
electronics

Article

AREEBA: An Area Efficient Binary Huff-Curve Architecture

Asher Sajid 1, Muhammad Rashid 2 , Sajjad Shaukat Jamal 3 , Malik Imran 4,5,* and Saud S. Alotaibi 6

and Mohammed H. Sinky 2

����������
�������

Citation: Sajid, A.; Rashid, M.; Jamal,

S.S.; Imran, M.; Alotaibi, S.S.; Sinky,

M.H. AREEBA: An Area Efficient

Binary Huff-Curve Architecture.

Electronics 2021, 10, 1490. https://

doi.org/10.3390/electronics10121490

Academic Editor: Juan M. Corchado

Received: 8 May 2021

Accepted: 17 June 2021

Published: 20 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Bahria University, Islamabad 44000, Pakistan;
malikasher267@gmail.com

2 Department of Computer Engineering, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
mfelahi@uqu.edu.sa (M.R.); mhsinky@uqu.edu.sa (M.H.S.)

3 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
shussain@kku.edu.sa

4 Science and Technology Unit (STU), Umm Al-Qura University, Makkah 24351, Saudi Arabia
5 Department of Computer Systems, Tallinn University of Technology, 12616 Tallinn, Estonia
6 Department of Information Systems, Umm Al-Qura University, Makkah 24351, Saudi Arabia;

ssotaibi@uqu.edu.sa
* Correspondence: malik.imran@taltech.ee; Tel.:+372-53676608

Abstract: Elliptic curve cryptography is the most widely employed class of asymmetric cryptography
algorithm. However, it is exposed to simple power analysis attacks due to the lack of unifiedness over
point doubling and addition operations. The unified crypto systems such as Binary Edward, Hessian
and Huff curves provide resistance against power analysis attacks. Furthermore, Huff curves are
more secure than Edward and Hessian curves but require more computational resources. Therefore,
this article has provided a low area hardware architecture for point multiplication computation of
Binary Huff curves over GF(2163) and GF(2233). To achieve this, a segmented least significant digit
multiplier for polynomial multiplications is proposed. In order to provide a realistic and reasonable
comparison with state of the art solutions, the proposed architecture is modeled in Verilog and
synthesized for different field programmable gate arrays. For Virtex-4, Virtex-5, Virtex-6, and Virtex-7
devices, the utilized hardware resources in terms of hardware slices over GF(2163) are 5302, 2412,
2982 and 3508, respectively. The corresponding achieved values over GF(2233) are 11,557, 10,065,
4370 and 4261, respectively. The reported low area values provide the acceptability of this work in
area-constrained applications.

Keywords: elliptic curve cryptography; Binary Huff curves; area optimization; crypto processor;
field programmable gate array (FPGA)

1. Introduction

Elliptic-curve cryptography (ECC), a public-key cryptography scheme, has become
an attractive approach to provide security for area-constrained applications like internet-
of-things (IoT), radio-frequency-identification (RFID) cards, digital signatures and many
more [1]. Its widely adoption is due to its ability to provide a similar security level
with relatively smaller key-sizes as compared to the current public-key security standard
(i.e., the Rivest–Shammir–Adleman (RSA) algorithm) [2]. From structural point of view,
ECC involves four layers of operations [3]. The top most layer (fourth layer) ensures the
encryption and decryption of data. In layer three, the point multiplication (PM) is computed
which is the most critical operation. For the PM computation, the required point addition
(PA) and point doubling (PD) operations are employed in layer two. Finally, the layer one
of ECC consists of finite-filed (FF) arithmetic operations (addition, multiplication, square
and inversion). In addition to the layer model of ECC, there are two coordinate systems, i.e.,
affine, and projective. In past, the latter has more frequently been employed to optimize
throughput [3]. Furthermore, two field representations, i.e., prime (GF(P)) and binary
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(GF(2m)), are commonly involved. The prime field representation is generally utilized
for software-based implementations while the binary field representation is preferred for
hardware deployments [3,4].

Concerning the security strength of ECC, several implementation models such as
Weierstrass [3,4], Binary-edward (BEC) [5], Hessian (HC) [6], and Binary-huff (BHC) [7]
are frequently utilized. The fundamental model (Weierstrass) in ECC allows access to
attackers and, therefore, exposes the secret-key via simple power attacks (SPA) [5–7]. The
vulnerability of Weierstrass model to SPA is due to different mathematical formulations
of PA and PD for PM computation [8]. The SPA is a type of side channel attack where
attackers can find the secret-key in terms of zeros and ones by inspecting the power trails
of PA and PD computations. The power trails are inspected using various power analysis
tools such as logic analyzer. Among several other choices, one of the solutions to resist SPA
in ECC is the use of unified PA and PD laws (Uni f _Add_Law).

In addition to the Weierstrass model, all the aforesaid models (HC, BEC, BHC) provide
Unif_Add_Law for the computation of PA and PD operations [5–7]. Furthermore, the
computational complexity of PM operation in BEC and HC models are lower than BHC [5,6].
Therefore, the BEC and HC models of ECC are generally preferred for those applications
where a higher throughput is more important than any other design parameter. On
the other hand, the BHC model provides higher security as compared to BEC and HC
models [7]. The BHC is a binary extension of Huff’s model with a unified point addition
and doubling [9]. For complete mathematical structures of various Uni f _Add_Law models,
the interested readers are referred to [5–7,9]. Moreover, we also refer to [10–13] where
more generalizations and theoretical foundations over Weierstrass, Hessian, Huff and
Edward models have been presented. At the same time, the major applications for highly
secure public key cryptosystems against SCA with low area demands include cloud
computing [14], Identity-Based Encryption [15], wireless sensor networks (WSNs) [16] and
RFID [17] etc. Therefore, the purpose of this article is to provide a low area implementation
of BHC model for ECC on a reconfigurable field programmable gate array (FPGA).

1.1. Existing FPGA Architectures and Limitations

To provide resistance against SPA using the BHC model, only a limited number of
hardware architectures are available. The reason is that the BHC model was recently proposed
in 2011 [18–22]. For other unified ECC models (such as BEC), there are several architectures.
However, due to different mathematical structures for PA and PD computations in BEC and
BHC, a fair comparison is not realistic. Therefore, it is important to mention that this article
mainly considers BHC architectures for discussion. Nevertheless, for the sake of completeness,
some interesting hardware accelerators for the BEC model are also discussed [8,23–25].

The first hardware architecture for the PM computation of the BHC model over
GF(2233) is described in [18]. The critical FF arithmetic operations (i.e., multiplication
and inversion) are computed by employing a hybrid Karatsuba multiplier and an Itoh–
Tsujii inversion algorithm, respectively. Furthermore, to achieve a hybrid multiplication
architecture, the simple and general Karatsuba multipliers are coupled. The general
Karatsuba multiplier is employed for better utilization of FPGA look-up-tables (LUTs)
over smaller bits. On the other hand, the simple Karatsuba multiplier is used to minimize
gate counts over longer bits. In order to reduce the required number of clock cycles, a
Quad block Itoh–Tsujii algorithm is implemented. As a result, the entire PM architecture
utilizes 20437 FPGA slices on Virtex-4 FPGA. Similarly, another FPGA-based architecture
over GF(2233) is provided in [19]. The main contribution of [19] is to report SPA attacks
and countermeasures for PA and PD operations in BHC model of ECC. However, on the
newer Virtex-7 FPGA by Xillinx, the architecture utilizes 6032 hardware resources (in terms
of slices).

Recently, the pipelined architectures for BHC model of ECC have been presented
in [20–22]. An efficient throughput/area architecture is presented in [20]. The pipelining is
used to reduce the critical path and to improve the clock frequency of the PM architecture.
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To avoid structural hazards, which occur due to pipelining, the scheduling for PA and PD
instructions are given. Moreover, for modular multiplication, a parallel least significant
digit multiplier is employed. The implementation results over GF(2163) and GF(2233)
are provided on a Virtex-7 FPGA device. The architecture utilizes 6342 FPGA slices and
achieves a maximum clock frequency of 369 MHz over GF(2233). A four-stage pipelined
architecture is given in [21]. It reduces the hardware cost of the BHC model by revisiting the
original PA and PD mathematical formulations. As a result, the simplified mathematical
formulations is presented with a 43% reduction in hardware resources. Towards the
throughput optimization, pipeline registers are incorporated in datapath. Moreover, in
order to reduce clock cycles, an efficient scheduling for the computation of PA and PD
instructions are provided. Considering the field length of GF(2233), the synthesis results
are given for Virtex-7 FPGA.

The architectures in [18–21] are specifically proposed for the Unif_Add_Law computations
of PM operation. It implies that all the optimizations are made for a single ECC model
(which is BHC). On the other hand, the architecture in [22] provides a flexible solution and
supports two different models of ECC (BHC and Weirstrass). Additionally, the architecture
utilizes two distinct PM algorithms for different ECC models. The Double and Add
algorithm is used for the BHC model of ECC while the Montgomery ladder algorithm
is utilized for Weirstrass model. It provides three different designs, i.e., a dedicated
architecture for each BHC model and Weirstrass model and a flexible design to integrate
BHC with Weirstrass. The dedicated architecture of [22] for BHC model utilizes 6083 FPGA
slices and require 36 µs for one PM computation. The BEC architecture of [23] utilizes 21816
FPGA slices and achieves a clock frequency of 48 MHz. Another BEC architecture, reported
in [24], consumes 5919 FPGA slices on Virtex-5 FPGA. Similarly, the BEC architectures
reported in [8,25] utilize 15804 and 6600 FPGA slices, respectively.

It can be observed from the above discussion that the required hardware resources
(FPGA slices) in existing FPGA implementations of BHC and BEC models are relatively
higher [8,18–25]. The architectures resulting higher hardware resources are not suitable
for area constrained applications such as Identity-Based Encryption [15], WSNs [16] and
RFID [17]. Consequently, a low area implementation of BHC model is required for area
constrained applications.

1.2. Settings and Contributions

Our settings (basic representation and coordinate system) as well as contributions for
the computation of PM operation in the BHC model of ECC are given as:

• Settings:

– Basis representation: This work employs a polynomial basis representation
instead of a normal basis [18–22]. It is important to note that the BHC model
of ECC requires frequent multiplications. To achieve frequent multiplications,
the polynomial basis representation is more useful while the normal basis is
convenient where repeated squarings are needed.

– Coordinate system: An affine coordinate system requires an FF inversion during
each PA and PD computation [7,18–22] which ultimately effects the latency of
entire architecture. Consequently, to avoid the cost of FF inversion required
during each computation of PA and PD operation, a projective (Lopez Dahab)
coordinate system is selected in this article.

• Contributions:

– PM architecture: We have presented a PM architecture with reduced area over
GF(2m) for m = 163 and 233 bits (details are given in Section 3).

– Polynomial multiplier architecture: Towards area reduction, we have proposed
a segmented least significant digit (segmented-LSD) multiplier with a digit
size of d = 32-bits. Each created digit is segmented into four 8-bit digits.
Subsequently, the multiplication over each 8-bit segment is performed by using a
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simple schoolbook multiplication method. This ultimately reduces the hardware
resources (in terms of FPGA slices).

– Dedicated controller: To efficiently control the inserted logic for the proposed
low area PM architecture, a finite state machine (FSM)-based dedicated controller
is employed.

Our contributions in this article have resulted in an area optimized architecture for
PM computation of BHC model over GF(2163) and GF(2233). The proposed architecture
is termed AREEBA (Area Efficient Binary Huff-curve Architecture). The italic characters
present our selection for the acronym AREEBA. The architecture is modeled in Verilog (HDL)
using the Xilinx ISE design tool. To provide a realistic and reasonable comparison with
state of the art solutions, published in [8,18–25], the proposed architecture is synthesized
for various FPGA devices. For Virtex-4, Virtex-5, Virtex-6 and Virtex-7 devices, the utilized
FPGA slices over GF(2163) are 5302, 2412, 2982 and 3508, respectively. The corresponding
required hardware resources (in terms of FPGA slices) over GF(2233) are 11,557, 10,065, 4370
and 4261, respectively. On newer Virtex-7 FPGA, the proposed architecture provides 1.41, 1.48,
1.64 and 1.42 times lower hardware resources as compared to BHC architectures, published
in [19–22], respectively. Moreover, the proposed architecture is 31.79 times faster (in terms
of computation time) as compared to the most recent Twisted BEC architecture, reported
in [8] (implemented on Virtex-6 and constructed over GF(P)). It is important to note that
the proposed architecture requires relatively higher clock cycles (10,393 for GF(2163) and
11,137 for GF(2233)) with a lower clock frequency. Nevertheless, the optimized area values
reveal that the presented architecture is suitable for area-constrained environments.

The structure of this work is given as follows: The mathematical background for
the implementation of BHC model over GF(2m) is presented in Section 2. Subsequently,
Section 3 describes the proposed hardware architecture. The implementation results and
comparison with state of the art is provided in Section 4. Finally, Section 5 concludes
the paper.

2. Preliminaries

This section describes the required mathematical background pertaining to BHC
model of ECC over GF(2m), along with the corresponding formulations required for the
computation of Uni f _Add_Law in BHC over GF(2m) (Section 2.1). Furthermore, the details
for the implemented Double and Add PM algorithm are presented in Section 2.2.

2.1. BHC Over GF(2m)

Binary Huff curve is defined as the set of projective points (X : Y : Z) over GF(2m)
which satisfy the following equation:

E : aX(Y2 + f YZ + Z2) = bY(X2 + f XZ + Z2) (1)

In Equation (1), the variables a, b and f are curve parameters which belong to GF(2m)
while considering a 6= b.

Initially, the Huff model was introduced in 1963 [26]. In 2010, the descriptions
and formulations of odd characteristic fields with an outline for the binary field were
reported [9]. Thereafter, in 2011, the formal construction of the Huff model for binary field
was provided [7]. This construction provided the first Uni f _Add_Law for the BHC model
of ECC, as given in Table 1.

The Uni f _Add_Law, shown in Table 1, was evaluated in [19]. It was identified that
the Uni f _Add_Law, published in [7], shows behavioral differences when computing point
addition and double operations. It increases vulnerability to SPA attacks. Based on this
observation, another Uni f _Add_Law is presented in [19]. The corresponding mathematical
formulations are presented in Table 2.
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Table 1. Uni f _Add_Law for BHC (published in [7]).

Uni f _Add_Law of the BHC Model of ECC

m1 = X1 × X2, m2 = Y1 ×Y2, m3 = Z1 × Z2
m4 = (X1 + Z1)× (X2 + Z2) + m1 + m3

m5 = ((Y1 + Z1)× (Y2 + Z2)) + m2 + m3, m6 = m1 ×m3, m7 = m2 ×m3
m8 = m1 ×m2 + m2

3, m9 = m6(m2 + m3)
2, m10 = m7(m1 + m3)

2

m11 = m8 × (m2 + m3), m12 = m8 × (m1 + m3)
X3 = α×m9 + m4 ×m11
Y3 = β×m10 + m5 ×m12

Z3 = m11 × (m1 + m3)

Table 2. Uni f _Add_Law for BHC (published in [19]).

Uni f _Add_Law of the BHC Model of ECC

m1 = X1 × X2, m2 = Y1 ×Y2, m3 = Z1 × Z2
m4 = (X1 + Z1)× (X2 + Z2), m5 = ((Y1 + Z1)× (Y2 + Z2))

m6 = m1 ×m3, m7 = m2 ×m3, m8 = m1 × (m2 + m3)
m9 = m6(m2 + m3)

2, m10 = m7(m1 + m3)
2, m11 = m8 × (m2 + m3)

X3 = α×m9 + m4 ×m11 + Z3
Y3 = β×m10 + m5m8 × (m1 + m3) + Z3

Z3 = m11 × (m1 + m3)

The terms X3, Y3, and Z3, used in Tables 1 and 2, are the projective coordinates of
the points on the defined Huff curve. The additional terms α and β are constants defined
as, α = (a+b)

b and β = (a+b)
a . There are two different possibilities to use these constant

parameters: precomputed and runtime computation. In this work, the precomputed
curve constants, i.e., α and β are used to reduce required clock cycles. For hardware
implementations, the mathematical formulations of Table 1 are considered in [18]. Similarly,
the hardware architectures for mathematical formulations of Table 2 are considered in [19–21].
In this work, the PM computation is implemented using the mathematical formulations
from Table 2. It is important to note that the existing architectures of Uni f _Add_Law over
BHC and BEC, published in [8,19,20,23], cover SPA at algorithmic level only. Therefore, this
work also considers the SPA at algorithmic level for a fair performance comparison.

2.2. PM Over GF(2m)

The PM operation over GF(2m) is defined as:

Q = k · P := P + P + . . . + P︸ ︷︷ ︸
k-times

(2)

In Equation (2), Q is the resultant point on the BHC curve, k determines the scalar
multiplier and P is an initial point on the BHC curve. We employed the following Double
and Add PM algorithm (Algorithm 1).

In Algorithm 1, the Uni f _Add_Law represents a set of equations for PM computation
(Tables 1 and 2). It computes Uni f _Add_Law based on the inspected key bit, i.e., k. The
kn−1, . . . , k1, k0 show the key values in terms of 0 s and 1 s. Similarly, the variable n
determines the corresponding key bit position. It is important to note that the length for
n and m are same. Therefore, the statements before for loop are for initialization (affine to
projective conversions). Similarly, the statements inside the for loop are for PM computation
in projective (Lopez Dahab) coordinates. Finally, the statements after the for loop are for
projective to affine coordinates conversion.
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Algorithm 1: Double and Add the PM Algorithm (previously employed for BHC in [18–22])

Input: k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (x, y) ∈ GF(2m)
Output: Q = k.(P)

X1 = xp, Y1 = Y2 = yp, Z1 = 1, X2 = x4
p + b, Z2 = x2

p

for (i from m-1 down to 0) do
Q =Uni f _Add_Law(Q, Q)
if ki = 1, then

Q =Uni f _Add_Law(P, Q)

end if
end for

Return : (xq, yq) = (X2
Z2

, Y2
Z2

2
)

3. Proposed Hardware Architecture

The proposed hardware architecture (AREEBA) for BHC model of ECC is illustrated
in Figure 1. For testing and verification, the initial BHC curve parameters for the proposed
design are selected from National Institute of Standards and Technology (NIST) [27]. The
PA and PD formulas from Table 2 are employed to compute PM operation over GF(2163)
and GF(2233). As shown in Figure 1, the proposed architecture consists of a memory unit
(MU), Arithmetic Unit (AU) and a dedicated control unit (CU). The additional multiplexers
(i.e., M3 and M4) are used for the routing purpose, either from MU to AU (or) AU to MU.
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Figure 1. Proposed AREEBA architecture for PM on the BHC curve.

3.1. Memory Unit

An array of the register file is inferred as a memory unit, as given in Figure 1. It
contains a total of 22 addresses with a data size of m-bits. The variable m determines
the size of field (or) the targeted key length (163 or 233). The objective of this unit is to,
(1) maintain the initial BHC curve parameters, i.e., x1, x2, y1, y2, z1, z2, (2) contain the
intermediate results while implementing Algorithm 1 and (3) store the x and y coordinates
of a final BHC curve point, i.e., xq, yq. In order to read two operands from MU in one clock
cycle, two multiplexers (M1 and M2) are required. A single demultiplexer (Demux) is also
utilized to update the computed result on the specified MU address.
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3.2. Arithmetic Unit

As shown in Figure 1, the required building blocks for the PM computation on BHC
curve are an adder, a squarer, a multiplier and two reduction units. The corresponding
details to implement these building blocks are given in the following text:

• Adder: As compared to GF(P), the selected GF(2m) field provides a carry save
addition. However, the adder unit in this work is implemented by performing a
bitwise Exclusive-OR operation, as shown in Figure 1. For two m-bit input operands,
m number of Exclusive-OR gates are required to produce an m-bit resultant polynomial
after addition.

• Squarer: As provided in Section 1.2, the proposed architecture is developed to
implement PM computation using a polynomial representations. The polynomial
representation offers squaring computation by inserting an extra bit (i.e., 0) after each
input data bit, as given in Figure 1. The squarer unit takes an m-bit operand as input
and results a polynomial of length (2×m− 1)-bits after squaring.

• Multiplier: A general overview of the proposed 32-bit segmented LSD multiplier is
shown in Figure 1. Similarly, the detailed architecture of the proposed multiplier is
presented in Figure 2. It consists of four units, i.e., polynomial segmentation and digit
creation, digit multiplication, internal concatenation and the final concatenation. The
description of these units is given as follows:

– Polynomial segmentation and digits creation: In the proposed LSD multiplier
architecture, the first operand (PolyA) is considered as m-bit. Similarly, the
second operand (PolyB) of 32-bit is created. The total number of digits for an
m-bit polynomial is calculated using n = m

d . The n determines the total digits
(i.e., digit-B1 to digit-B8). On the other hand, the m and d show the operand
length and digit size, respectively. As shown in Figure 2, each 32-bit digit is
partitioned into four 8-bit segments. These segments are B1,1, B1,2, B1,3 and B1,4.
In the subscript of B1,4, the first integer (i.e., 1) determines the number of digits.
Similarly, the second integer (i.e., 4) shows the number of segments. The same
concept is employed to identify the created digits and the partitioned segments.

– Polynomial multiplication: As shown in Figure 2, an m-bit PolyA and the created
8-bit segments of the corresponding digit are input to a schoolbook polynomial
multiplier for multiplication. Therefore, it results four (8+m− 1)-bit polynomials
as output (the length of the polynomials is not shown in Figure 2). We are
thankful to the authors of [28], for sharing their open source repository of various
polynomial multipliers, available at https://github.com/Centre-for-Hardware-
Security/TTech-LIB, accessed on 8 May 2021. According to our requirements,
we generated the Verilog (HDL) design of an 8×m-bit schoolbook polynomial
multiplier by using the open source generator, provided by [28].

– Internal concatenation: The multiplication, after each 8-bit segment to PolyA,
results in a polynomial of length 8+m− 1-bit. For each 32-bit digit multiplication,
a concatenation over segmented polynomials of length 8+m− 1-bit is performed
to produce a resultant polynomial of length 32 + m− 1-bit.

– Final concatenation: Once the multiplication over each 32-bit digit is completed,
the final polynomial of length 2×m− 1-bit is generated using a concatenation of
(32 + m− 1)-bit polynomials.

• Reduction: After each polynomial multiplication and squaring, the resultant polynomials
are 2×m− 1-bit. Therefore, a reduction operation is required to reduce 2×m− 1-bit
polynomials to m-bit. In this work, the reduction units (Reduction-1, connected serially
after the LSD multiplier and Reduction-2, connected serially after the squarer unit) are
implemented by considering the NIST recommended field reduction algorithms over
GF(2163) and GF(2233), respectively. For reduction algorithms, we refer interested
readers to Algorithm 2.41 and Algorithm 2.42 from [29].

https://github.com/Centre-for-Hardware-Security/TTech-LIB
https://github.com/Centre-for-Hardware-Security/TTech-LIB
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• Inversion: As shown in Algorithm 1, the inversion computation is required to perform
reconversions from the projective to affine coordinated systems. To compute FF
inversion, an Itoh–Tsujii algorithm [30] is used in this work. It requires only the
multiplication and squaring operations. Consequently, the inversion is implemented
by using hardware resources of an LSD multiplier and a squarer unit.

B1,1B1,2B1,3B1,4

PolyA PolyAPolyAPolyA

internal concatenation (32+m-1 bit)

digit - B1

B8,1B8,2B8,3B8,4

PolyA PolyAPolyAPolyA

internal concatenation (32+m-1 bit)

digit - B8

. . .

final concatenation to produce resultant polynomial of length 2×(m-1)-bit

Polynomial segmentation and digits creation

8×m-bit schoolbook multiplier

digit - B1 to digit - B8 are the digits of second input polynomial PolyB 

B1,1 to B1,4 are the segments of digit - B1

PolyA is the first input polynomial 

B8,1 to B8,4 are the segments of digit - B8

Polynomial multiplication

. . .

Figure 2. Detailed architecture of the proposed segmented-LSD multiplier over GF(2233).

3.3. Control Unit

The control functionalities are performed by employing an efficient finite state machine
(FSM)-based dedicated controller. The dedicated FSM controller is termed as CU in
Figure 1. The CU generates signals for routing multiplexers as well as the read and
write addresses for MU. The used control signals are shown with red color lines in Figure 1.
The corresponding FSM states (St) for the generation of these signals are also given.

In order to implement Double and Add algorithms (Algorithm 1), the FSM incorporates
a total of 88 states (St: 0–St: 87), as shown in Figure 3. The St: 1–St: 3 are required to generate
control signals for the initialization part. The corresponding PD and PA states are St: 4–St:
34 and St: 35–St: 65, respectively. The last states (i.e., St: 34 and St: 65) of each PD and PA
operation are responsible for monitoring the inspected key bit (Key). Additionally, it also
counts the number of points on the specified BHC curve using a signal count. Once the
value for Key = 0 and the value for count 6= 0, the processor returns to St: 4 from St: 34
and St: 65. Whenever, the value for count = 0, the processor returns to St: 66. Finally, St:
66–St: 86 generate control signals for the reconversions process, including an FF inversion
operation. The additional two states (St: 85 and St: 86) are used to implement the remaining
FF operations of Algorithm 1.
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States for Unif_Add_Law (Q, Q) statement of Algorithm 1

St:1 St:3. . .

States for Unif_Add_Law (P, Q) statement of Algorithm 1
States for FF inversion computation required in return part of Algorithm 1

Two additional states to FF inversion for projective to affine conversions

St:0
rs

t =
 0

  

st
ar

t =
 0

start=1

St: 

87

States for initializations of Algorithm 1

St: 

86

St: 

85

Key= 1

count != 0  

Key = 0

count = 0

St:35 St:65. . .

St:4 St:34. . . St:66 St:84. . .

count = 0

count != 0  

Key = 0

Figure 3. FSM of the proposed architecture.

4. Implementation Results and Comparisons

This section first provides parameters for the implementation of selected BHC model
in Section 4.1). Subsequently, the synthesis results for various FPGA devices are given in
Section 4.2. Finally, the comparison with existing state of the art solutions is provided in
Section 4.3.

4.1. Implementation Parameters

The required parameters for the PM implementation of BHC over GF(2163) and
GF(2233) are shown in Table 3. The parameters Basepointxp, Basepointyp, Constanta and
Constantb are selected from [27]. The values for α and β parameters are calculated using
(a+b)

b and (a+b)
a , respectively. For an m-bit key length, m

2 unified PD and PA computations
are performed. Moreover, the scalar multiplier (Key) is selected randomly alternating
between 0 s and 1 s.

Table 3. Implementation parameters over GF(2163) and GF(2233) [27].

Key Length (m) Selected Parameters and the Corresponding Values

GF(2163)

Basepointxp = 3 f 0eba16286a2d57ea0991168d4994637e8343e36
Basepointyp = 0d51 f bc6c71a0094 f a2cdd545b11c5c0c797324 f 1
Constanta = 00000000000000000000000000000000000000001
Constantb = 20a601907b8c953ca1481eb10512 f 78744a3205 f d

α = 0 f bdc5250853a4db63 f e6163034e298c7805300bc
β = 0000000000000000000000000000000004a3205 f c

Key = 55555555555555555555555555555555555555555

GF(2233)

Basepointxp = 0 f ac9d f cbac8313bb2139 f 1bb755 f e f 65bc391 f 8b36 f 8 f 8eb7371 f d558b
Basepointyp = 1006a08a41903350678e58528beb f 8a0be f f 867a7ca36716 f 7e01 f 81052
Constanta = 00000000000000000000000000000000000000000000000000000000001
Constantb = 066647ede6c332c7 f 8c0923bb58213b333b20e9ce4281 f e115 f 7d8 f 90ad

α = 0000000000000000000 f bdc5250853a4db63 f e6163034e298c7805300bc
β = 0000000000000000000000000000000000000000000000000004a3205 f c

Key = 55555555555555555555555555555555555555555555555555555555555

4.2. Implementation Results

We modeled two Verilog (HDL) designs over GF(2163) and GF(2233) using the Xilinx
ISE design tool. To perform functional verification, the behavioral simulation models are
verified with their corresponding C-based functional implementations. The implementation
results for various Xilinx FPGA devices are given in Table 4. For Virtex-4, Virtex-5, Virtex-6
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and Virtex-7 FPGA boards, the selected devices for logic synthesis are xc4vfx140-11ff1517,
xc5vfx130t-3ff1738, xc6vlx550t-2ff1760 and xc7vx690t-3ffg1930, respectively. Column one in
Table 4 presents the key length (m) while the implementation platform is given in the second
column. The remaining columns (three to six) provide FPGA slices, operational clock frequency
(in MHz), number of clock cycles and latency (in µs), respectively. The values for reported FPGA
slices and clock frequency are determined with the Xilinx ISE tool. Similarly, the number of
clock cycles and latency values are calculated using Equations (3) and (4), respectively.

Clock cycles =
time required for behavioral simulations

time period
(3)

Latency (in µs) =
Clock cycles

Frequency (in MHz)
(4)

Table 4. Implementation results for GF(2163) and GF(2233) on Xilinx Virtex-4, 5, 6 and 7 FPGA devices.

Key Length (m) Platform Slices Frequency (in MHz) Clock Cycles Latency (in µs)

163

Virtex-4 5302 152 10,393 68
Virtex-5 2412 194 10,393 53
Virtex-6 2982 200 10,393 51
Virtex-7 3508 242 10,393 42

233

Virtex-4 11,557 103 11,137 108
Virtex-5 10,065 157 11,137 70
Virtex-6 4370 164 11,137 67
Virtex-7 4261 204 11,137 54

As shown in Table 4, the proposed architecture over GF(2163) and GF(2233) requires
10,393 and 11,137 clock cycles, respectively. For each implementation platform over
GF(2163) and GF(2233), the achieved results in terms of FPGA slices, clock frequency
and time to perform one PM operation are given in the following:

Results on Virtex-4 and Virtex-5. As shown in column three of Table 4, the proposed
architecture over GF(2163) and GF(2233) utilizes 5302 and 11,557 slices on Virtex-4. Moreover,
the achieved clock frequency is 152 and 103 MHz, respectively. Apart from hardware slices
and clock frequency, the time required to perform one PM computation is 68 µs and 108 µs.
On Virtex-5, the proposed architecture over GF(2163) and GF(2233) utilizes 2412 and 10,065
FPGA slices which are comparatively 1.14 and 2.19 times lower than our Virtex-4 slices.
The achieved clock frequency increases as compared to our Virtex-4 implementations.
The increase in clock frequency (from 152 to 194 over GF(2163) and from 103 to 157 over
GF(2233)) ultimately reduces the latency, as shown in Table 4.

Results for Virtex-6 and Virtex-7. On Virtex-6, the utilized FPGA slices over GF(2163)
and GF(2233) are 2982 and 4370, respectively. For the same key lengths (163 and 233),
the achieved clock frequency is 200 MHz and 164 MHz. When moving to Virtex-6 from
Virtex-5 FPGA, there is a small decrease in the computation of PM time (53 µs to 51 µs
over GF(2163) and 70 µs to 67 µs over GF(2233)). On newer Virtex-7 FPGA, the proposed
architecture achieves higher clock frequency as compared to our implementations on
Virtex-4, Virtex-5 and Virtex-6 devices. For a higher key length (m = 233), the proposed
architecture consumes lower hardware slices as compared to the corresponding Virtex-4,
Virtex-5 and Virtex-6 FPGA implementations. The required computation time for one PM
is 42 µs and 54 µs over GF(2163) and GF(2233), respectively.

To summarize, the proposed architecture consumes lower slices on Virtex-5 and Virtex-
7 devices. The newer technologies (Virtex-6 and Virtex-7) provide a relatively higher clock
frequency as compared to older Virtex-5 and Virtex-4 FPGAs. As shown in the last column
of Table 4, the latency increases with an increase in the key length. Moreover, as the target
platform changes from Virtex-4 to Virtex-7, the latency of the architecture is decreased.
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4.3. Comparison with State of the Art Architectures

In order to provide a realistic and reasonable comparison with state of the art, we
synthesized our Verilog (HDL) models for similar FPGA devices, as shown in Table 5. The
comparison with a variety of existing low area architectures of BHC model is challenging
as there are fewer hardware-based published works [18–22]. Therefore, we also provided
a comparison with the most recent area optimized implementations of the unified BEC
model [8,23–25]. It is important to mention that we have placed the symbol ‘−’ in Table 4
where the relevant information is not given.

Table 5. Comparison with state of the art architectures over Uni f _Add_Law computations for PM.

Ref #. Key Length (m) Platform Slices Frequency (in MHz) Clock Cycles Latency (in µs)

Architectures for the unified BHC model of ECC

[18] GF(2233) Virtex-4 20,437 81 5913 73
[21] GF(2233) Virtex-4 9763 329 13,057 39
[21] GF(2233) Virtex-5 6703 397 13,057 32
[19] GF(2233) Virtex-6 7150 172 7370 43
[20] GF(2233) Virtex-6 7681 296 11,838 39
[19] GF(2233) Virtex-7 6032 183 7370 40
[20] GF(2233) Virtex-7 6342 369 11,838 32
[21] GF(2233) Virtex-7 7017 434 13,057 30
[22] GF(2233) Virtex-7 6083 341 12,553 36

Architectures for the unified BEC model of ECC

[23] GF(2233) Virtex-4 21,816 48 − −
[24] GF(2233) Virtex-5 5919 − − 26.24
[25] GF(2233) Virtex-5 15,804 308 − −
[8] GF(P) Virtex-6 6600 93 − 2130

AREEBA

GF(2233) Virtex-4 11,557 103 11,137 108
GF(2233) Virtex-5 10,065 157 11,137 70
GF(2233) Virtex-6 4370 164 11,137 67
GF(2233) Virtex-7 4261 204 11,137 54

Comparison with BHC and BEC architectures on Virtex-4: The BHC and BEC architectures
on Virtex-4 FPGA are reported in [18,21,23], respectively. As shown in Table 5, our design
consumes 1.76 times fewer hardware slices over Virtex-4 as compared to [18]. This is due to
the use of multiple FF operators (multiplier and adder) in the datapath. On the other hand,
the proposed architecture utilizes only one segmented-LSD multiplier, adder and squarer in the
datapath. Additionally, the use of a hybrid Karatsuba multiplier (by merging general and simple
multipliers) increases hardware resources. Moreover, the achieved operational clock frequency
in our design is 103 MHz which is comparatively 1.27 times higher. However, to perform one
PM computation, it requires more clock cycles and needs higher computational time (in terms
of latency). The architecture of [21] utilizes 1.18 times lower hardware slices as compared to this
work. Nevertheless, the proposed architecture requires 1.17 times lower clock cycles. It implies
that there is always a trade-off between the achieved performance and the consumed area. The
BEC architecture, presented in [23], utilizes 1.88 times more hardware resources compared to our
architecture. This is due to use of the hybrid Karatsuba multiplier in the datapath. In addition
to the optimized hardware resources, the presented architecture also provides 1.68 times higher
clock frequency.

Comparison with BHC and BEC architectures on Virtex-5: The BHC and BEC architectures
on Virtex-5 FPGA are reported in [21,24,25], respectively. The architecture in [21] utilizes 1.50
times fewer slices as compared to this work. Similarly, the BEC architecture in [24] consumes 1.70
times fewer slices. The comparison in terms of clock cycles and frequency is not possible as the
values for these design parameters are not given. The BEC architecture in [25] utilizes 1.57 times
more hardware resources as compared to our design. However, our design provides 1.96 times
lower clock frequency.

Comparison with BHC and BEC architectures on Virtex-6: The BHC and BEC architectures
on Virtex-6 FPGA are reported in [8,19,20], respectively. In ref. [19], a hybrid Karatsuba multiplier
is employed. The use of a segmented-LSD multiplier in the proposed architecture results in
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1.63 times fewer slices. Furthermore, the architecture of [19] requires 1.51 times fewer clock cycles
and requires lower computational time. A digit-parallel least significant digit multiplier, with a
digit size of 32-bit, is incorporated in [20]. The use of a digit parallel multiplier results in 1.75 times
more hardware resources. For the twisted BEC, the prime GF(P) with P = 233 is utilized in [8].
The proposed architecture utilizes 1.51 times fewer slices as compared to the most recent BEC
architecture of [8]. Moreover, for same the key lengths (i.e., 233), the proposed architecture over
GF(2m) is 31.79 (ratio of 2130 over 67) times faster.

Comparison with BHC architectures on Virtex-7: The BHC architectures on Virtex-
7 FPGA are reported in [19–21]. The use of a segmented-LSD multiplier in this article
results in 1.41 times lower slices as compared to [19], where an hybrid Karatsuba multiplier
is employed. Furthermore, an increase of 1.11 times in operational clock frequency is
also obtained. Similarly, the use of a digit parallel multiplier in [20] results in 1.48 times
more hardware resources. Due to four-stage pipelining, the architecture of [21] achieves
a higher clock frequency. Nevertheless, the reported clock cycles are 1.17 times higher
than this work. This is due to the inherent data dependency in the Uni f _Add_Law of
BHC model (see Table 2). Using the same FF multiplier of [20], the dedicated architecture
in [22] consumes 1.42 times more slices. Moreover, the architectures of [20,22] achieve a
higher operational clock frequency. On the other hand, the proposed solution in this article
requires fewer clock cycles.

5. Conclusions

This article has provided an area optimized hardware accelerator for the PM computation
of BHC model over GF(2163) and GF(2233). The area optimization is achieved by employing
a segmented-LSD multiplier in the datapath of the proposed hardware accelerator. To
provide a realistic and reasonable comparison with state of the art, the proposed architecture
is synthesized for various FPGA devices. For Virtex-4, Virtex-5, Virtex-6, and Virtex-7
devices, the utilized FPGA slices over GF(2163) are 5302, 2412, 2982 and 3508, respectively.
On similar FPGA devices over GF(2233), the achieved values are 11,557, 10,065, 4370 and
4261, respectively. It is important to note that the use of the segmented-LSD multiplier
results in fewer hardware resources on newer FPGA devices (Virtex-6 and Virtex-7). On
the other hand, the proposed low area accelerator architecture requires a slightly higher
number of clock cycles for the PM computation. In other words, there is always a trade-off
between achieved performance and consumed area. Therefore, the reported low area
values prove the acceptability of this work in area-constrained applications.
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