,
Dixy = apx1(t) — xp(t — T) — x1x3(¢) + azxa(t) — Teq +uz + dyo,
Dix3 = agxs(t) + x1(t)x2(t) + us + dys,
Dixy = asxp(t) + x4(t — T) + agx1 () M(x) + ug + doa.

(45)
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Additionally, the driving system is given by

Dyy = a1 (y2(t) —y1(t)),
Dy, = azy1(t) — y2(t — ) — y1(t)ys(t) + asya(t) — Teq, (46)
Diys = agys(t) +y1(t)ya(t),
Diyy = asy»(t) + ya(t — 7) + asy1 (H) M(y).

We consider equal values for parameters of both the driving and response system,
while the initial conditions of the response and driving system, respectively, are as assumed
to be [-5,—1.5, 0,—1.5] and [10, 10, 10, 10]. The unknown external disturbances are
supposed to be

d(t) = dxo(t) = dya(t) = dya(t) = 2sin(t) + cos(t), (47)

The user-defined parameters of the control scheme are selected as 7 = [1,1,1,1],
0=1[2,2,2,2],N = [25,25,25,25], ¢; = [0.01,0.01,0.01, 0.01]. The performance of the offered
control techniques is evaluated by considering two different kinds of faults, including bias
faults, and both bias faults and partial loss of effectiveness which are presented in Table 1.

Table 1. Parameters of actuator faults.

Both Bias Faults and Partial

Bias Faults Only Loss of Effectiveness
Actuator control effectiveness (e;;) (1,1,1,1) (0.8,0.8,0.8,0.8)
Fault evolution rate (a;) (8,8,8,8) (12,12,12,12)
Time of occurrence of the fault (ty;) (5,5,5,5) (5,5,5,5)
Uncertain fault input (i) (=5,-5,-5,-5) 44,44

6.1. Synchronization in the Presence of Bias Faults

The controller is turned on at t = 1, and the delay is considered to be T = 1.5.
Figure 5 shows the time-history of synchronization, which clearly shows the offered control
method’s effective performance. As illustrated, under the offered methodology, synchro-
nization errors converge to zero over a short time even there are bias faults and unknown
disturbances. The control inputs are displayed in Figure 6. As is demonstrated, the am-
plitudes of control inputs are appropriate. The controller’s appropriate performance in
dealing with uncertainties and unexpected faults and failures lies in the precise estimation
of the unknown functions achieved by the proposed observer. Figure 7 illustrates the
proposed observer’s excellent performance.

6.2. Comparison and Discussion

To better investigate the performance of the suggested strategy, we compared it with
an active control scheme presented by Wang et al. [46]. The parameters of the active control

are designed as
K =[5,5,5,5] (48)

For additional information regarding the active control and the factors that ensure the
closed-loop system’s stability, see [49].

In this case, the controller is turned on at t = 1 and T = 2, and the system is in the
presence of both bias faults and partial loss of effectiveness simultaneously. Figures 8 and 9,
respectively, show the time history of the synchronization and its error. Additionally, the
control inputs are depicted in Figure 10. Finally, in Figure 11, the estimated values of
time-varying disturbances and faults that are provided by the proposed technique are
presented. By comparing the results of active control with those of the offered controller,
it is evident that the suggested technique is faster and more accurate, resulting from the
intelligent observer that provides precise information about unknown functions.
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Figure 5. Synchronization results based on the offered control methodology where there are bias faults. Time history of (a)
x_landy_1,(b)x_2and y_2, (c) x_3 and y_3, (d) x_4 and y_4.
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Figure 6. The control input based on the offered control methodology where there are bias faults. Time history of (a) u_1,
(b) u_2, (c) u_3, (d) u_4.
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Figure 7. Estimated and actual values of faults and disturbances where there are bias faults. Disturbances and faults that
are imposed on (a) x_1, (b) x_2, (c) x_3, (d) x_4.
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Figure 8. Synchronization results based on the proposed control methodology and active control, where there are both bias
faults and partial loss of effectiveness. Time history of states (a) x; and y1, (b) x; and vy, (c) x3 and y3, (d) x4 and y4.
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Figure 9. The error of synchronization based on the proposed control methodology and active control, where there are both
bias faults and partial loss of effectiveness. Time history of (a) ey, (b) e2, (c) e3, (d) 4.
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Figure 10. The control input based on the proposed control methodology and active control, where there are both bias faults
and partial loss of effectiveness. Time history of (a) u1, (b) up, (c) us, (d) uy.
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Figure 11. Estimated and actual value of faults and disturbances, where there are bias faults and partial loss of effectiveness.
Disturbances and faults that are imposed on (a) x1, (b) x2, (c) x3, (d) x4.

Table 2 lists the synchronization errors and control inputs of the suggested technique
as well as those of the active control. Table 2 shows that when the suggested technique is
used instead of the active controller, the regulation errors are much lower. Table 2 further
shows that the values of control inputs for both control systems are in the same order.

Table 2. The norm of synchronization errors and control inputs.

Norm Proposed Method Active Control
I| 2, |l 113.72 441.83
| #x, |l 522.07 969.81
| #x; I, 346.53 411.23
I wx, |l 2969.43 4775.48
| ex; Il, 53.40 100.97
| ex; I, 48.99 115.84
|| exs |l, 153.50 287.84
| ex, Il, 821.46 2076.86

On the basis of the simulation results shown in Figures 8-11 and Table 2, it can
be stated that the suggested technique outperforms active control in terms of accuracy,
convergence time, and robustness against faults and disturbances.

The RBF neural network is used in an online platform to detect all unknown functions
in the closed-loop system. In this online algorithm, we do not have any data for training
and testing. Based only on the adaption rules, the wights of the RBF neural network will be
updated. Actually, from the first time step that the controller is turned on, the output of the
RBF neural network is used for the controller. Hence, in the beginning, the performance of
the RBF neural network is not very good, but after a very short period of time, the RBF
neural network learns a structure with an unknown function, and after that, the results
are luminous.

It is noteworthy that if we use a very complicated neural network, it may cause
overfitting in data which is common in complex neural networks. Hence, we believe RBF
neural network, which provides promising results in dealing with unknown functions and
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is simple compared to other neural networks, is a good choice. However, investigating
other types of neural networks for time-delayed fractional-order systems is an appropriate
idea for a future study.

7. Conclusions

In this research, the new neural network-based fault-tolerant, active control was
proposed for fractional time-delayed systems. Through the neural network estimator, all
uncertainties, disturbances, and faults were taken to account. The stability of the offered
technique was performed using the active control concept and Lyapunov stability theorem.
Then, the fractional memristor system’s dynamical behavior was studied, and the chaotic
behavior of the system was illustrated. Finally, the time-delayed system was considered in
the presence of different faults, including bias faults and partial loss of effectiveness. By
employing the offered control technique, synchronization results of the fractional time-
delayed memristor system in the presence of faults and uncertainties were presented.
Numerical results confirm the reliability and robustness of the suggested control method
for nonlinear time-delayed systems. One of the challenges in the proposed method is the
selection of the best user-defined parameters for the controller and neural network. Hence,
as a future suggestion, a study can be devoted to the design of a self-tuning mechanism such
as evolutionary algorithms and fuzzy self-tuning engines for the proposed control scheme.
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