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Abstract: Electric power systems are subject to failures, due to both deliberate and fortuitous events.
This paper addresses the first case in which a disruptive agent aims at maximizing the damage to the
network (expressed through the total cost of operation), while the system operator takes the necessary
measures to mitigate the effects of this attack. The interaction between these two agents is modeled
by means of a bi-level optimization problem. On one hand, the disruptive agent is positioned in the
upper-level optimization problem and must decide which elements to render out of service (lines
and generators), given a limited destructive budget. On the other hand, the system operator, located
in a lower-level optimization problem, reacts to the attack by deploying mitigation measures in order
to minimize cost overruns in system operation. Based on the aforementioned dynamic, this paper
proposes a novel approach to maximize the resiliency of the power system under intentional attacks
through the implementation of distributed energy resources (DERs), namely, distributed generation
(DG) and demand response (DR). Three metrics are proposed to assess resilience by assigning DERs
in islands generated by the destruction of lines and generators. The results obtained in a didactic
5-bus test system and the IEEE RTS-24 bus test system demonstrate the applicability and effectiveness
of the proposed methodology.

Keywords: demand response; distributed generation; disruptive event; vulnerability analysis; load
shedding; resiliency

1. Introduction
1.1. Motivation

Electric power systems (EPS) play a key role in modern society since the productivity
of industries and welfare of communities largely depend on their appropriate functioning.
Therefore, power system operators and planners must make efforts to guarantee the quality
and continuity of energy supply. Unfortunately, EPS are vulnerable not only to natural
events, but also to malicious attacks [1]. These disruptive events bring along high operating
costs, due to unforeseen changes in the initial dispatch plan, repair costs of elements
such as lines, transformers, and towers, as well as eventual compensations to consumers
due to load shedding. Power system operators are in charge of assessing such costs and
developing strategies to minimize the impact of eventual outages [2]. Since the costs
of outages are high for both the consumers and the network operator, it is necessary to
establish strategies before, during and after an attack to mitigate the impact and duration
of service interruptions [3]. Due to the fact that transmission networks operate over a wide
geographic area, they are particularly susceptible to deliberate physical attacks. In this
case, there is a disruptive or malicious agent that wants to cause damage to the system.
This agent has access to the system data and has limited economic resources to execute its
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objective; therefore, such an agent must determine a set of elements to render out of service
with the aim of maximizing damage to the network. At the same time, the system operator
must react to the attack to minimize the damage. This attacker–defender dynamic was
initially modeled in [3] through a bi-level programming approach. In this case, the authors
propose analytical techniques to help mitigate the disruptions to electric power grids
caused by terrorist attacks. They also identify critical system components (lines, generators
and transformers) by creating disruptive attack plans, assuming limited offensive resources.
From the seminal work developed in [3], many models and techniques have been proposed
to approach the vulnerability assessment of power systems, bearing in mind intentional
attacks; this is also known as the electric grid interdiction problem (EGIP).

1.2. Literature Review

The EGIP was initially proposed in [3]. In this case, the objective function of the
terrorist and system operator are the maximization and minimization of the load shedding,
respectively resulting in a max–min optimization model. In [4], the authors propose a
generalization of the EGIP by introducing different objective functions for the terrorist and
the system operator. The new model also allows the imposition of constraints on the outer
optimization that are functions of both the inner and outer variables. After a given attack,
the system operator usually resorts to the use of a new generation to minimize the system
load shedding; nonetheless, in [5], the authors propose line switching as an alternative
method to protect the system. In this case, a genetic algorithm (GA) is in charge of finding a
new system topology that would mitigate the effects of an attack. In the face of a disruptive
event, the system operator may also take advantage of distributed energy resources (DERs)
to provide an alternative to supply some critical loads while the lost infrastructure is
reestablished [6,7]. Distributed generation (DG) and demand response (DR) are types of
DERs that increase capacity to effectively transfer power from generators to loads, decrease
the power demand on loads through bilateral agreements for voluntary disconnection
and minimize load disconnection costs while recovering lost infrastructure [8], which is
reflected in the increased flexibility, robustness and reliability of the power system [9].

From the standpoint of game theory, the EGIP can be seen as a leader–follower
Stackelberg game in which the leader must anticipate the reaction of the follower. From the
standpoint of mathematical programming, a bi-level optimization model is a mathematical
problem with equilibrium constraints, which is intrinsically non-linear and non-convex [10].
Therefore, the best way to deal with this type of problem is to resort to a single-level
equivalent, which can be done by using the Karush–Kuhn–Tucker optimality conditions
and the duality theory [11]. Nonetheless, this can only be applied when the lower-level
optimization problem is linear, which in this case, requires a DC approximation of the
power flow equations that govern the transmission network. Due to this fact, many works
regarding the EGIP adopt linear modeling of the transmission grid. This limitation is
overcome in [12], where the authors propose a non-linear modeling of the lower-level
optimization problem and deal directly with the bi-level optimization problem through a
metaheurstic technique, without needing linear approximations. In [13], the authors also
approach the EGIP with non-linear modeling of the network, considering the effect of DR
and using a metaheuristic technique.

After a malicious attack is executed in a power system, multiple outages may take
place. In this case, it becomes crucial to quickly identify the transmission links that have
a limited power transfer capability (these critical interconnections are known as cut-sets).
In [14], the authors apply graph theory for analyzing whether a given contingency may
result in saturated cut-sets; in this way, situational awareness is arisen and corrective
actions can be quickly carried out. Graph theory is also used in [15] within the context of
vulnerability analysis. In this case, a cascading failure model is developed based on the
continuous temperature evolution process of lines. This method allows characterizing the
vulnerability of lines and transmission networks. In [16], the authors use AC modeling
of the network and perform a vulnerability analysis, aiming at identifying critical nodes.
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A similar approach is proposed in [17], where also critical buses are identified, using a
geodesic vulnerability index. In [18], the authors propose a novel measurement to quantify
the robustness of power grids under outages by means of a network hierarchy evolution
analysis. In [19], a vulnerability assessment of power systems under failures or attacks is
carried out based on topological properties. In this case, a particle swarm optimization
(PSO) algorithm is proposed to identify critical elements that may trigger cascading failures.
A maximum flow-based complex network approach is proposed in [20] to identify critical
lines in a power system. The proposed approach consists of two steps. In the first one,
the power system is modeled, using graph theory in which the nodes are represented by
substations, and the edges correspond to lines and transformers. In this case, the critical
outage scenarios are identified, using principal component analysis. In the second step, a
topology analysis is implemented through a maximum flow-based network approach.

1.3. Contributions and Paper Organization

This paper differentiates from graph theory approaches, such as those in [14,15,19],
in the sense that not only buses but also lines and generators may be identified as critical
elements. Furthermore, unlike [3–5], AC modeling of the network is implemented, which
allows a more realistic approach to the problem. It also differentiates from other EGIP
models in the sense that it proposes new resiliency metrics and considers the use of DERs
within the options of the system operator to react when facing a malicious attack. To
summarize, the main features and contributions of this paper are listed below.

• It complements previous works reported in the specialized literature regarding the so-
lution of the EGIP by considering AC modeling of the problem as well as simultaneous
attacks on lines and generators.

• New metrics are proposed for the assessment of power system resiliency under
deliberate attacks.

• Enhancement of grid resiliency is proposed by introducing the effect of DERs as a
reaction strategy of the system operator.

The rest of this document is organized as follows. Section 2 presents an outline of the
EGIP. Section 3 describes the mathematical modeling and solution approach implemented.
Section 4 elaborates on the tests and results. Section 5 displays a discussion of results.
Finally, Section 6 explains the conclusions of this work.

2. Outline of the EGIP

The solution of the EGIP allows identifying the critical elements (lines, transformers
and generators) that, if attacked, would cause the greatest damage to the system in terms
of costs due to mandatory load disconnection (load shedding) and the use of generation
out of merit (expensive generation plans) that were not initially considered in the grid
operation [21]. The vulnerability analysis has as input data the normal operating conditions,
the evaluation of the resources allocated by the network operator to protect each element,
the monitoring of voluntary disconnection contracts, the resources of the disruptive agent
and the costs of load shedding at each of the nodes. In this case, there is an interaction
between the disruptive agent and the network operator. There is also a dependency
between the decision variables of each of them. This dependency is modeled by means of a
two-level optimization problem as depicted in Figure 1. The disruptive agent conceives an
interdiction vector (action), acknowledging the reaction of the system operator (reaction).
Once an attack plan is executed, the system operator runs an optimal power flow to
minimize system costs. This optimization problem may include the use of DERs, such as
DG and DR, as well as the dispatch reprogramming of available generation resources. It is
worth mentioning that the vulnerability assessment implemented in this paper has two
stages. In the first stage, a plan of the best attack strategies for the interdiction vector is
selected through a GA, following the logic depicted in Figure 1 and considering that the
network does not count with DERs to protect against disruptive attacks. In the second stage,
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the impact of DG and DR is evaluated to mitigate the risk of the network and improve its
resiliency under these circumstances.

Figure 1. Bi-level programming diagram.

The attack plans of the disruptive agent are coded in a binary vector that indicates the
states of the elements. This type of codification facilitates the implementation of a GA as
solution strategy. In this case, the fitness of each individual within the GA corresponds to
the system operation costs determined by the system operator. For this, an AC optimal
power flow is executed.

Several metrics were established to quantify the resilience of the network and the case
study scenarios that allow quantifying the effect of DR mechanisms and the location of DG
in the network. DR is a mechanism that allows establishing bilateral agreements between
the network operator and a set of loads for the voluntary disconnection of a percentage of
their demand. According to [22], DR is defined as the amount of energy reduced in MWh
with respect to the user’s normal energy consumption, where changes in demanded energy
are due to electricity price signals ($MWh) or incentive payments to reduce consumption
when a contingency takes place.

In this case, an incentive payment scheme for voluntary load disconnection is used.
Bilateral agreements are established between the network operator and a set of loads prior
to the occurrence of a disruptive event and are applicable when the network operator loses
the capacity to meet the demand of all loads. The cost assigned to each KWh with DR is
normally set at a value greater than or equal to the cost of the generators but at a lower
value than the mandatory disconnection of loads. As regards DG, this has become essential
in the operation of networks that are isolated by the destruction of lines and generators, as
well as in network topologies that require generation close to the loads to reduce power
losses or increase the total generation capacity [23].

2.1. Normal Operative Conditions

In this stage, an optimal power flow under normal operating conditions is evaluated.
There are also established the demands of each node, the marginal cost of the generators, the
resources of the disruptive agent to perform attacks on the network, the costs of attacking
lines and generators, the bilateral agreements for the voluntary disconnection of loads, the
remuneration scheme for DR and the number and type of DG units that can be installed in
the network to protect against possible attacks.

Figure 2 illustrates the percentage of load attended between periods t0 and t1 depend-
ing on the infrastructure that remains in operation after the execution of the disruptive
event. The slope between t0 and t1 represents the loss of load due to an attack. Once this
happens, the network operator executes an optimal dispatch to mitigate the effect of the
attack, using the available network resources.



Electronics 2021, 10, 1498 5 of 20

Figure 2. Resilience assessment phases.

The disruptive agent’s attack strategy is selected through a vulnerability analysis that
identifies the sensitivity of the network’s operating cost to the failure of a line or generator. The
vulnerability analysis developed in this paper acknowledges the following considerations:

• The resources that the network operator allocates for the protection of lines and
generators in the system are known to the disruptive agent.

• The disruptive agent is aware of the bilateral agreements for voluntary load shedding.
• The attacks performed on the system are 100% effective.
• The network operator considers DR to be a mechanism for immediate mitigation of

the attack plan and reduction of network operating costs.

The vulnerability analysis is applied to a case study with four scenarios that cover
the strategies assumed by the network operator in the face of possible voluntary load
disconnection agreements. In two of the four scenarios, the vulnerability of a network in
which there is no DR in any of the loads is evaluated; in the remaining two scenarios, the
vulnerability of a network in which there is a pact between some loads and the network
operator to totally or partially reduce demand is evaluated. In the period between the
execution of the attack (t0+) and the mitigation actions (t1−), it is possible to define a
measure of resilience by minimizing the immediate effect of the attack through DR and the
infrastructure that remains in operation within the network.

2.2. Scenarios for the Case Study

Resilience actions are strategies that are executed in the post-attack stage and involve
the joint optimization of the use of the active infrastructure, the types of generators available
and DR arrangements that were established prior to the development of the disruptive
event. To evaluate the resilience that can be achieved in the possible scenarios derived from
the use of DG and the DR mechanism, a case study with four scenarios is developed.

• Scenario 1: There is no agreement for voluntary load shedding. Under this condition,
the most severe attack plan of the vulnerability analysis is executed without taking
mitigation actions by the network operator.

• Scenario 2: There is a bilateral agreement between the network operator and some
system loads to voluntarily disconnect a percentage of the total load. From this
condition, the disruptive agent executes the most severe attack of the vulnerability
analysis. In the post-attack stage, the network operator takes no action to decrease
load shedding.

• Scenario 3: There is no agreement for voluntary load shedding. Under this condition,
the most severe attack plan of the vulnerability analysis is executed. In the post-attack
stage, the network operator optimizes the location and sizing of distributed generators
to reduce load shedding.
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• Scenario 4: There is a bilateral agreement between the network operator and some
system loads to voluntarily disconnect a percentage of the total load. From the
condition, the disruptive agent executes the most severe attack of the vulnerability
analysis. In the post-attack stage, the network operator optimizes the location of
distributed generators and reallocates demand response to reduce load shedding.

3. Mathematical Modeling and Solution Approach
3.1. Vulnerability Analysis

The vulnerability analysis of an electrical grid allows both a network operator and
a disruptive agent to evaluate the lines and generators that can be attacked to generate
the highest costs for mandatory load shedding and operation of conventional generators
and different DERs in the grid. The vulnerability analysis starts from the normal operating
conditions of the network, with the evaluation of the resources allocated by the network
operator to protect each element of the network, the monitoring of voluntary disconnection
contracts, the resources of the disruptor agent, and the costs for load shedding at each
node. The dependence of an agent’s decisions on those of its opponent makes it possible to
describe the vulnerability analysis as a bi-level optimization model.

3.1.1. Genetic Algorithm

GAs are metaheuristic techniques inspired by the Darwinian theory of evolution.
These types of techniques have been successfully applied to solve bi-level programming
problems [24–26]. Figure 3 depicts the flowchart of the implemented methodology, which
includes the GA. In this case, a candidate solution or individual is represented by means of
a binary vector that represents the lines and generators out of service.

Figure 3. Flowchart of the proposed methodology.
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The initial population consists of the random generation of interdiction vectors. Each
interdiction vector represents an attack to the system and an individual or candidate solu-
tion within the GA. From the initial population, new candidate solutions are obtained by
means of selection, recombination and mutation operators [27–29]. The selection mecha-
nism guarantees that the best individuals are chosen to generate new candidate solutions.
Such solutions are obtained by means of the recombination operator in which the selected
parents interchange their genetic information. The mutation stage is in charge of adding di-
versity to the algorithm and eventually avoiding getting trapped in local optimal solutions.
In every generation, the best solution candidates are preserved (those that maximize load
shedding). The process stops after a given number of generations has elapsed [30].

3.1.2. Upper-Level Optimization Problem

The upper level optimization problem is given by Equations (1)–(4). The objective
function illustrated in Equation (1) is to maximize the operating cost of the network after
an attack. In this case, Cg is the cost of the power delivered by generator g; Pg is the power
delivered by g; CRDn is the cost of the dispatchable load at node n; PRDn is the demand
response at the node n; PDm is the load shedding at node m; and CDm is the cost of load
shedding at node m. The disruptive agent strategy is modeled through an interdiction
vector for lines and generators. In Equation (2) and Equation (3), the interdiction vector
for lines and generators, respectively, is defined as a vector of binary variables, where
1 represents the elements under attack. In this case, δL(l) and δG(g) are the interdiction
vectors for the set of lines and generators, respectively. Constraint Equation (4) describes
the destructive resources of the attacking agent, where Ml is the cost of attacking a line,
while Mg is the cost of attacking a generator. L is the set of lines; G is the set of generators;
M represents the total resources of the attacker; N is the set of buses; and NRD is the set of
buses with the demand response.

Max Z = ∑g Cg Pg + ∑n CRDnPRDn + ∑m PDmCDm

∀ g ∈ G , ∀ n ∈ NRD, m ∈ N
(1)

δL(l)∈ {0, 1}; ∀ l ∈ L (2)

δG(g)∈ {0, 1}; ∀ g ∈ G (3)

∑
l

MlδL(l) + ∑
g

MgδG(g) ≤ M; ∀ l ∈ L , ∀ g ∈ G (4)

3.1.3. Lower-Level Optimization Problem

The lower-level optimization problem defines the response of the system operator
through the calculation of an optimal AC power dispatch. Equation (5) presents the
objective function of the network operator. It considers the cost of operation of the available
generators, the cost of voluntary load disconnection through the DR mechanism and the
cost of mandatory load disconnection. Note that in this case, the problem is of minimization.
Constraints Equation (6) to (10) define the physical characteristics of the network related to
the limits of active, reactive, and apparent power in generators, loads and lines, respectively.
In this case, Qg is the reactive power delivered by generator g; Pd and Qd are the active
and reactive power demand, respectively; and Sl

Br is the apparent power flow in line l.
Equations (11) and (12) describe the active power flow balance at each node, incorporating
the disconnected active power limit (voluntary and compulsory) at loads, as well as the
interdiction vector described in Equation (2), and Equation (3). In this case, PRDn is the
demand response at node n; PDm is the load shedding at node m; and Wn is the power
scheduled for generator n. In Equations (13) and (14), the active and reactive power
transmitted through the lines are represented. Equations (15) and (16) indicate the active
and reactive power balance, respectively; ΨG

n is the set of generators connected to node
n; and ΨD

n is the set of demands connected to node and ΨL
n is the set of lines connected
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to node n. The lower-level optimization model establishes the optimal power flow in the
network after the attack and the system operation cost represented by variable Z.

Min Z = ∑
g

Cg Pg + ∑
n

CRDnPRDn + ∑
m

PDmCDm

∀ g ∈ G , ∀ n ∈ NRD, m ∈ N
(5)

Pmin
g < Pg < Pmax

g (6)

Qmin
g < Qg < Qmax

g (7)

0 < Pd < Pmax
d (8)

0 < Qd < Qmax
d (9)

Sl
Br min < Sl

Br < Sl
Br max (10)

Pd + PRDn + PDm = Pmax
d (11)

0 < PRDn ≤ Pmax
d WnRDn (12)

Psr = |Vs|2gsr − |Vs||Vr|cosgsrcos (δs − δr)− |Vs||Vr|bsrsen(δs − δr) (13)

Qsr = |Vs|2bsr + cosbsr|Vs||Vr|cos (δs − δr)− |Vs||Vr|bsr gsrsen(δs − δr) (14)

∑
∀g∈ΨG

n
(1− δG(g))Pg − ∑

∀d∈ΨDn
Pd − ∑

∀s∈ΨLn
δl

BrPsr = 0 (15)

∑
∀g∈ΨG

n
(1− δG(g))Qg − ∑

∀d∈ΨDn
Qd − ∑

∀s∈ΨLn
δl

BrQsr = 0 (16)

3.2. Allocation of Costs in Loads

The disruptive agent attack plan is represented as an interdiction vector for lines and
generators in binary coding, where an attacked element is expressed by Equation (1). The
costs assigned to the generators are defined by a first order polynomial model; the load
shedding and DR costs at each of the nodes are determined by a piecewise linear model.
Unlike the polynomial model, the piecewise linear model allows characterizing the load
cost as a function of discrete conditions [31]. Figure 4 and Equations (17)–(19) represent the
scheme for cost allocation in loads where c1 y c2 are the uncertainty costs, x1 and x2 are the
power demanded, and m1 y m2 are the results of the operation of costs and minimum and
maximum power at the loads.

Figure 4. Variable cost allocation of loads.

(x) =


0, x = 0

m1x, 0 < x ≤ x1
m2 (x− x1) + c1, x1 < x ≤ x2

(17)
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m1 =
c1
x1

m2 =
c2− c1
x2− x1

(18)

x = Pmax
d − Pd x1 = Pmax

d − RD x2 = Pmax
d (19)

3.3. Resilience of an Electrical Power System

The resilience of an electrical power system involves preparing for, responding to and
mitigating attacks that affect an electrical grid. A qualitative assessment of the resilience of a
power grid requires evaluating the effectiveness of the measures taken and the comparison
of different response strategies by the network operator. Several metrics are used to assess
and calculate the resilience of an electric power system [32]. Some are designed to improve
engineering resilience at the asset level, which are usually physical in nature and do not
need human intervention for their application; others are operational resilience metrics,
which focus on system-level performance and characteristics intended to mitigate the risk
of failure and support service recovery [33]. Another example of operational metrics is
that, due to interruptions in operation and availability of power served per total amount
of power demand [31], the metrics should reflect system performance and be useful for
decision making [22,34,35].

In this paper, three metrics are proposed to evaluate the resilience of power grids,
which are based on the total load served and the operating cost of the grid, respectively.
Equation (20) presents the resilience metric based on the total load served, which allows
measuring the effectiveness of mitigation actions to reduce the effect of the disruptive attack.

µ1 =
Served Load
Total Load

(20)

In the µ1 metric, a value close to 1 represents the ability of the system to adequately
manage the optimal power flow to meet the demand. On the other hand, a value close to 0
defines the worst case scenario for the network in which the power supply is minimal.

Equation (21) presents the µ2 metric, which measures the efficiency of the network
operator’s mitigation actions to minimize the cost of operating the network after an at-
tack by evaluating the portion of the total network operating cost that corresponds to
load shedding.

µ2 = 1− Load Shedding Cost
Operation Cost

(21)

In the µ2 metric, a value close to 1 shows that the power grid has mechanisms to
minimize mandatory load shedding as the worst case scenario for the network operator
and the loads, whereas a value close to 0 coincides with a scenario in which the cost of
load shedding is considerably higher than the operating costs of generators and the cost of
voluntary load shedding.

In Equation (22), the metric µ is proposed as the measure of resilience of the topology
and characteristics of the power grid to the most severe disruptive event that an attacker
can develop. In this metric, the ability of mitigation actions to decrease load shedding and
the cost of operating the grid after an attack is jointly evaluated.

µ =
µ1 + µ2

2
(22)

Values of µ equal to 1 and 0 quantify, respectively, a fully resilient and a zero resilient
network. Although the mandatory disconnection implies increased costs, the discrim-
ination of load shedding costs introduces a relationship that is not necessarily directly
proportional. Table 1 allows the network operator to generate a quantitative and qualitative
assessment of the resilience of an electrical grid.
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Table 1. Qualification of resiliency.

µ Resiliency Degree

µ = 0 None
0 < µ ≤ 0.25 Deficient

0.25 < µ ≤ 0.5 Poor
0.5 < µ ≤ 0.75 Regular
0.75 < µ < 1 Good

µ = 1 Excellent

3.4. Strategies for Maximizing Network Resilience Following a Disruptive Event

This section describes the model that jointly optimizes the location of DG and the
DR mechanism as mitigation actions against disruptive events. Based on the attack that
the disruptive agent selected from the vulnerability analysis, the optimal placement and
sizing of DG, as well as DR, are evaluated. The objective function of the optimization
model for DG location is described in Equation (23); in comparison to Equation (5), the
objective function for this model incorporates the cost of DG. The constraints that are
associated with active and reactive power limits on generators, loads and lines are taken
from Equation (6)–(12). Equations (24) and (25) are the active and reactive power balance
at each node, while Equations (26) and (27) define the maximum power generated by the
DG. In this case, Cg and Pg are the cost and power delivered by generator g, respectively.
Cgd and Pgd are the cost of demand and power demanded, respectively. CRDn and PRDn
are the cost and amount of DR, respectively. PDm and CDm are the demand at node m
and its costs, respectively. Pg is the active power supplied by generator g, Pgd is the active
power supplied by DG, and Pd is the active power that is demanded. Finally, Equation (28)
establishes the maximum number of DG units that can be used within the optimization
process. In this case, Qg and Qd are the generation and demand of reactive power, and Vn
is the voltage magnitude at bus n.

Min Z = ∑
g

Cg Pg + ∑
gd

Cgd Pgd + ∑
n

CRDnPRDn + ∑
m

PDmCDm

∀ g ∈ G , ∀ n ∈ NRD, m ∈ N
(23)

∑
∀g∈ΨG

n
Pg + ∑

∀gd∈ΨGD
n

Pgd− ∑
∀d∈ΨDn

Pd = Vn ∑
j∈ΩN

VjYijcos(δj− δi + θij) (24)

∑
∀g∈ΨG

n
Qg − ∑

∀d∈ΨDn
Qd = Vn ∑

j∈ΩN
VjYijsin (−δj + δi− θij) (25)

0 ≤ Pgd ≤ xgdPmax
gd (26)

xGD(gd)∈ {0, 1}; ∀ gd ∈ GD (27)

∑gd xgd ≤ Nmax
gd (28)

4. Tests and Results

To show the applicability and effectiveness of the proposed approach, several tests
were carried out with a didactic 5-bus power system and the IEEE RTS 24-bus power system.

4.1. Results with a 5-Bus Power System

The proposed vulnerability analysis was initially applied to a power system composed
of five buses and five generators for which data can be consulted in [36]. This power system
is illustrated in Figure 5.
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Figure 5. Illustration of power flows in the test system.

4.1.1. Normal Operation and Disruptive Event

The normal operating characteristic of the system is calculated with an optimal power
flow that minimizes the cost of supplying the load. The data of the system and results of
the power flow are presented in Tables 2 and 3. Under normal operating conditions, the
system has a total capacity of 1530 MW and a total demand of 1000 MW. In this case, line 6
and generators 1 and 6 are operating at their maximum limits.

Table 2. Bus data.

Bus Type P Load (MW) Q Load (MVAR) Voltage (p. u)

1 PV 0 0 1.07
2 PQ 300 98.61 1.08
3 PV 300 98.61 1.09
4 Slack 400 131.47 1.06
5 PV 0 0 1.06

Table 3. Power dispatch of generators.

Generator Pg (MW) Qg (MVAR) Cost (USD/MWh)

G1 40 30 14
G2 170 127.5 15
G3 324.5 390 30
G4 0 −10.8 40
G5 470.69 −165 10

The effectiveness of attacks performed to maximize load shedding and increase the
cost of network operation depends on the number of resources of the disruptive agent, the
cost associated with attacking a set of lines or generators, and the resilience of the network
after the attack. Network resilience is quantified by the ability to meet the scheduled load
and minimize the increase in the cost of operating the network with the infrastructure
remaining in operation after the attack. The costs related with the network operator and
the disruptive agent are presented in Table 4. In this case, the charging mechanism for
mandatory load disconnection (load shedding) allows the user to receive compensation for
the cost of each MWh that is not being delivered and establishes a hierarchy of loads based
on the cost of load shedding.
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Table 4. System resources.

Resource Costs of Attacking Elements, DR, and Load Shedding

Cost of attacking a line (USD/line) 50
Cost of attacking a generator (USD/generator) 100

Total resources of the attacker (USD) 300
Load shedding costs buses 2, 3, 4 (USD/MWh) 100, 100, 400

DR at buses 2, 3, 4 (%) 0, 50, 25
Cost of DR at buses 2, 3, 4 (USD/MWh) 0, 50, 50

From the allocation of the load shedding cost and the generators’ operating cost, a
proportional relationship is established between the network operating cost and the total
load shedding cost after the disruptive event. Table 5 presents the top ten attack plans of
the operation of the network after the execution of the best attack plan of the disruptor
agent. From these results, it is evident that the best attack plans are those in which load
shedding occurs at node 4 since this is a critical load. A critical load is considered to be
those infrastructures that are associated with the basic needs of human life, which include
hospitals, public lighting, water utilities, telecommunications and others [37,38].

Table 5. Best attack plans.

Attack Attacked Lines Attacked
Generators

Operation Cost
× 105 (USD)

% of Load
Served

1 L1, L2, L5, L6 G4 1.8365 52
2 L2, L3, L5, L6 G4 1.7485 60
3 L2, L4, L5, L6 G4 1.7203 60
4 L2, L5, L6 G4 1.7013 60
5 L1, L2, L6 G3 1.4800 20
6 L1, L2, L3, L6 G3 1.4800 20
7 L1, L2, L4, L6 G3 1.4800 20
8 L1, L2, L5, L6 G3 1.4800 20
9 L1, L2 G3, G4 1.3287 22.34
10 L2, L3, L4, L6 G3 1.3023 40.88

Figure 6 and Table 6 summarize the most relevant characteristics of the network
operation after the execution of the best attack plan of the disruptor agent. This attack
generates three islands that prevent the connection between the operating generators and
the demands. The operating cost after the most severe attack is USD 1.8365 × 105, where
load shedding represents 93.5% of the total cost and only 20% of the load is served.

Figure 6. Topology of the system after the worst attack.
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Table 6. Description of served loads and load shedding costs.

Bus Generation
(MW)

Generation
Cost (USD)

Served
Load (MW)

Served
Load (%)

Cost of Load
Shedding (USD)

1 0 0 - - -
2 - - 220 73.33 8000
3 520 15,600 300 100 0
4 0 0 0 0 160,000
5 0 0 - - -

4.1.2. Disruptive Event with DR

DR can be considered as an immediate reaction mechanism to network contingen-
cies. Therefore, this section performs a vulnerability analysis in which there are bilateral
agreements between the network operator and the disruptor agent for voluntary load
disconnection in case of a disruptive event. This strategy can decrease the load shedding
and the network operation cost even when the disruptor agent is aware of such agreements.
In this case, it is supposed that through the DR mechanism, a bilateral agreement is allowed
to voluntarily disconnect 50% of the load from node 3 and 25% of the load connected to
node 4 when a disruptive event occurs in the network. Tables 7 and 8 describe the results
of the vulnerability analysis with the costs described in Table 4. The impact of the DR
mechanism on the resilience of the network is represented by the decrease in network
operating cost and load shedding, compared to the results of the attack with higher severity
presented in Section 4.1.2.

Table 7. Description of the attack plan.

Attacked Elements Operation Cost (USD) Served Load (MW)

L1, L2, L5, L6, G4 14,464 700

Table 8. Power dispatched and served load.

Node Power Supplied
(MW) DR (MW) Load Shedding

(MW) Cost (USD) Served Load
(%)

2 300 0 0 0 100
3 220 80 0 4000 100
4 0 100 300 125,000 25

4.1.3. DG Allocation to Increase Resiliency without DR

The location of DG in a network reduces load shedding and network operating costs.
They are an alternative for the post-disruptive event stage since, compared to the recovery
of the lost infrastructure, they are more efficient in terms of costs and installation times.
This section identifies the optimal location and sizing when the most severe disruptive
attack described in Section 4.1.1 occurs. The types of DG units selected are presented in
Table 9. Table 10 shows how the installation of DG units at node 4 improves the grid
resilience by decreasing the grid operating cost and increasing the load served, contrasted
to the results of Section 3.2. Table 11 describes the network operation characteristics after
the disruptive event and DG location. In comparison with Table 8 serving 100% of the load
at node 4, DG represents for the network a reduction of USD 142,000 at node 4 alone.

Table 9. Types of DG.

Type Pmax (MW) Cost (USD/MW)

1 100 45
2 300 45
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Table 10. Operation after locating DG.

Location
DG-Type

Power Generated
(MW)

Operation Cost
(USD)

Served Load
(MW)

Load Supplied
(%)

4(1), 4(2) 100, 300 41,648 920 92

Table 11. Description of loads at buses 2, 3 and 4.

Bus Active Power (MW) Load Shedding (MW) Cost (USD) Load Supplied (%)

2 300 0 0 100
3 220 80 8000 73.33
4 400 0 0 100

4.1.4. Location and Sizing of DG along with DR to Improve Resiliency

This section evaluates the placement and sizing of DG in conjunction with the DR
mechanism to increase the operational resilience of the grid when the disruptive event
described in Section 4.1.2 occurs. Table 12 summarizes the location and optimal sizing of
DERs in the network.

Table 12. Sizing of distributed energy resources.

Location DG-Type DR Location DR Operation Cost (USD) Load Supplied (MW)

4-(1), 4-(2) 3 80 37,645 1000

The results presented show that the system operator minimizes the damage caused
to the grid when there is an agreement to voluntarily disconnect a percentage of load 3
and the two types of distributed generators available at node 4 are located. The demand
response mechanism contributes to serving 8% of the total load on the grid and decreases
the operating costs at node 3 from USD 8000 to USD 4000, while the distributed generators
at node 4 serve 40% of the total load on the grid and decrease the operating costs at node 4
from USD 160,000 to USD 18,000.

4.1.5. Quantification of Resilience in Terms of Operating Cost and Percentage of the
Total Load

This section presents a comparison of the grid operation, according to the management
of DG and DR developed in Sections 3.1 and 3.2. Table 13 quantifies resilience in terms of
operating cost and percentage of total load served, and Table 14 describes quantitatively
and qualitatively the level of resilience achieved with each proposed scenario, which is
shown in Figure 7. This figure shows the level of load served in the development of the
disruptive event (t0–t1) and in the stage after the event (t1–t2) with respect to normal
operating conditions.

Table 13. Scenario results according to costs served load.

Served Load (MW) Operation Cost (USD) Load Shedding Cost (USD)

Scenario 1 520 183,650 168,000
Scenario 2 700 144,645 120,000
Scenario 3 920 41,648 8000
Scenario 4 1000 37,645 0
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Table 14. Resilience metrics.

µ1 µ2 µ Resilience

Scenario 1 0.52 0.0852 0.3026 Poor
Scenario 2 0.70 0.1703 0.4351 Poor
Scenario 3 0.92 0.8079 0.8639 Good
Scenario 4 1 1 1 Excellent

Figure 7. Served load in percentage.

It is important to remember that in Scenario 1, the grid is attacked, and no mechanism
is used to respond to this attack. In Scenario 2, there is a bilateral agreement between the
network operator and some loads to voluntarily disconnect a percentage of the load; in
the post-attack stage, the network operator does not take actions to reduce load shedding.
In Scenario 3, there is no agreement for voluntary load shedding; under this condition,
the attack plan is executed. In the post-attack stage, the network operator optimizes the
location and sizing of distributed generators to reduce load shedding. In Scenario 4, there is
a bilateral agreement between the network operator and some system loads to voluntarily
shed a percentage of the total load. In the post-attack stage, the network operator optimizes
the location of distributed generators and reallocates the demand response to reduce
load shedding.

4.2. Results with the IEEE RTS-24 Bus Power System

In this section, the proposed methodology is applied to a modified version of the IEEE
RTS-24 bus test system. Figure 8 illustrates the notation assigned to each of the network
elements as well as the operating costs of the generators in USD/MWh. Note that the
nodes with DR are indicated in blue circles. It is supposed that the cost of attacking a line
or generator is the same, indicated in Table 4, while the cost of DR is 50 USD/MWh; also,
the disruptive agent has a budget of USD 800 to design the attack plans. The cost of load
shedding is 100 USD/MWh at all nodes, with the exception of buses 2, 9, 15, 16, 19 and 20
where it is 300 USD/MWh. A maximum of 6 DG units might be allocated with capacity of
40 MW each. The first three DG units (type 1) have a cost of 40 USD/MWh and the others
(type 2) a cost of 45 USD/MWh. These can be allocated at any of the load buses indicated
in Figure 8.
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Figure 8. Modified version of the IEEE RTS-24 bus test system.

Under normal operating conditions, the total load served is 2850 MW and the total
operating cost is USD 38,284. The resources allocated to the disruptive agent allow it
to execute attacks plans that results in different levels of load shedding. Four cases are
considered as indicated in Table 15. In Scenario 1, the percentage of served load is only
38% and the operative cost is USD 336,464, due to load shedding. For Scenario 2, the
system operator establishes bilateral agreements for voluntary load disconnection (DR)
and reaches a percentage of served load of 54%. In this case, DR allows serving 15% of the
total demand and has a cost of USD 13,325. In Scenario 3, DG is used to mitigate the effect
of the disruptive event on the grid. Locating the 6 DG units at the most affected buses
allows meeting a percentage of 8% of the total load supplied. In Scenario 4, using both DG
and DR together, the highest level of resilience is achieved, reducing the total cost of the
system and the amount of load shedding in relation to the previous ones; 61% of the total
load of the network is served, and together, these mechanisms represent 23% of the load
served. Tables 15 and 16 summarize the vulnerability and resilience results for the four
cases. Table 17 presents the resilience metrics in each of the cases when presented with a
disruptive attack.

Table 15. Attacked elements and use of DERs.

Attacked Lines Attacked Generators DG (Bus-Type) DR (Bus)

Scenario 1 1, 7, 10, 15, 17, 18, 19, 25, 26, 28, 36, 37 G21, G22 - -
Scenario 2 1, 2, 3, 8, 10, 11, 18, 20, 21, 23, 27, 29, 36 G23 - 6, 8, 9, 11, 14, 20
Scenario 3 1, 7, 10, 15, 17, 18, 19, 25, 26, 28, 36, 37 G21, G22 6-1, 9-1, 12-1, 14-2, 19-2, 24-2 -
Scenario 4 1, 2, 3, 8, 10, 11, 18, 20, 21, 23, 27, 29, 36 G23 6-1, 9-1, 12-1, 14-2, 19-2, 24-2 6, 8, 9, 11, 14, 20
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Table 16. Summary of costs.

Load Served (MW) Load Served (%) Load Shedding Cost (USD)

Scenario 1 1094.5 38.40 336,464
Scenario 2 1527.2 53.58 218,736
Scenario 3 1318.0 46.24 255,394
Scenario 4 1750.7 61.42 184,442

Table 17. Resiliency metrics.

µ µ2 µ Resiliency

Scenario 1 0.3840 0.052211 0.21812 Deficient
Scenario 2 0.5359 0.131355 0.33360 Poor
Scenario 3 0.4625 0.078019 0.27023 Poor
Scenario 4 0.6142 0.147741 0.38095 Poor

5. Discussion of Results

The proposed GA showed to be effective at solving the EGIP modeled in this work.
For the 5-bus test system, the average execution time was 2 min and 42 s, while for the
IEEE RTS 24-bus test system, it was 29 min and 50 s. All tests were carried out on a laptop
under a Windows 10 operating system with an i7 Pentium Core processor and 8 GHz of
RAM memory.

In the 5-bus test system, it was observed a poor resilience in Scenario 1 where no
DERs were considered to mitigate the damage caused to the network by the malicious
attack. In Scenario 2, considering only DR, an increment in resilience was observed;
nonetheless, it still remained below the threshold of 0.5 to be at least regular as given by
the metric proposed in this work (see Table 1). This value increased importantly when DG
was introduced in the system (Scenario 3) to serve the load isolated at bus 4, decreasing
significantly the total load shedding. Finally, an excellent resilience was achieved in
Scenario 4 when both resources, namely DG and RD, were combined. In this last Scenario,
there was no load shedding, despite the attacked elements. This highlights the importance
of an optimal assignment of DERs performed by the system operator.

The tests carried out with the IEEE RTS-24 bus test system showed that the resiliency
could not be highly improved, despite having DERs available. This is basically due to
two facts. On one hand, it was assigned a high budget for the attacker, which was able
to destroy a significant portion of the system (an average of twelve lines and at least one
generator). On the other hand, the total power provided by the DG units was limited to
8% of the total demand, and the bilateral agreements of voluntarily load disconnection
(DR) was also limited to a reduced set of loads that added up 15% of the total demand. In
this case, despite the optimal allocation of DERs performed by the system operator, the
resiliency index remained below 0.5. Nonetheless, an important reduction in load shedding
costs was achieved. According to the data presented in Table 16, the load served increased
from 38.4% to 61.42%, which represents important savings in load shedding costs.

6. Conclusions

This paper addresses the electric grid interdiction problem in which a malicious agent
aims at causing maximum damage to the network subject to a limited budget and the
reaction of the system operator that may resort to DERs in order to mitigate the impacts on
the network. This attacker–defender dynamic is modeled within a bi-level programming
framework and solved through a GA. The vulnerability analysis presented in this paper
allows identifying the best strategies of the disruptor agent to attack the lines and generators
of a network, and the response of the system operator to minimize load shedding and
operating costs based on the location and sizing of distributed generators in conjunction
with the demand response mechanism in order to increase the operational resilience of
the network when the disruptive event occurs. In addition, the interaction between the
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disruptive agent and the network operator is illustrated in terms of the economic and
physical constraints of the grid.

The metrics proposed by the authors allow measuring the actions taken by the system
operator regarding load shedding and distributed energy resources as a demand response,
the distributed generation to be used for system resilience, and the costs that this represents
for the grid and the user. The results presented show that the system operator minimizes
the damages caused to the grid as well as the operating costs when there is an agreement
to voluntarily disconnect a percentage of the load and distributed generators are located at
certain nodes in order to meet the demand.

Future work may include other power flow models, and new metrics for resiliency as
well as the use of novel techniques to approach the bi-level programming framework that
models the attacker–defender dynamic. A management system that allows the system op-
erator to prioritize critical loads in the event of a deliberate attack may also be implemented.
Finally, a future challenge is the implementation of other game-theoretic approaches, such
as tri-level optimization, that also captures the response of the system planner.
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Acronyms and Abbreviations

AC Alternating Current
DC Direct Current
DERs Distributed Energy Resources
DG Distributed Generation
DR Demand Response
EPS Electric Power Systems
GA Genetic Algorithm
PSO Particle Swarm Optimization

Nomenclature

Indices and sets
L Set of lines
G Set of generators
M Total resources of the attacker
N Set of buses
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NRD Set of buses with demand response
ΨG

n Set of generators connected to node n
ΨD

n Set of demands connected to node n
ΨL

n Set of lines connected to node n
Parameters and constants
Cg Cost of the power delivered by generator g
CRDn Cost of the dispatchable load at node n
CDm Cost of load shedding at node m
Ml Cost of attacking a line
Mg Cost of attacking a generator
c1, c2 Uncertainty costs
Cgd Cost of demand
Pgd Power demanded
Variables
Pg Power delivered
PRDn Power demand response at node n
PDm Power Load shedding at node m
Qg Reactive power delivered by generator g
δL(l) Interdiction vector for the set of lines
δG(g) Interdiction vectors for the set of generators
Pd Active power demand
Qd Reactive power demand
Sl

Br Apparent power flow in line l
Wn Power scheduled for generator n
x1, x2 Power demanded
m1, m2 Cost operation results and minimum and maximum power at the loads

µ1
Represents the ability of the system to adequately manage the optimal power
flow to meet the demand

µ2
Shows that the power grid has mechanisms to minimize mandatory load
shedding as the worst case scenario for the network operator and the loads

µ Quantify respectively a fully resilient and a zero resilient network
Vn Voltage magnitude at bus n

References
1. Zang, T.; Gao, S.; Liu, B.; Huang, T.; Wang, T.; Wei, X. Integrated fault propagation model based vulnerability assessment of the

electrical cyber-physical system under cyber attacks. Reliab. Eng. Syst. Saf. 2019, 189, 232–241. [CrossRef]
2. Corredor, P.H.; Ruiz, M.E. Mitigating the Impact of Terrorist Activity on Colombia’s Power System. IEEE Power Energy Mag. 2011,

9, 59–66. [CrossRef]
3. Salmeron, J.; Wood, K.; Baldick, R. Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 2004, 19,

905–912. [CrossRef]
4. Arroyo, J.M.; Galiana, F.D. On the solution of the bilevel programming formulation of the terrorist threat problem. IEEE Trans.

Power Syst. 2005, 20, 789–797. [CrossRef]
5. Delgadillo, A.; Arroyo, J.M.; Alguacil, N. Analysis of electric grid interdiction with line switching. IEEE Trans. Power Syst. 2010,

25, 633–641. [CrossRef]
6. Upme, C. Recursos Energéticos Distribuidos Acciones Para la Integración. 2020; pp. 1–83. Available online: https://pigccme.

minenergia.gov.co/public/uploads/web_documentos/5f47f3963eac5.pdf (accessed on 27 January 2021).
7. Pep, S.; Carrasco, A. Agrecación de Recursos Energéticos Distribuidos (DER) Obstáculos y Recomendaciones Para un Desarrollo

Íntegro del Mercado Barcelona, Diciembre de 2017. Available online: http://acco.gencat.cat/web/.content/80_acco/documents/
arxius/actuacions/20180406-Agregacio-de-recursos-eneregetics-distribuits_esp.pdf (accessed on 27 January 2021).

8. Brown, R.E. Cost-Benefit Analysis of the Deployment of Utility Infrastructure Upgrades and Storm Hardening Programs. Satell.
Commun. 2009, 3021, 1–108.

9. Gil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A mixed-integer convex model for the optimal placement and
sizing of distributed generators in power distribution networks. Appl. Sci. 2021, 11, 627. [CrossRef]

10. Shu, J.; Guan, R.; Wu, L.; Han, B. A Bi-Level Approach for Determining Optimal Dynamic Retail Electricity Pricing of Large
Industrial Customers. IEEE Trans. Smart Grid 2019, 10, 2267–2277. [CrossRef]

http://doi.org/10.1016/j.ress.2019.04.024
http://doi.org/10.1109/MPE.2011.940266
http://doi.org/10.1109/TPWRS.2004.825888
http://doi.org/10.1109/TPWRS.2005.846198
http://doi.org/10.1109/TPWRS.2009.2032232
https://pigccme.minenergia.gov.co/public/uploads/web_documentos/5f47f3963eac5.pdf
https://pigccme.minenergia.gov.co/public/uploads/web_documentos/5f47f3963eac5.pdf
http://acco.gencat.cat/web/.content/80_acco/documents/arxius/actuacions/20180406-Agregacio-de-recursos-eneregetics-distribuits_esp.pdf
http://acco.gencat.cat/web/.content/80_acco/documents/arxius/actuacions/20180406-Agregacio-de-recursos-eneregetics-distribuits_esp.pdf
http://doi.org/10.3390/app11020627
http://doi.org/10.1109/TSG.2018.2794329


Electronics 2021, 10, 1498 20 of 20

11. Costa, A.; Georgiadis, D.; Ng, T.S.; Sim, M. An optimization model for power grid fortification to maximize attack immunity. Int.
J. Electr. Power Energy Syst. 2018, 99, 594–602. [CrossRef]

12. López-Lezama, J.M.; Cortina-Gómez, J.; Muñoz-Galeano, N. Assessment of the Electric Grid Interdiction Problem using a
nonlinear modeling approach. Electr. Power Syst. Res. 2017, 144, 243–254. [CrossRef]

13. Cortina, J.J.; López-Lezama, J.M.; Muñoz-Galeano, N. Modelo de interdicción de sistemas de potencia considerando el efecto de
la respuesta a la demanda. Inf. Tecnol. 2017, 28, 197–208. [CrossRef]

14. Biswas, R.; Sen Pal, A.; Werho, T.; Vittal, V. A Graph Theoretic Approach to Power System Vulnerability Identification. IEEE Trans.
Power Syst. 2021, 36, 923–935. [CrossRef]

15. Yang, S.; Chen, W.; Zhang, X.; Liang, C.; Wang, H.; Cui, W. A Graph-Based Model for Transmission Network Vulnerability
Analysis. IEEE Syst. J. 2020, 14, 1447–1456. [CrossRef]

16. Liu, B.; Li, Z.; Chen, X.; Huang, Y.; Liu, X. Recognition and Vulnerability Analysis of Key Nodes in Power Grid Based on Complex
Network Centrality. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 346–350. [CrossRef]

17. Beyza, J.; Garcia-Paricio, E.; Ruiz, H.F.; Yusta, J.M. Geodesic Vulnerability Approach for Identification of Critical Buses in Power
Systems. J. Mod. Power Syst. Clean Energy 2021, 9, 37–45. [CrossRef]

18. Luo, L.; Han, B.; Rosas-Casals, M. Network hierarchy evolution and system vulnerability in power grids. IEEE Syst. J. 2018, 12,
2721–2728. [CrossRef]

19. Pu, C.; Wu, P.; Xia, Y. Vulnerability Assessment of Power Grids against Link-Based Attacks. IEEE Trans. Circuits Syst. II Express
Briefs 2020, 67, 2209–2213. [CrossRef]

20. Fang, J.; Su, C.; Chen, Z.; Sun, H.; Lund, P. Power system structural vulnerability assessment based on an improved maximum
flow approach. IEEE Trans. Smart Grid 2018, 9, 777–785. [CrossRef]

21. López-Lezama, J.M.; Galeano, J.C.C.; Trujillo, E.R. Assessment of the electric grid interdiction problem considering different
network models. J. Appl. Sci. Eng. 2020, 23, 175–183. [CrossRef]

22. República de Colombia, Ministerio de Minas y Energía, Comisión de Regulación de Energía y Gas. 2015. Available online: http:
//apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/84e16439657b002b05257e52005011b5?OpenDocument
(accessed on 23 March 2021).

23. Bie, Z.; Lin, Y.; Li, G.; Li, F. Battling the Extreme: A Study on the Power System Resilience. Proc. IEEE 2017, 105, 1253–1266.
[CrossRef]

24. Calvete, H.I.; Galé, C.; Mateo, P.M. A new approach for solving linear bilevel problems using genetic algorithms. Eur. J. Oper. Res.
2008, 188, 14–28. [CrossRef]

25. Li, H.; Jiao, Y.; Zhang, L. Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electron.
2010, 21, 763–770. [CrossRef]

26. Wang, G.M.; Wang, X.J.; Wan, Z.P.; Jia, S.H. An adaptive genetic algorithm for solving bilevel linear programming problem. Appl.
Math. Mech. 2007, 28, 1605–1612. [CrossRef]

27. Arroyo, J.M.; Fernández, F.J. A genetic algorithm for power system vulnerability analysis under multiple contingencies. Stud.
Comput. Intell. 2013, 482, 41–68. [CrossRef]

28. Lezama, J.M.L.; Cuestas, B.J.R.; Valencia, J.P.H.A. Bilevel Attacker-Defender Model for Enhancing Power Systems Resilience with
Distributed Generation. Sci. Tech. 2020, 25, 540–547. [CrossRef]

29. Wang, G.; Wan, Z.; Wang, X.; Lv, Y. Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming
problem. Comput. Math. Appl. 2008, 56, 2550–2555. [CrossRef]

30. Smith, J.E. Self-adaptation in evolutionary algorithms for combinatorial optimisation. Stud. Comput. Intell. 2008, 136, 31–57.
[CrossRef]

31. Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education. IEEE Trans. Power Syst. 2011, 26, 12–19. [CrossRef]

32. Amirioun, M.H.; Aminifar, F.; Lesani, H.; Shahidehpour, M. Metrics and quantitative framework for assessing microgrid resilience
against windstorms. Int. J. Electr. Power Energy Syst. 2019, 104, 716–723. [CrossRef]

33. Panteli, M.; Mancarella, P.; Trakas, D.N.; Kyriakides, E.; Hatziargyriou, N.D. Metrics and Quantification of Operational and
Infrastructure Resilience in Power Systems. IEEE Trans. Power Syst. 2017, 32, 4732–4742. [CrossRef]

34. Henry, D.; Emmanuel Ramirez-Marquez, J. Generic metrics and quantitative approaches for system resilience as a function of
time. Reliab. Eng. Syst. Saf. 2012, 99, 114–122. [CrossRef]

35. Chalishazar, V.; Poudel, S.; Hanif, S.; Mana, P.T. Power System Resilience Metrics Augmentation for Critical Load Prioritization. Available
online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-30837.pdf (accessed on 2 December 2020).

36. Li, F. Rui Bo DCOPF-Based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity. Conf. Paper IEEE Trans. Power
Syst. 2008, 22, 1475–1485. [CrossRef]

37. Xu, Y.; Liu, C.C.; Schneider, K.P.; Ton, D.T. Toward a resilient distribution system. IEEE Power Energy Soc. Gen. Meet. 2015, 1–5.
[CrossRef]

38. Panteli, M.; Mancarella, P. Influence of extreme weather and climate change on the resilience of power systems: Impacts and
possible mitigation strategies. Electr. Power Syst. Res. 2015, 127, 259–270. [CrossRef]

http://doi.org/10.1016/j.ijepes.2018.01.020
http://doi.org/10.1016/j.epsr.2016.12.017
http://doi.org/10.4067/S0718-07642017000300020
http://doi.org/10.1109/TPWRS.2020.3010476
http://doi.org/10.1109/JSYST.2019.2919958
http://doi.org/10.1109/TCSII.2017.2705482
http://doi.org/10.35833/MPCE.2018.000779
http://doi.org/10.1109/JSYST.2016.2628410
http://doi.org/10.1109/TCSII.2019.2958313
http://doi.org/10.1109/TSG.2016.2565619
http://doi.org/10.6180/jase.202006_23(2).0001
http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/84e16439657b002b05257e52005011b5?OpenDocument
http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/84e16439657b002b05257e52005011b5?OpenDocument
http://doi.org/10.1109/JPROC.2017.2679040
http://doi.org/10.1016/j.ejor.2007.03.034
http://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://doi.org/10.1007/s10483-007-1207-1
http://doi.org/10.1007/978-3-642-37838-6_2
http://doi.org/10.22517/23447214.23721
http://doi.org/10.1016/j.camwa.2008.05.006
http://doi.org/10.1007/978-3-540-79438-7_2
http://doi.org/10.1109/TPWRS.2010.2051168
http://doi.org/10.1016/j.ijepes.2018.07.025
http://doi.org/10.1109/TPWRS.2017.2664141
http://doi.org/10.1016/j.ress.2011.09.002
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-30837.pdf
http://doi.org/10.1109/TPWRS.2007.907924
http://doi.org/10.1109/PESGM.2015.7286551
http://doi.org/10.1016/j.epsr.2015.06.012

	Introduction 
	Motivation 
	Literature Review 
	Contributions and Paper Organization 

	Outline of the EGIP 
	Normal Operative Conditions 
	Scenarios for the Case Study 

	Mathematical Modeling and Solution Approach 
	Vulnerability Analysis 
	Genetic Algorithm 
	Upper-Level Optimization Problem 
	Lower-Level Optimization Problem 

	Allocation of Costs in Loads 
	Resilience of an Electrical Power System 
	Strategies for Maximizing Network Resilience Following a Disruptive Event 

	Tests and Results 
	Results with a 5-Bus Power System 
	Normal Operation and Disruptive Event 
	Disruptive Event with DR 
	DG Allocation to Increase Resiliency without DR 
	Location and Sizing of DG along with DR to Improve Resiliency 
	Quantification of Resilience in Terms of Operating Cost and Percentage of the Total Load 

	Results with the IEEE RTS-24 Bus Power System 

	Discussion of Results 
	Conclusions 
	References

