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Abstract: In analog circuit, the component parameters have tolerances and the fault component
parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle
this problem, this article proposes a soft fault diagnosis method combining the improved barnacles
mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can
achieve the minimum redundancy and maximum relevance for feature dimension reduction with
fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm
is used to optimize the parameters for learning and classification. We adopt six test functions that
are on three data sets from the University of California, Irvine (UCI) machine learning repository
to test the performance of SVM classifier with five different optimization algorithms. The results
show that the SVM classifier combined with the improved barnacles mating optimizer algorithm
is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced
minimum redundancy, and maximum relevance principle are applied to reduce the dimension of
the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can
achieve fault classification effectively when the fault parameters are both fixed and distributed. The
accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed,
which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the
accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.

Keywords: circuit fault diagnosis; support vector machine; barnacles mating optimizer; fuzzy mutual
information; minimum redundancy maximum relevance

1. Introduction

Electronic devices often suffer from working continuously for a long time. With
the increase of working time, the parameters of components may change, resulting in
circuit performance degradation, or even severe damage to electronic devices. According
to statistics, 80% of the faults occur mainly in analog circuits, which take account for
20% of the electronic devices [1]. Therefore, fault diagnosis methods for analog circuits
have been a hotspot. Due to the complexity of analog circuits, fault diagnosis with high
accuracy is challenging. The main reasons include: (1) the fault characteristics of analog
circuits are very complex. It is difficult to find a feature extraction method suitable for all
circuit faults with different circuit structures and different failure modes. (2) The input
and output of analog circuits are mostly non-linear. The models of circuit components are
also non-linear, which poses a significant challenge to the injection of test signals and the
extraction of fault features. (3) Components in analog circuits have tolerance characteristics.
When a fault occurs, the parameters of the faulty components present a wide distribution.
This distribution may cause the coupling of the faulty features with the normal circuit
characteristics, which makes it difficult to achieve classification diagnosis.
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Fault diagnosis of analog circuits can be viewed as a multi-class problem. It consists of
an efficient and accurate classifier, a component to excite and collect fault data, and feature
vector extraction and selection.

For circuit fault diagnosis, the error sources that affect the diagnosis accuracy mainly
include: (1) The performance difference of classifiers will affect the diagnosis accuracy; (2)
The method of feature vector extraction, especially considering the tolerance and large
range of fault distribution, will affect the accuracy of diagnosis.

First of all, an efficient and accurate classifier is the core part of fault classification.
Support vector machine (SVM) [2,3], based on statistical learning theory, has the advantages
of simple structure, clear theoretical explanation, and small training sample size. SVM is a
supervised learning algorithms for binary and multivariate classification by searching for
separating hyperplanes in the feature space. It can also deal with non-linear classification
problems by introducing kernel functions. SVM is widely used in classification problems.

The selection of the penalty parameter and kernel function parameter of SVM sig-
nificantly affects the classification accuracy [2]. Cross-grid validation is commonly used
in the optimization of these parameters. Linear gridding establishes a grid within the
optimization range to find each node. The optimization time and result are affected by
grid resolution and vector space. The efficiency of the optimization is very low, result-
ing in a very long training time. Using various optimization algorithms developed by
researchers combined with SVM can greatly improve the efficiency of optimization, such
as genetic algorithm (GA) [4], particle swarm optimization (PSO) [5], ant lion optimiza-
tion algorithm (ALO) [6] et al. Wolpert and Macready proposed the “No Free Lunch”
theorems (NFL) [7], which proved that there is no best metaheuristic algorithm to solve
all optimization problems, thus encouraging researchers to keep coming up with new
optimization algorithms.

The barnacles matching optimizer (BMO) proposed by Sulaiman et al. [8] is a new
biological population metaheuristic intelligent algorithm. It has the advantages of few
adjustment parameters, fast convergence speed, and high accuracy. It has attracted re-
searchers’ attention as soon as it is proposed and has been successfully applied to power
system problems and economic dispatch problems. The convergence speed of BMO is
very fast, however, it is easy to fall into the local optimum. How to use the optimization
algorithm to build an efficient and accurate classifier is a problem worthy of study.

Second, feature extraction strategy for soft fault diagnosis of analog circuits directly
affects the classification accuracy. When the parameters of fault elements change in an
extensive range, especially when the tolerance of all components is considered, there may
be a high correlation between the fault features and the fault-free features and between
different fault features, which makes the classification difficult. At the same time, in order
to make the data as complete as possible, the dimension of the feature vectors produced
by general simulation is relatively high, which will produce a large amount of data. It is
also a problem worth studying how to make effective fault excitation and feature vectors
extraction and selection.

In order to solve the above two problems, this paper has made the following work: (1)
an improved barnacle mating optimizer (IBMO) is proposed, which further enhances the
convergence speed, exploration ability, and the ability to jump out of the local optimum
of the IBMO. The performance is tested with six test functions. (2) The SVM classifier
based on IBMO is designed and its performance is verified on three UCI datasets. (3)
An analog circuit fault diagnosis method is designed. In order to solve the problem of
analog circuit component parameter tolerance and fault parameter wide range distribution
diagnosis, fuzzy set theory [9] combined with minimum redundancy maximum relevance
(mRMR) [10] is proposed for feature selection. (4) The modeling and fault simulation is
carried out for a circuit example. The fault diagnosis method is tested with the fault param-
eters both fixed and distributed. At the same time, the fuzzy parameters are discussed and
the test results are analyzed.
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This paper is presented as follows: Section 1 introduces the background, current
problems, and the work of this paper. Section 2 introduces the classification theory of the
support vector machine. In Section 3, the improved method of BMO is proposed, tested, and
analyzed. In Section 4, the workflow of SVM based on the IBMO algorithm is introduced.
Moreover, the test results on UCI data sets are provided. Section 5 introduces analog circuit
fault diagnosis methods including fault data generation based on the simulator, feature
selection based on fuzzy method, training and classification methods. In Section 6, the
method described in this paper is tested on a circuit to verify the effectiveness. Section 7
summarizes the whole paper.

2. Review of Support Vector Machine Theory

The basic model of SVM is a linear binary classifier defined in the feature space.
Nonlinear classification can be achieved by introducing kernel function and maximizing
soft-margin. Defining the data sets S = {(x1, y1), (x2, y2), · · · , (xm, ym)}, yi ∈ {+1,−1},
i = 1, 2, . . . m, and the hyperplane f (x) = wTx + b. The distance from the sample in S to

the hyperplane is ri =
|wT xi+b|
‖w‖ ,

The objective function of the distance maximization problem is as follows: 1
2‖w‖

2 Since
some sample points in margin cannot satisfy the strong constraint conditions, the slack
variable ξi and penalty parameter c are introduced. The margin maximization problem can
be transformed into a convex quadratic programming problem [2,11,12]:

min
w,b,ξ

1
2
‖w‖2 + c

m

∑
i=1

ξi, s.t. yi

(
wTxi + b

)
≥ 1− ξi, (ξi ≥ 0, c > 0, i = 1, 2, . . . , m) (1)

When the problem is extended to nonlinear, the hyperplane is expressed as: f (x) =
wTφ(x) + b. In this case, the quadratic programming problem is:

min
w,b,ξ

1
2
‖w‖2 + c

m

∑
i=1

ξi, s.t. yi

(
wTφ(xi) + b

)
≥ 1− ξi, (ξi ≥ 0, c > 0, i = 1, 2, . . . , m) (2)

The Lagrange multiplier method is used to solve the dual problem. The Lagrange
function is [13]:

L(w, b, a, ξ, µ) =
1
2
‖w‖2 + c

m

∑
i=1

ξi +
m

∑
i=1

αi

(
1− ξi − yi

(
wTxi + b

))
−

m

∑
i=1

µiξi (3)

where αi ≥ 0, µi ≥ 0 are Lagrange multipliers. The dual problem is transformed into:

max
α

[
m
∑

i=1
αi − 1

2

m
∑

i=1

m
∑

j=1
αiαjyiyjxi

Txj]

s.t.
m
∑

i=1
αiyi = 0, c ≥ αi ≥ 0, µi ≥ 0, c = αi + µi, i = 1, 2, . . . , m

(4)

After solving αi and b, the hyperplane equation can be obtained as follows:

f (x) = wTφ(x) + b =
m

∑
i=1

αiyiφ(xi)
Tφ
(
xj
)
+ b =

m

∑
i=1

αiyik
(
xi, xj

)
+ b (5)

k(xi, xj) is the kernel function. The introduction of kernel function can save many
calculations caused by the increase of dimension after mapping low dimensional space
to high dimensional space in inner product operation. In this paper, the Gaussian kernel
function k(xi, xj) = exp

(
−γ‖xi − xj‖2

)
is used.

It can be seen from the introduction above that the value of penalty parameter c and
the Gaussian kernel function parameter γ have a significant influence on the SVM model
and then affect the effect of SVM classification. Therefore, it is of great significance to find a
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suitable c and γ matching method to improve the classification accuracy. The optimization
algorithm can improve the efficiency of SVM to find the optimal parameters.

3. The BMO Algorithm and the Improved Method
3.1. The BMO Algorithm

BMO algorithm is an evolutionary algorithm, which imitates the barnacle population
in nature to produce new offspring, continuously iteratively improves the characteristics
of the offspring, so as to obtain the global optimal solution. Barnacles have a robust
reproductive capacity, and most barnacles are hermaphroditic, which means that they have
heterosexual reproduction and self-reproduction [8].

BMO algorithm uses Hardy–Weinberg principle [8] to generate offspring. The fre-
quency of Dad(D) and Mum(M) is expressed as f(D) = p and f(M) = q, respectively. For
homozygotes, the expected genotype frequency under normal mating can be expressed as
f(DD) = p2, f(MM) = q2, respectively. For heterozygotes, it is expressed as f(DM) = 2pq, and
p2 + 2pq + q2 = 1 [14].

The population vector of BMO is expressed as:

W =

 w1
1 · · · wN

1
...

. . .
...

w1
n · · · wN

n

 (6)

where N is the number of variables and n is the number of populations.
The upper and lower bounds of variables can be expressed as:

ub = [ub1, . . . , ubi]
lb = [lb1, . . . , lbi]

(7)

The Equation (8) is used to sort the population of each generation randomly as the
father group and mother group of the current generation [15].

barnacle_ d = randperm(n)
barnacle_m = randperm(n)

(8)

The mating distance parameter is defined as pl. In the father group and mother group,
only the parents less than or equal to parameter pl can reproduce and produce the next
generation according to Equation (9):

wN−new
i = pwN

barnacle−d + qwN
barnacle_m (9)

where p is a random number between [0,1], q = 1 − p, p and q represent the proportion of
fathers and mothers in their offspring.

When the distance between the parents in the father group and mother group exceeds
the value of pl, the exploratory behavior occurs according to Equation (10).

wN_new
i = rand()× wN

barnacle_m (10)

All barnacles were sorted by fitness, and the optimal n individuals were selected.
Through the continuous evolution of the population, the optimal performance is ap-
proached. Until the maximum number of iterations, the surviving population’s first
barnacle is considered the global optimal value.

3.2. Improvement of the BMO Algorithm

(1) Dynamic Search Scope Mechanism

In the BMO algorithm, the mating distance between the father group and mother group
is affected by changing the value of parameter pl. The value of parameter pl has a significant
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influence on the convergence of the BMO algorithm. The value of parameter pl is discussed
in the original algorithm. However, the fixed value will lead to premature convergence
and insufficient exploitation capacity of the algorithm. Therefore, the introduction of the
parameter pl dynamic random model makes pl change in a certain range, increasing the
exploitation capacity of the algorithm. The model is expressed as follows:

pl = r× n/2 + n/4, r ∼ U(0, 1) (11)

where n is the number of populations.

(2) Self-Reproduction Mechanism

In the BMO algorithm, heterozygous reproduction was simulated to simplify the
model. Only the heterozygous frequency f(DM) = 2pq was introduced into the offspring
gene. In the improved algorithm, the self-reproduction mechanism was added. Accord-
ing to Equation (12), individuals of each generation reproduce themselves to increase
population specificity, which offers offspring superior performance.{

Z = Y× (1 + k), p > 0.5
Z = Y× k, p ≤ 0.5

, k ∼ U(0, 1), p ∼ U(0, 1) (12)

where Y is the current position and Z is the offspring position.

(3) Levy Flight Mechanism

In order to further enhance the exploitation ability and the ability to jump out of
the local optimal solution, the concept of Levy flight [16] (LF) is introduced. LF is a kind
of random walk, its direction of each step is completely random and isotropic, and the
distribution of step size is heavy tailed. It has been proved that many biological trajectories,
including many human behaviors, are based on LF, and the transfer behavior based on LF
is optimal [17]. Therefore, the introduction of Levy flight into the algorithm can increase
the diversity of the population, further increase the exploitation ability, and improve the
ability of the algorithm to jump out of the local optimal solution. LF is performed for the
last k individuals in each generation. The value of k is random, and its calculation method
is shown in Equation (13). Equations (14) and (15) describe the mathematical model of LF,
where Z represents the updated position, Y represents the current position, and S is the
step size.

k = r× 0.5× n, r ∼ U(0, 1) (13)

Z = Y + S (14)

S =
u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )
)


1
β

, β = 1.5, u ∼ N(0, σ2), v ∼ N(0, 1) (15)

The pseudo code of the improved BMO algorithm is presented in IBMO Algorithm:
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IBMO Algorithm

Initial population number, position;
The fitness value of each individual was calculated;
The population was sorted in descending order according to fitness;
while(Current iteration < Maximum iteration)
The parameter k is calculated according to Equation (13):
The k individuals at the end of the population were carried out Levy flight according to the Equations (14)
and (15);
The parameter pl is updated according to Equation (11);
Mating and exploration activities were carried out according to the value range of parameter pl;
Self-reproduction was performed according to Equation (12);
The optimal new generation population was selected;
end while
Select the best individual.

3.3. Test and Analysis
3.3.1. Test Functions

In order to thoroughly test the performance of the IBMO algorithm, six functions with
different characteristics are used to evaluate the performance of the algorithm. F1 is the
unimodal function, F2–F6 are the multimodal functions. For unimodal function, there is
only one global optimal value in the definition domain, and there is no local extremum. It is
used to test the exploration and the convergence ability. The multimodal function is easy to
fall into local because it has multiple local optimal values. It can evaluate the exploitation
ability, optimal global searchability, the ability to avoid premature convergence, and jump
out of local optimal.

Table 1 shows the expressions and parameter settings of the six test functions. Figure
1 shows the graph of each test function of two dimension. In order to clearly show the
detailed characteristics of the function, the definition domain of each function in the figure
takes the local range, and the distribution characteristics of the optimal value of each test
function can be found.

Table 1. Test functions and parameters.

The
Function
Number

The Function
Name Mathematical Expression The Search

Range
The

Dimension
The

Optimal Value

F1 Sphere F1 =
d
∑

i=1
x2

i
[−500,500] 50 0

F2 Schwefel’s
problem 2.22 F2 =

d
∑

i=1
|xi|+

d
∏
i=1
|xi| [−500,500] 50 0

F3 Rosenbrock F3 =
d−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

[−3000,3000] 50 0

F4 Ackley
F4 = −20 exp

(
−0.2

√
1
d

d
∑

i=1
x2

i

)
−

exp
(

1
d

d
∑

i=1
cos(2πxi)

)
+ 20 + exp(1)

[−600,600] 50 0

F5 Zakharov F5 =
d
∑

i=1
x2

i +

(
d
∑

i=1
0.5ixi

)2

+

(
d
∑

i=1
0.5ixi

)4
[−300,300] 30 0

F6 Salomon F6= 1− cos
(

2π
d
∑

i=1
xi

)
+ 0.1

d
∑

i=1
x2

i
[−500,500] 30 0
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3.3.2. Test and Analysis

In order to test the performance of the IBMO, six test functions in Table 1 are applied
on GA, PSO, ALO, BMO, and IBMO, respectively. Each algorithm runs 50 optimization
calculations for six test functions. The best result, the worst result, and the average result of
all test functions corresponding to each algorithm are calculated to evaluate the algorithm.

For the optimization algorithm, the maximum number of iterations and population
can be adjusted according to the actual use. However, the larger numbers will lead to
more computation, which will cost more resources and time. In order to compare the
performance of several algorithms, the same parameters are selected for comparison.

The number of maximum iterations is 100 and the population is 30. As shown in
Table 2, compared with the other four optimization algorithms, the best result, the worst
result, and the average result of IBMO are better than other optimization algorithms in the
test of six functions.

Figure 2 shows the convergence curves of six test functions optimized by five algo-
rithms. Figure 2a shows that in the unimodal function test, the optimization accuracy
and convergence speed of IBMO are better than the other four algorithms. Moreover, in
the multimodal function test, the IBMO algorithm finds the global expected minimum
faster than other algorithms. Figure 2b shows that after the IBMO algorithm enters the
local minimum value, it quickly jumps out of the local optimal value and continues to
search for the global optimal value. Figure 2c,d shows that the IBMO algorithm converges
to the desired accuracy faster than that of other algorithms. Figure 2e,f shows that the
convergence speed and optimization accuracy of IBMO in complex multimodal function
optimization is better than other algorithms. Combined with the data in Table 2, it can be
seen that the best result, the worst result, and the average result of IBMO for unimodal
function and multimodal function are better than that of other algorithms. It can be seen
from Figure 2 and Table 2 that after the improvement of the original BMO algorithm in
three aspects, the optimization accuracy, convergence speed, and the ability to jump out
of the local minimum value of BMO algorithm are improved under the unimodal and
multimodal functions tests.
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Table 2. Test results of optimization algorithms.

The Function
Number

The Best Result The Worst Result The Average Result

GA PSO ALO BMO IBMO GA PSO ALO BMO IBMO GA PSO ALO BMO IBMO

F1 9.895 1.297 × 10−1 1.846 × 105 2.664 × 10−129 5.646 × 10−163 4.078 × 101 7.177 × 10−1 5.899 × 105 1.450 × 10−100 4.068 × 10−134 2.077 × 101 3.448 × 10−1 3.768 × 105 2.901 × 10−102 8.168 × 10−136

F2 1.156 × 101 1.093 × 10−1 4.216 × 103 4.274 × 10−64 5.476 × 10−84 2.824 × 101 3.386 × 10−1 1.161 × 1094 3.399 × 10−51 1.146 × 10−66 2.031 × 101 2.167 × 10−1 3.276 × 1092 9.873 × 10−53 2.767 × 10−68

F3 9.663 × 102 3.480 × 103 1.705 × 1014 4.830 × 101 4.788 × 101 6.05 × 103 2.618 × 105 1.531 × 1015 4.884 × 101 4.88 × 101 2.286 × 103 3.31 × 104 6.543 × 1014 4.868 × 101 4.857 × 101

F4 3.002 2 × 101 8.882 × 10−16 8.882 × 10−16 8.882 × 10−16 4.21 2 × 101 2 × 101 8.882 × 10−16 8.882 × 10−16 3.591 2 × 101 5.7 8.882 × 10−16 8.882 × 10−16

F5 3.084 × 10−3 2.009 × 10−5 2.286 × 101 3.822 × 10−130 2.976 × 10−160 6.728 × 104 1.36 × 102 8.403 × 104 1.134 × 10−102 1.334 × 10−135 3.758 × 103 3.782 2.151 × 104 2.373 × 10−104 2.690 × 10−137

F6 8.937 × 10−1 1.584 × 10−1 2.193 × 103 3.718 × 10−126 2.119 × 10−161 3.503 5.455 × 10−1 3.267 × 104 6.822 × 10−103 1.820 × 10−135 1.983 3.599 × 10−1 1.428 × 104 1.405 × 10−104 3.679 × 10−137
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4. SVM Classifier Based on IBMO
4.1. Optimization Process of SVM Parameters

In this paper, the IBMO algorithm is proposed to optimize the penalty parameter c
in SVM and the kernel width parameter γ of the Gaussian kernel function. It is called the
IBMO-SVM algorithm. The optimization process is presented as follows:

Step 1: Data initialization. According to the cross-validation parameters, the original
data set is divided into the training set and the test set.

Step 2: IBMO initialization. Set the number of populations, the maximum number of
iterations, variable dimension, and the search range.

Step 3: Fitness value calculation. The training set data are input into the SVM model,
and the current generation c and γ are used to calculate the prediction accuracy of the test
set data, which is used as the fitness value.

Step 4: Algorithm iteration. According to the fitness value, IBMO was used to update
c and γ.

Step 5: Repeat steps 3 and 4 until the number of iterations is equal to the maximum
number of iterations. At this time c and γ are the optimal parameters.

4.2. Testing Classifiers

In order to test the impact of the optimization algorithm on the performance of the
classifier under the same number of iterations and population, the classifiers with five
optimization algorithms are tested on UCI datasets [18]. As shown in Table 3, the datasets
“iris,” “wine,” and “isolet5” are selected. The dataset “iris” is small in feature dimension,
classification number, the total number of samples, and total data size, which can test the
algorithm’s performance in small samples. The dataset “isolet5” has many classifications,
feature dimensions, the total number of samples, and the total amount of data, which can
test the algorithm’s performance when there are more classification and a large amount of
data. The dataset “wine” is between the two datasets, moderate in all aspects. In order to
reduce the randomness, each dataset was tested five times, and the average classification
accuracy was taken.

Table 3. The UCI test datasets.

The
Dataset

The Feature
Dimension

The Number of
Classifications

The Total Number of
Samples

The Total
Data Size

iris 4 3 150 600
wine 13 3 178 2314

isolet5 617 26 1559 961,903

The parameters set for each algorithm are shown in Table 4. The parameters Cr and Mi
represent the crossover factor and the variant factor in the GA. The parameters c1 and c2
represent the weight of each particle’s best position and the weight of the neighborhood’s
best position when adjusting velocity in the PSO. The parameter a represents the cross-
validation parameter in SVM. In this paper, five-fold cross-validation was used. The dataset
is divided into five parts, four of which are used as the training set and one as the test
sets to calculate the classification accuracy when current parameters are used. In order to
compare the performance of several algorithms, the same parameters need to be set. The
population size, the maximum number of iterations, and the search range were taken to be
20, 50, and [0.001, 100].



Electronics 2021, 10, 1496 11 of 20

Table 4. Parameters of the algorithms.

The Optimization
Algorithm

Population
Size

Maximum Number
of Iterations

The Search
Range Cr Mi c1 c2 a

GA 20 50 [0.001,100] 0.8 0.2 - - 5
PSO 20 50 [0.001,100] - - 1.49 1.49 5
ALO 20 50 [0.001,100] - - - - 5
BMO 20 50 [0.001,100] - - - - 5
IBMO 20 50 [0.001,100] - - - - 5

As shown in Table 5, the SVM is optimized by using five algorithms. The classification
accuracy of the three data sets is tested and compared. The results show that, due to
the high efficiency of IBMO and the ability to jump out of the local optimal value, the
classification accuracy of IBMO-SVM classifier is better than other classifiers in the case of
classification number, feature dimension, total number of samples, and total amount of
data with different characteristics.

Table 5. Comparison of test accuracy results of classifiers.

Classifier Iris (Accuracy %) Wine (Accuracy %) Isolet5 (Accuracy %)

GA-SVM 95 96.0526 87.5641
PSO-SVM 93.6667 96.8421 94.0877
ALO-SVM 93 95 95. 0641
BMO-SVM 95.6667 96.3158 94.9359
IBMO-SVM 96 97.3684 95.3205

5. The Analog Circuit Fault Diagnosis Method

The analog circuit fault diagnosis method designed in this paper is shown in Figure 3.
It includes (1) fault simulation and data acquisition; (2) fault feature selection; (3) training
and fault classification.
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5.1. Fault Simulation and Data Acquisition

The circuit under test is modeled in the simulator. In order to approach the real
situation, all components consider the tolerance and obey the Gaussian distribution as
follows: V~N(ρ, (ρτ/3)2), where V is the real value of components, ρ is the nominal value
of components, τ is the component tolerance.

In many research papers, the failure parameters of fault simulation components is
defined as a fixed value or in a small range, such as literatures [1,19–23]. But in practice,
all the components have tolerance, besides, when a component fails, the parameters may
change over an extensive range. When various faults occur, this wide range of parameter
changes will significantly aggravate the similarity of fault feature vectors, which will bring
great difficulties to fault diagnosis.

Suppose that q1 and q2 are the minimum and maximum ratios when the parameter
decreases, q3 and q4 are the minimum and maximum ratios when the parameter increases,
the parameters of the faulty components follow the mean distribution. So the parameter
distribution of the component in case of fault meets the requirements of WL ~ U(q1, q2)ρ or
WH ~ U(q3, q4)ρ, where WL is the fault value when the component parameter decreases,
and WH is the fault value when the component parameter increases. The distributions of
other normal component parameters still follow Gaussian distribution.

The fault excitation is carried out in the simulator when all component parameters are
normal, decreased, or increased. In the excitation of circuit soft fault, some scholars use
the pulse excitation method. The circuit’s impulse response is sampled at high speed, and
then the feature vectors are obtained by wavelet packet transform [24], S-transform [22],
and Hilbert-Huang transform [25]. With these methods, the pulse excitation duration is
very short, which requires steep pulse to reach a microsecond level and the rising and
falling edges. The signal requires a high demand for the signal source. Simultaneously, the
circuit pulse response needs to be sampled at high speed to obtain the circuit’s response
curve during the excitation period. In this circumstance, the sampling rate must reach
hundreds of megahertz or even thousands of megahertz, which puts forward a very high
requirement for the circuit response signal extraction. It is challenging to achieve it in
engineering.

This paper uses a method to extract the amplitude-frequency curve of output response
by frequency conversion signal [26]. In this way, the requirement of the signal source is
relatively low. Besides, after feature selection, only some individual frequency excitation
signals are needed. The amplitude of the output waveform can be converted into a DC
signal through the amplitude extraction circuit. With this method, only a low sampling
rate is needed, and the requirement of sampling equipment is also low.

The amplitude-frequency response curve of the test point of each faulty circuit is
obtained by frequency-scanning excitation. The amplitudes of K frequency points are
collected for each curve as a sample. The feature dimension of each group of samples is K.
Suppose that there are M components to be analyzed in the circuit. The fault-free condition
is also regarded as a fault classification. There are (2M + 1) fault labels. N times Monte
Carlo analysis and simulation for each fault class, all classes can get (2M + 1) × N groups
of simulation samples.

5.2. Fault Feature Selection

The total sample space data, including all sample data and label data, is (2M + 1) × N
× (K + 1). When the feature dimension K of the sample is large, a huge amount of data can
be generated, which will consume a lot of resources and time in training, thus reducing the
training efficiency. Because of the redundancy of feature vectors, feature dimensionality
reduction can be achieved by feature selection.
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5.2.1. Fuzzy Mutual Information in Sample Space

The mutual information of two discrete random variables S and T is defined as [27]:

I(S; T) = ∑
x∈X

∑
y∈Y

p(s, t) log
p(s, t)

p(s)p(t)
(16)

where p(s, t) is the joint probability distribution function of S and T, p(s) and p(t) are the
marginal probability distribution functions of S and T, respectively. At the same time, the
mutual information can be expressed as [28]:

I(S; T) = H(S) + H(Y) − H(S, T) (17)

where H(S) and H(T) are the marginal entropy of S and T, respectively, and H(S, T) is the
joint entropy of S and T.

In this paper, fuzzy set theory is introduced to analyze the fuzzy relationship between
feature vector and classification.

Define U = {X1, X2, · · · , Xl} is the universe of discourse, where l is the number of
elements in U. Assume p is a set of fuzzy attributes on U. It generates a fuzzy equivalent
partition of c classes on U. The fuzzy equivalence matrix of attribute vector p corresponding
to all classes is FMp =

[
f mp

ij

]
i=1...c,j=1...l

, where f mp
ij represents the membership of the j-th

element of fuzzy attribute p to the i-th classification [29].
Suppose that the set of sample spaces corresponding to all classification of element

attributes is FP = {p1, p2, · · · , pt}. In this paper, the definition of membership function
proposed by Khushaba [9] is selected. The membership of the k-th vector belonging to the
i-th class is expressed as [9]:

µik =

(‖pi − pk‖δ

r + ε

) −2
m−1

(18)

where m is the fuzzification parameter, ε is a minimal positive number to avoid singularity,
δ is the standard deviation involved in the distance computation. pi denotes the mean of
the data sample that belong to class i, and r = max

(
‖pi − pk‖δ

)
is the radius of the data.

According to the Equation (17), the fuzzy mutual information between a feature vector
f and the class vector C in the feature vector set F = { f1, f2, · · · , fl}, and the fuzzy mutual
information between the two feature vectors fj and fk can be described as:

I( f ; C) = H( f ) + H(C)− H( f , C) (19)

I( f j; fk) = H( f j) + H( fk)− H( f j, fk) (20)

According to 5.1, there are a total of c = 2M + 1 class, and the class vector C = {ci}c
i=1

can be obtained. According to the sampling frequency K, the feature vector set F =
{

f j
}K

j=1
can be obtained. According to the Monte Carlo simulation times N, the total number of
samples of each feature vector is T = (2M + 1) × N.

The membership of feature vector f to all classes is calculated by Equation (18). A fuzzy
relation matrix of feature vector f can be obtained as follows:FM f =

[
f m f

ij

]
i=1...c,j=1...T

.

Similarly, the fuzzy relation matrices of two vector vectors fa and fb in feature vector set F
are as follows: FM f a =

[
f m fa

ij

]
i=1...c,j=1...T

and FM fb
=
[

f m fb
ij

]
i=1...c,j=1...T

. Denote the i-th

row vector of FM f as Mi
f . The marginal fuzzy entropy of feature vector and the joint fuzzy

entropy between two feature vectors are defined as follows [30]:

H( f ) = −
c

∑
i=1

c

∑
j=1

Pf ( f ) log P( f ) = −
c

∑
i=1

c

∑
j=1

√〈
Mi

f Mj
f

〉
T

log

√〈
Mi

f Mj
f

〉
T

(21)
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H( fa, fb) = −
c

∑
i=1

c

∑
j=1

Pfa fb
(i, j) log Pfa fb

(i, j) = −
c

∑
i=1

c

∑
j=1

√〈
Mi

fa
Mj

fb

〉
T

log

√〈
Mi

fa
Mj

fb

〉
T

(22)

The occurrence frequency of each label is counted, and then the entropy of the classes
is given as follows:

Calculate the probability of each label:Pci = Nci/T, where Nci represents the number
of each label and T represents the number of samples. In this case, the entropy of the classes
can be calculated as follows:

H(C) = −
c

∑
i=1

(Pci log Pci ) = −
c

∑
i=1

Nci
T

log
Nci
T

(23)

The joint fuzzy entropy of feature vector f and class vector C is given as follows [31]:

H( f , C) =
c

∑
i=1

H( f , ci) = −
c

∑
i=1

(
Pf ,ci

log Pf ,ci

)
= −

c

∑
i=1

[
1
T

T

∑
k=1

f m f
ik

]
log

[
1
T

T

∑
k=1

f m f
ik

]
(24)

The fuzzy mutual information I( f ; C) of feature vector f and class vector C, and the
fuzzy mutual information I( fa; fb) between two feature vectors fa and fb can be obtained
by introducing Equations (21)–(24) into Equations(19) and (20), respectively.

5.2.2. Dimension Reduction of Sample Space

The mRMR is a feature selection algorithm based on mutual information. It maxi-
mizes the mutual information between the selected features and the joint distribution of
classification variables, and minimizes the mutual information between features, so as to
obtain the optimal feature set. For the sample space and target set c with dimension N, the
subspace feature set S is the optimal feature set. The maximum relevance principle is that
the mean value of mutual information of all features in S and c is the largest:

maxD(S, c), D =
1
|S| ∑ai∈S

I(ai; c) (25)

In this case, the minimum redundancy principle is used to remove the redundant
features in the subspace [32]:

minR(S), R =
1

|S|2 ∑
ai ,aj∈S

I
(
ai, aj

)
(26)

Using the method of mutual information difference (MID) or mutual information
quotient (MIQ), the optimal feature set satisfying mRMR principle is obtained as follows:

maxΦ1(D, R), Φ1(D, R) = D− R (27)

maxΦ2(D, R), Φ2(D, R) = D/R (28)

Set the number of the feature vectors (NOFV). Assume that all the sets are A, and
the current set Sm−1 has been obtained. Use the incremental search method shown in
Equations (29) or (30) to find the next feature vector in the remaining space {A− Sm−1}
until all the features meeting the number requirements are found.

max
aj∈A−Sm−1

[
I
(
aj; c

)
− 1

m− 1 ∑
ai∈Sm−1

I
(
aj; ai

)]
(29)
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max
aj∈A−Sm−1

[
I
(
aj; c

)
/

1
m− 1 ∑

ai∈Sm−1

I
(
aj; ai

)]
(30)

In the incremental calculation process of the mRMR algorithm, the mutual information
between feature vectors needs to be calculated in each iteration. Ahmed et al. improved the
mRMR algorithm and proposed an enhanced minimum redundancy maximum relevance
(EmRMR) method [10]. The mutual information between all feature vectors is stored and
used in each iteration process by creating an empty order list. The index form is used to
reduce unnecessarily repeated calculation in the iteration process. This method does not
affect the results of mRMR selection. It reduces the redundant calculation process, and
improves the algorithm efficiency.

This paper combines fuzzy mutual information and EmRMR method to achieve the
feature selection of feature vectors, which is called Fuzzy Mutual Information-Enhanced
Minimal Redundancy Maximal Relevance (FMI-EmRMR). The fuzzy mutual information
I( f j; fk) between feature vectors and the fuzzy mutual information I( f ; C) between feature
vectors and class vector obtained by the method described in 5.2.1 are brought into Equation
(29) or (30), and the sets of all I( f j; fk) and I( f ; C) are brought into the iteration in the
form of index, so as to obtain the feature vectors selected by FMI-EmRMR.

5.3. Training and Fault Classification

The FMI-EmRMR algorithm is adopted to select the feature vector, and the fault
simulation data are divided into training set and test set. The training set is used to train
IBMO-SVM, and the optimization process described in 4.1 is used to optimize the penalty
parameter c and kernel function parameter γ of SVM. After training and optimization, the
optimized parameters for classifier can be obtained. A classification test is carried out on
test set. The classification accuracy is defined as a performance index of the algorithm.

6. Analog Circuit Fault Diagnosis Test

As shown in Figure 4, in multisim14.1, the Sallen-key band-pass filter circuit is mod-
eled. The output node of the operational amplifier is used as the signal acquisition node.
According to 5.1, ρ is the nominal value of resistance and capacitance, the tolerance of
resistance and capacitance is set as τ = 5%, and the component parameter distribution is V
~ N(ρ, (0.0167ρ)2). When the component changes within its tolerance range, the circuit is
fault-free. When the component deviates from the normal tolerance range, it is considered
to have a soft fault. Suppose that the minimum detectable scale [29] of fault is 2τ = 0.1, so
q2 = 1−2τ = 0.9, q3 = 1 + 2τ = 1.1. Let q1 = 0.1, q4 = 2, then the parameter distribution of
faulty components satisfies WL ~ U(0.1, 0.9)ρ and WH ~ U(1.1, 2)ρ.
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Figure 4. Sallen-key circuit diagram.

As shown in Table 6, the values of the faulty components’ parameters in the range of
variation and ±50% deviation from the fixed value are listed, respectively.



Electronics 2021, 10, 1496 16 of 20

Table 6. Fault description.

Class Label Failure Mode Normal Value Distribution Range of Fault Value Fixed Fault Value

L1 normal - - -
L2 C1↓ 5 nF 0.5–4 nF 2.5 nF
L3 C1↑ 5 nF 5.5–10 nF 7.5 nF
L4 C2↓ 5 nF 0.5–4 nF 2.5 nF
L5 C2↑ 5 nF 5.5–10 nF 7.5 nF
L6 R1↓ 1 kΩ 0.1–0.9 kΩ 0.5 kΩ
L7 R1↑ 1 kΩ 1.1–2 kΩ 1.5 kΩ
L8 R2↓ 3 kΩ 0.3–2.7 kΩ 1.5 kΩ
L9 R2↑ 3 kΩ 3.3–6 kΩ 4.5 kΩ

L10 R3↓ 2 kΩ 0.2–1.8 kΩ 1 kΩ
L11 R3↑ 2 kΩ 2.2–4 kΩ 3 kΩ
L12 R4↓ 4 kΩ 0.4–3.6 kΩ 2 kΩ
L13 R4↑ 4 kΩ 4.4–8 kΩ 6 kΩ
L14 R5↓ 4 kΩ 0.4–3.6 kΩ 2 kΩ
L15 R5↑ 4 kΩ 4.4–8 kΩ 6 kΩ

There are seven components in the circuit, so M = 7, then the number of class labels is
(2M + 1) = 15. In the simulator, a sine wave with the peak value of 3V is used for linear
frequency conversion scanning from 1 Hz to 300 kHz, and 1000 frequency sampling points
are set at equal intervals, that is, the feature vector dimension K = 1000. The total number
of samples is (2M + 1) × N =1500 by N = 100 Monte Carlo simulation analysis for each
fault parameter circuit. The samples are divided into two groups evenly according to the
classification, one as the training set and the other as the test set.

Figure 5a shows the amplitude-frequency response curves of 100 times Monte Carlo
simulation for L1, L3, L7, L13, and L14 faults with fixed fault values. Figure 5b shows the
amplitude–frequency response curves with the fault distribution uniform in an extensive
range. When a fixed fault value is adopted, the amplitude–frequency response curve of
each type of fault is relatively concentrated, and the curve characteristics between each
type of fault are apparent, and the identification degree is high. When the fault value is
distributed in an extensive range, the amplitude–frequency response curve of each type of
fault is wildly divergent, and the curve features of each type of fault overlap more. The
identification degree is low, which significantly improves the difficulty of diagnosis.

In order to reduce the dimension of features, the method of FMI-EmRMR is used to
select feature vectors. By calculating the fuzzy mutual information between each frequency
point vector and the fuzzy mutual information between each frequency point vector and
the class vector in the sample space, as the input of EmRMR, the feature frequency points
can be obtained.

Since the fuzzification parameter m in the membership function will affect the output
of fuzzy mutual information, which may affect the output of EmRMR, the classification
accuracy of different values of m is tested. It can be considered that when the number of
selected dimensions in EmRMR is fixed, that is, when the feature vector is in the same
feature dimension, the influence of m value on the accuracy of test classification can be
characterized. As shown in Figure 6, different m values from 1.1 to 10 are tested. In this
example, when the fault parameters are fixed, due to the strong independence between
features, the influence of m on the accuracy is limited, and all values can ensure very high
classification accuracy. When m is 4.3, the classification accuracy is the highest. When the
fault parameters are distributed, the overlap between features is severe. At this time, the
fuzzy parameters have a certain impact on the classification accuracy. When m is 3.9, the
classification accuracy is the highest.
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As shown in Table 7, the search range of all classifiers is [0.001, 1000], the population
size is 20, and the maximum number of iterations is 50. The fuzzification parameter m
is set to 3.9 and 4.3, respectively. The feature frequency points are {20.421, 20.121, 19.820,
8.109, 2.103, 1.802, 1.502} kHz and {31.832, 31.532, 31.232, 23.124, 22.823, 21.622,21.322} kHz,
respectively. Using the method described in this paper, very high classification accuracy
can be obtained if the fixed fault values are used. However, when the fault parameters are
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evenly distributed in a large range, the diagnosis difficulty is much greater than that of
the fixed fault values. The proposed method can still obtain higher accuracy to realize the
classification of fault types. At the same time, the accuracy of the IBMO-SVM classifier is
higher than other classifiers in both cases.

Table 7. Comparison of fault diagnosis accuracy.

Classifier

When The Fault Parameters Are Distributed When The Fault Parameters Are Fixed

c γ
The Feature

Frequency Points
(NOFV = 7)

Fuzzification
Parameter M

Fault
Diagnosis
Accuracy

(%)

c γ
The Feature

Frequency Points
(NOFV = 7)

Fuzzification
Parameter M

Fault
Diagnosis
Accuracy

(%)

GA-SVM 146.56 57.589
{20.421, 20.121,
19.820, 8.109,
2.103, 1.802,
1.502} kHz

3.9

90.8 422.08 134.24
{31.832, 31.532,
31.232, 23.124,

22.823,
21.622,21.322} kHz

4.3

98.13
PSO-SVM 922.09 98.401 90.9 763.88 614.86 98.27
ALO-SVM 809.59 116.95 91.2 517.11 120.06 98.53
BMO-SVM 894.82 99.328 91.6 928.13 73.669 98.67
IBMO-SVM 633.86 131.32 92.9 998.13 72.793 99.07

7. Conclusions

In this paper, an efficient method of the analog circuit fault diagnosis is presented.
The main contributions of the proposed method includes: (1) The original BMO algorithm
is improved. By using test functions to compare the optimization ability of several opti-
mization algorithms, it shows that the improved BMO algorithm has higher optimization
ability than the other algorithms and improves the optimization and convergence ability of
the algorithm; (2) an improved BMO algorithm is proposed to optimize the SVM classifier,
and the performance of the classifier is tested. Test data show that IBMO algorithm can
effectively improve the efficiency of SVM parameters optimization and classification accu-
racy; (3) a feature selection algorithm based on fuzzy mutual information and enhanced
mRMR is proposed. It can effectively extract the feature vector when the circuit compo-
nents are in tolerance and the value of fault components is in a large fault range. The
influence of the fuzzification parameter on fault diagnosis is analyzed, which improves
the accuracy of fault diagnosis in a large fault range; (4) combined with the proposed
classifier and feature method, a fault diagnosis method is designed. Considering the wide
fault range of component parameters, the fault parameters are more consistent with the
actual fault diagnosis. The characteristics of soft fault are simulated by signal injection,
and the proposed diagnosis method is tested. The circuit test of an example shows that the
method of IBMO-SVM classifier and FMI-EmRMR feature selection has high accuracy in
the case of fixed fault values and distributed fault values. The accuracy of the proposed
fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8%
higher than other classifiers on average. When the fault parameters are fixed, the accuracy
rate is 99.07%, which is 0.7% higher than other classifiers on average.

The future work includes: (1) The influence of different membership function on the
accuracy of classification and diagnosis; (2) how to further improve the convergence speed
of the optimization algorithm; (3) the influence of other feature selection algorithms on
fault diagnosis accuracy in an extensive fault range.
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