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Abstract: This paper presents a single-pole 32-throw (SP32T) switch with an operating frequency
of up to 6 GHz for 5G communication applications. Compared to the traditional SP32T module
implemented by the waveguide package with large volume and power, the proposed switch can
significantly simplify the system with a smaller size and light weight. The proposed SP32T scheme
utilizing tree structure can dramatically reduce the dc power and enhance isolation between different
output ports, which makes it suitable for low-power 5G communication. A design methodology
of a novel transmission (ABCD) matrix is proposed to optimize the switch, which can achieve low
insertion loss and high isolation simultaneously. The average insertion loss and the isolations are 1.5
and 35 dB at 6 GHz operating frequency, respectively. The switch exhibits the measured input return
loss which is better than 10 dB at 6 GHz. The 1 dB input compression point of SP32T is 15 dBm. The
prototype is designed in 5 V 0.25 µm GaAs technology and occupies a small area of 12 mm2.

Keywords: single-pole 32-throw (SP32T) switch; sub-6G; pseudomorphic high-electron-mobility
transistor (pHEMT); GaAs process

1. Introduction

To meet the increasing requirements of spectrum efficiency and energy efficiency, and
break through the limitations of the cellular system, 5th generation (5G) communication
technology has been proposed and widely used all over the world. The key technologies
of the 5G system include large-scale multiple-input multiple-output (MIMO) [1]. The
MIMO scheme improves the system’s spectral efficiency from the perspective of space
utilization. Large-scale MIMO has become the crucial technology of the 5G system due to
its excellent performance advantages, such as the improved number of cell service users,
system spectrum efficiency, user experience rate and energy consumption [2]. Further,
MIMO can use the large-scale antenna array at the base station (including dozens or even
hundreds of array elements) to significantly improve the spatial resolution, and form a
narrow beam pointing accurately. It can reduce the interference between users, serve
multiple users with very small power consumption at the same time, and effectively
improve the spectral efficiency of the system.

Digital beamforming (DBF) is a highly flexible forming method. The transceiver
realizes the beamforming and direction adjustment by changing the weight of the digital
channel. Each channel has a radio frequency chain, a high-speed analog-to-digital converter
(ADC), and a digital-to-analog converter (DAC), and shows high capacity and flexibility.
However, there are hardware limitations as follows:

(1) It is difficult to realize the power amplifier (PA) and the low-noise amplifier (LNA) [3,4].
Power amplifiers and other modules are directly behind the antenna elements, while the
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spacing of high-frequency antenna elements is very small and the space limit is very limited,
which makes it very difficult to configure an RF chain for each antenna element.

(2) Power consumption limit. The power amplifier, the ADC/DAC, and other front-
end modules are high-energy-consuming modules. Parallel multiple RF chains can greatly
increase the power consumption of the system.

For an analog beamforming system, feeding on different input ports can form different
amplitude and phase distributions among antenna elements, thus generating beams with
different angles [5]. The Butler matrix is the most widely used structure in analog beam-
forming systems [6,7]. The structure block diagram of the single-pole multi-throw (SPMT)
switch used in an analog beamforming system with a Butler matrix is shown in Figure 1.
This kind of system can connect multiple antennas to one RF chain at the same time, which
is very suitable for a large-scale MIMO system with a large number of antennas. It can
significantly reduce the hardware cost of the system and has low computational complexity.
Thus, a single-pole multi-throw switch is needed. The conventional single-pole 32-throw
(SP32T) switch integrates 32 single-pole throw switches into the waveguide modules which
makes the system too bulky and costly for the largely-amount applications.

Figure 1. Structure block diagram of a single-pole multi-throw (SPMT) switch used in an analog
beamforming system with a Butler matrix.

To develop a large-array system, it is a good choice to integrate lots of the switches
into one chip with more outputs. Currently, the implementation of the switch has some
generic approaches. The first approach is using Micro-Electro-Mechanical systems (MEMS)
with low loss and high isolation [8–13], but it is difficult to realize mass production. There
are few commercial products on the market, ADI and Menlo Micro have a few SPDT or
SP4T products [14,15]. The second approach is using a phase-change materials (PCMs)
switch, which demonstrates a relatively higher cut-off frequency (FCO) and surpasses
state-of-the-art semiconductor RF switches [16–21].

The third approach is using switch circuits by the chip in which two states are designed.
It has low ON-state resistance and small OFF-state capacitance based on the bias state of the
switch. In order to meet the requirements of a high transmission rate, a 5G communication
circuit has a higher working frequency. Additionally, due to the high electron mobility,
high saturation drift velocity, and semi-insulating substrate, the GaAs process has better
high-frequency performance in high-frequency 5G communication applications, compared
with the CMOS process. Moreover, in the huge 5G market, the more mature technology
of the GaAs process makes it more cost-effective than the GaN process. The development
of the advanced pseudomorphic high electron mobility transistor (pHEMT) has attracted
more attention for the high-speed switch design at microwave frequencies due to its low
noise and high mobility [22,23].

In this paper, a wideband series-shunt-based switch is proposed for 5G applications.
The previously-reported single-pole double-throw (SP2T) switch is based on the series-shunt
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scheme, which gives an isolation of approximately 30 dB by utilizing the GaAs transistors or
GaAs PIN diodes. Yet, most of these switches have low integration with limited bandwidth
and are difficult to utilize for large-array systems. These designs do not provide enough
large-wideband designs. Therefore, this paper proposes a fully integrated SP32T switch
with low insertion loss, high isolation, good linearity and high switching speed.

The paper is organized as follows. Section 2 reviews the GaAs process, then introduces
the modeling of the transistors and passive devices. Section 3 discusses the proposed design
methodology of the switch with transmission (ABCD) matrix methods. Measurement
results will be presented in Section 4, and conclusions are drawn in Section 5.

2. Overview of GaAs Process and the Modeling of the Active and Passive Devices
2.1. The 250 nm Phemt Technology

The proposed S32PT switch is fabricated on the 250 nm GaAs technology, as shown
in Figure 2a. This process can implement a D/E-mode transistor by different implanting.
Figure 2a illustrates a cross-section layer stack. The length of the gates is defined by the
electron beam lithography. The process has two metal layers to realize the basic connections.
The transmission lines and power lines in this design stack, MET1 and MET2, form into a
thick metal layer with a high quality factor and low resistance.

Figure 2. (a) The cross-section of the GaAs process; (b) the model of the transistor in different states.

The layers stacking is shown in Figure 2a. The different metal layers are connected
by the vertical VIA. The wafer is passivized with a 200 nm-thick SiN layer, which acts as
the dielectric layer of the metal–insulator–metal capacitors. After finishing the front-side
process, a full back-side process follows, including the wafer thinning to a thickness of
50 µm, through substrate via holes and back-side metallization.

2.2. The Model of the Active Devices

The high-frequency modeling of the pHEMT is crucial for the switch design and the
advantages of the accurate modeling are important [24–28]. The model of pHEMT as
an equivalent circuit allows the device geometrical dimensions utilized to estimate the
RF performances of the switches and theoretical analysis of the switch performance. The
design specifications are related to the physical parameters of the device. With the proposed
modeling and several design iterations, the optimum performances can be realized finally.
To accurately predict and optimize the performance of the switch, the modeling of the GaAs
has been developed in Figure 2. Compared to the transistors working in the amplifying
state, the transistors work in the ON and OFF state for the switch. When the transistor
works in the ON state, the transistor model is resistance and inductance in series, and
the inductance is generated by the VIA, while the model in the process library does not
consider the inductance of VIA. The Coff of the transistor used in the proposed switch is
11–13 fF when the transistors work in the OFF state and the Ron of the transistor used in the
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proposed switch is approximately 14.9 Ω when the transistors work in the ON state, and
the cut-off frequency is 154 GHz. The control voltage for the gate is well above or below
the threshold voltage.

When the gate voltage is set below the threshold, the transistor is utilized by the
lumped elements, such as a capacitor with a resistor for representing the GaAs device
under a “cold” condition, which considers the capacitive and resistive effects. When the
gate voltage is well above the threshold, the GaAs device is completely in a “hot” condition,
which mainly considers the resistive effects.

2.3. The EM Simulation of the Passive Device

Passive device modeling is important for the switch design due to the use of these
devices for the input/output matching network and inter-stage matching. The manufac-
tory provides some standard modeling of the capacitor, inductors and transmission lines.
However, the model cannot meet the needs of customized passive components, such as
inductors and transmission lines. The connection lines between the pHEMTs contribute to
the inductance and capacitance, whose patterns are determined by the layout of the chip.
Thus, it is essential to custom design and model the passive devices for optimum matching
among the pHEMTs.

The full-wave 3D electromagnetic High-Frequency Structure Simulator (HFSS) was
used to optimize the passive modeling process of the GaAs. The simulation steps are
summarized as follows. Firstly, the physical layout layers of the semi-conductance were
setup including the metal layers and isolation layer, such as the SiN layer based on the
manufactory process, as shown in Figure 3. Secondly, the parameters of these layers are
characterized by different parameters, such as thickness and conductance for metal layers
and the loss tangent for isolation SiN layers. Thirdly, the reference ground for ports was
defined and a custom design pattern was drawn in the HFSS. Finally, extracting the S
parameter of the devices can be converted to Z/Y parameters for circuit design.

Figure 3. The simulation setup for the transmission line utilized in this switch.

3. The Design Methodology for the SP32T Switch

This section shows the design methodology for the proposed SP32T switch that can
be utilized for a highly parallelized and sub-6 GHz communications system.

3.1. The System Design Requirement and Structure Analysis

Figure 4 describes the structure of the analog beamforming system which includes
the SP32T switch. A heterodyne structure is selected with sub-6 GHz frequency. An
intermediate frequency after down-mixing is around in the range of 10 MHz. The proposed
communication system can share the same RF chains with the proposed switches. The
total system power consumption is reduced to that of one chain without sacrificing the RF
performance such as output power and noise figure of the transceiver. The strong variations
in the RF amplification and time delays can significantly degrade the performance of the
system. The other huge benefit of using the proposed structure is that the mismatches
induced by the channels are eliminated due to one TRX channel utilized. As a result,
these relaxed requirements for the system design help in optimizing the communication
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system to perform efficiently over a large bandwidth, minimizing the channel mismatches
to improve the overall performance. The target applications for the sub-6 GHz SP32T T/R
switch are 5G wireless communication and it is constructed by two asymmetric SP16T
switches in a back-to-back connection, as shown in Figure 5.

Figure 4. The sub-6 GHz 5G communication system structure using the proposed SP32T switches. DAC: digital-to-analog
converter; ADC: analog-to-digital converter.

Figure 5. The proposed tree structure for the SP32T with high isolation between different channels.

3.2. Transmission (ABCD) Matrix Design Methodology to Optimize the Insertion and
Isolation Loss

The SP32T is composed of 16 SP2T and the 2 symmetric SPST switches. The common
node of two SPST switches is denoted as Port 1, connecting to the output of the previous
stage. The SP2T is a series-shunt structure, differing from the conventional structure
which consists of two 50 ohm quarter-wavelength transmission lines. Consider that the
impedance transformer is required to transform the low impedance of the OFF-state SPST
switch to high impedance, and the IL of the ON-state SPST switch is large. The impedance
transformer consumes a large area, leading to higher fabrication costs.

The series-shunt structure occupies small areas that are suitable for the multiple-
output switches. To optimize the overall SP32T switch, the SP2T switch should be carefully
designed. A design methodology is developed to optimize the insertion loss and return
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loss of the switch. The ON-state transistor is modeled as a resistance and the OFF-state
transistor is modeled as a capacitor serial with an inductor induced by the VIA [29]. The
transmission (ABCD) matrix can be expressed as:[

Aon Bon
Con Don

]
=

[
1 Ron
0 1

]
(1)

[
Ao f f Bo f f
Co f f Do f f

]
=

[
1 0

Ys1 1

]
(2)

Ys1 =
jωCo f f

1−ω2LVIACo f f
(3)

where Ron is the resistor of the ON-state transistor, Co f f is the capacitor of the OFF-state
transistor, and LVIA is the inductor of the VIA. The connection lines between the pHEMTs
are modeled as transmission lines (TL) due to the high-frequency effect. The ABCD matrix
of the transmission line is given as:[

ATL BTL
CTL DTL

]
=

[
cosϕTL jZ0 sin ϕTL

jY0 sin ϕTL cosϕTL

]
(4)

where Y0 and Z0 are characteristic transconductance and impedance, respectively. ϕTL is
the electric length of the transmission line. Based on the ABCD matrix cascading features,
the ABCD matrix of the ON-state switch can be expressed as:[

AT BT
CT DT

]
=

[
cosϕTL jZ0 sin ϕTL

jY0 sin ϕTL cosϕTL

][
1 Ron
0 1

][
1 0

Ys1 1

]
(5)

where an element of the matrix can be written as:

AT = cos(ϕTL)−
jωc(Roncos(ϕTL) + jZ0sin(ϕTL))

ω2LviaCo f f − 1
(6)

BT = Roncos(ϕTL) + jZ0sin(ϕTL) (7)

CT = jY0sin(ϕTL)−
jωc(cos(ϕTL) + jRonY0sin(ϕTL))

LviaCo f f ω2 − 1
(8)

DT = cos(ϕTL) + jRonY0sin(ϕTL) (9)

Based on Equations (6)–(9), FT can be derived as:

FT = AT + BT/Z0 + CTZ0 + DT

= 2cos(ϕTL) +
Roncos(ϕTL)+jZ0sin(ϕTL)

Z0
+ jY0sin(ϕTL)(Z0 + Ron)

− jωCo f f [jZ0(RonY0+1)sin(ϕTL)+(Ron+Z0)cos(ϕTL)]

ω2LviaCo f f−1

(10)

Referring to Equation (10), the insertion loss of the switch in the ON state can be
calculated as:

IL21 = −20 log|S21| = −20 log
∣∣∣∣ 2

FT

∣∣∣∣ (11)

Equation (11) contains the resistance of the ON-state switch and the capacitor of the
OFF-state switch. The electric length of the transmission line also affects its insert loss. By
optimizing these parameters, insertion loss can be minimized.

In the OFF mode of the SP2T switch, the gate voltage of the transistor in the signal
path is pulled down to low voltage, and the gate voltage of the shunt transistor is pulled
up to high control voltage, synchronously. Therefore, the turn-OFF transistor is simply
regarded as one OFF-state capacitance serving as a part of the matching network and the
turn-ON transistor exhibits a small resistance. Figure 6 shows the small-signal equivalent
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circuit for the SPDT in the OFF mode. The ABCD matrix between Port 1 and Port 2 can be
represented as:[

ATO BTO
CTO DTO

]
=

[
cosϕTL jZ0 sin ϕTL

jY0sinϕTL cosϕTL

][
1 1/jωCo f f
0 1

][
1 0

Ys2 1

]
(12)

Ys2 =
1

Ron + jωLvia
(13)

where the element of the matrix can be given as

ATO = cos(ϕTL) +
Roncos(ϕTL) + jZ0sin(ϕTL)

Ron + jωLvia
(14)

BTO = Roncos(ϕTL) + jZ0sin(ϕTL) (15)

CTO = jY0sin(ϕTL) +
cos(ϕTL) + jRonY0sin(ϕTL)

Ron + jωLvia
(16)

CTO = cos(ϕTL) + jRonY0sin(ϕTL) (17)

Figure 6. The switch with transmission line connection and different mode analysis.

Considering Equations (14)–(17), FTO can be written as:

FTO = ATO + BTO/Z0 + CTOZ0 + CTO
= 2cos(ϕTL) + jY0sin(ϕTL)(Z0 + Ron)

+ cos(ϕTL)(Z0+Ron)+(RonY0+1)sin(ϕTL)jZ0
Ron+jωLvia

+ Roncos(ϕTL)+jZ0sin(ϕTL)
Z0

(18)

Hence, the isolation of the switch in the OFF state can be derived as:

ISO21 = −20 log|S21| = −20 log
∣∣∣∣ 2

FTO

∣∣∣∣ (19)

This equation contains the resistance of the ON-state switch and the capacitor of the
OFF-state switch. The electric length of the transmission line affects the loss and matching.
the isolation can be maximized by optimizing these parameters.

3.3. Transmission (ABCD) Matrix Optimization for the SP32T Switch

Key specifications of the SP2T switch have been conducted and optimized by the
ABCD matrix for both the ON/OFF states. With the same design methodology, the total
insertion loss and isolation of SP32T can be summarized as:

ILn
IL =

[
A B
C D

]
T1

[
A B
C D

]
T2

[
A B
C D

]
T3

[
A B
C D

]
T4

(20)
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ILn
ISO =

[
A B
C D

]
T1

[
A B
C D

]
T2

[
A B
C D

]
T3

[
A B
C D

]
ISO4

(21)

where the subscript T1, 2, 3, 4 of the matrix represents the stages of the SP2T switches in
the ON state, and subscript ISO1, 2, 3, 4 of the matrix represents the stages of the SP2T
switches in the OFF state.

Based on Equations (20) and (21) for the insertion and isolation of SP32T, the opti-
mizing design follows was summarized as follows. Firstly, extract the ON-state resistance
and OFF-state capacitance of the pHEMT with the serial inductance of the VIA. Secondly,
determine the total width of the pHEMT based on the equation according to the required
insertion loss and isolation. Thirdly, optimizing the inter-stage matching based on the total
insertion loss and isolation, based on the above process with several time design iterations.
The size is shown in Figure 7 with the passive element values of the proposed SPDT switch
optimized eventually from the post-layout simulations with ADS. The calculated and
optimized active device dimensions are quite close to each other. The calculated values
of the passive elements are larger than the optimized values, mainly due to the parasitic
capacitor of the layout is not included in the calculation.

Figure 7. The details of the signal path from input to output when activating one channel.

3.4. ESD Protection and Switch Speed Design for Control Signals

In this paper, on-chip electrostatic discharge protection (ESD) is implemented to make
the chip robust during the application. The basic working principle of ESD is to provide
discharging loop when the input signal voltage is a sharp voltage pulse within a short
time. On-chip pads of the switch are classified into microwave-frequency pads and low-
frequency pads. Since the microwave-frequency pads are more sensitive to the parasitic
capacitor of the extra-protection circuit. These pads are connected to the drains of the
pHEMTs, and the diodes of the drain can be used to realize the ESD protection.

Compared with the pads connected to the drains of the pHEMTs, the gate is more
fragile due to its high impedance and no discharge loop [30]. The ESD protection of the
switch is for control pads. Referring to the system requirement, the turn-ON/OFF speed of
the switch determines the imaging speed. A large ESD protection circuit will induce large
parasitic capacitance to the control pads. Thus, there is a trade-off between ESD protection
and switching speed.

The two design steps for the ESD protection are listed as follows. The current protection
ability of the ESD was simulated to resize the diode and predict the ESD performance [31,32].
Based on the simulation results, a geometry of diode can be selected, resulting in minimum
performance degradation of the ESD-induced circuit. An anti-parallel diode-string ESD
protection circuit is chosen in this design. Different ESD device sizes can be stressed by
an ESD transient voltage or current generated by the equivalent ESD discharging circuit
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HBM ESD model for a targeted ESD protection level, as shown in Figure 8. Secondly, the
speed of the switch is highly related to the capacitor of the gate. The control voltages must
charge and discharge the capacitor to a certain voltage to turn on and off the transistor.
The parasitic capacitor on the gate forms a low pass filter characteristic that degrades the
high-frequency performance. The turn-ON/OFF speed is a 50 ns requirement for this switch
and the total capacitor value of the gate can be determined.

Figure 8. The simulation results of the electrostatic discharge (ESD) protection and the proposed
SP2T switch.

Hence, the co-design of the ESD protection and the switch circuit is essential to
optimize both the ESD protection and the operating speed of the switch. The ESD current
and voltage simulation were carefully conducted to predict the ESD capability and high-
speed switching needed to minimize the parasitic capacitor. After several design iterations,
the ESD diode is optimized as an eight-finger diode with a width of 60 µm and the switch
speed is 100 MHz.

4. Measurement Results

In this section, the specifications of the single-chip switch were assessed. To reduce
the RF power reflections between the amplifiers and switches and avoid the unwanted
coupling effects, the input and output impedance-matching networks for the switches are
important, and the return loss is set to <10 dB over the 6 GHz frequency range of interest.

4.1. Chip and Package Design for Testing

The proposed SP32T switch was fabricated in a GaAs process for a sub-6 GHz com-
munications system. It achieves a working frequency of up to 6 GHz. Figure 9 shows that
the whole chip area including all testing pads is 12 mm2 and also shows the printed circuit
board (PCB).

Interconnections between the chip and PCB are a key consideration for the package
operating at the mm-wave band. In this design, the wire-bonding method is utilized for the
chips and PCB connection. The bonding wires perform as an ideal wire connection at low
frequencies. However, as the frequency increases, the model of the wire bonds is inductors.
To accurately model these inductors, the wire bonds were simulated by the HFSS tool. The
switch is bonded to the chip on board (COB) in a cavity for the shortest bonding wires.
The bandwidth of the wire bonds is optimized to matching the pad capacitance to 50 ohm
transmission lines on PCB.
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Figure 9. The details of the proposed single-chip switch: (a) layout; (b) chip photo; (c) bonding
package; (d) chip on board (COB).

4.2. Chip and Package Design for Testing

To accurately assess the performance of our chip, a dedicated calibration pattern
is designed. The calibration patterns are conducted by including the bonding wires,
transmission lines and connectors. These parasitic effects were de-embedded because the
same bonding wire structures utilized in the design were fabricated and measured. With
several different testing patterns, as shown in Figure 10, the loss of the transmission line,
connectors and the bonding wire can be predicted precisely.

Agilent E3631A DC voltage source was used as power supply equipment, and Keysight
N5247B vector network analyzer was used to measure the S parameter. The measured
input/output return losses are illustrated in Figure 11. The measured input is better than
10 dB from 1 GHz to 6 GHz. The output return loss is also maintaining < −10 dB from
1 GHz to 6 GHz. The measured results are worse than the simulation. The measured return
losses verify the proposed SP32T switch topology that can successfully solve the issue of
the impedance mismatching induced by the bonding wire.

As shown in Figure 12a, the measured average insertion loss (IL) is 1 dB over the
bandwidth of 0–6 GHz. Additionally, the measured isolations between ports are plotted
in Figure 12b. The switch achieves the measured average isolation of 35 dB at 5 GHz.
There are discrepancies between the simulated and measured performances, which are
dominantly due to the inaccuracy of the transistor models. The proposed SP32T switch
consumes a much smaller die area and achieves competitive performance.
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Figure 10. The timing control board and control logic for the COB.

Figure 11. The matching in different channels for the input and output for the COB with bond-
ing wires.

Figure 12. (a) The insertion loss of the switch in different channels; (b) The isolation of the switch in
different channels. There is a variation due to bonding wire mismatch.

4.3. Linearity and Switching Speed Measurement

The linearity of the switch is characterized by the input power compressed by 1 dB
(P1dB). Different input powers were utilized to measure the P1dB, which is approximately
15 dBm, as shown in Figure 13. The input of the single-chip switch is connected to the
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signal generator (E8257D Keysight) with a frequency of up to 67 GHz and its output is
connected to the signal analyzer (N9040B Keysight) with a measurement frequency of up
to 50 GHz.

Figure 13. The P1dB of the proposed single-chip switch when the input frequency is 1 GHz and the
P1dB is approximately 15 dBm.

To assess the operating speed of the switch, different input frequencies and switching
control signals are performed. Agilent 33250A function/arbitrary waveform generator was
used to generate the control signals. Additionally, Keysight E8257D signal generator was
used to generate the different input frequencies. The transient measurement switching
speed of the proposed SP32T is shown in Figures 14–16, when inputting the 10 MHz gate
control signal waveform. The period of ON/OFF time for the switch is 50 ns. The transient
time transferring from the turn-ON to turn-OFF is very fast at 1 ns, including a coaxial
cable propagation delay of 0.5 ns. The measurement results show the proposed switch has
ultra-fast speed and is feasible for the sub-6 GHz communications system. Additionally, the
spectrum measurements are also utilized to check the isolation when the switch is turn-ON
and turn-OFF, as shown in Figure 17. Compared with the switches in Table 1, the proposed
chip can achieve low loss with 32 outputs. In the future, the chip area of the proposed
switch can be reduced by optimizing the channel layout and transmission line structure.

Figure 14. Time domain measurement results for the ON and OFF state of the switch for one channel.
The speed of the ON/OFF is 10 MHz and the carrier frequency is 1 GHz.
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Figure 15. The falling edge of the switch during transition from ON state to OFF state.

Figure 16. The rising edge of the switch during transition from OFF state to ON state.

Figure 17. (a) The spectrum measurement for ON state with 10 KHz BW and 50 MHz frequency span range; (b) the spectrum
measurement for OFF state with 10 KHz BW and 50 MHz frequency span range.
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Table 1. Performance Summary and Comparison.

Technology
Node Switch Type Frequency

(GHz)
Insert Loss

(dB)
Isolation

(dB) P1dB (dBm) Rise Time
(ns)

Fall Time
(ns)

ON Time
(ns)

OFF Time
(ns)

Area
(mm2)

[33] NA SPDT 0.612–1.088 2.8–2.3 >41.4 17.3–25.4 NA NA NA NA NA

[34] 250 nm
GaAs pHEMT SPDT 0.01–6 <0.9 >35 NA NA NA NA NA 1.36 × 1.4

[35] 150 nm
GaAs pHEMT SPDT 1.9–2.6 <1 >24.7 17.5 NA NA NA NA 0.9 × 1.9

[36] InGaAs
PHEMT SPST 0–6 <1.6 >82 19@1.95 GHz 1.4 1.6 8.8 NA 1.1 × 1.0

[37] 65 nm
CMOS SPDT 2.35–2.55 0.8 28 29 NA NA NA NA 0.2

This
work

250 nm
GaAs pHEMT SP32T 0.5–6 <2 >30@6 GHz 15 1 1 50 50 3 × 4
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5. Conclusions

This paper reports a highly integrated SP32T switch fabricated in a 0.25 µm GaAs
process. The proposed SP32T single-chip switch consumes ultra-low power and occupies a
smaller core area of 12 mm2 including all the testing pads. Additionally, this paper proposes
a design methodology for optimizing our SP32T switch and shows good agreement with
the measured results. Thus, the switch design methodology facilitates the design of
the mm-wave switches and can be applied to other semiconductor technologies and
switch topologies. Compared to the SP32T switch that is implemented by the waveguide
module, the proposed switch shows low-power consumption, high integration, and better
consistency between different channels. The measured performance at 6 GHz exhibits an
average IL of 1.5 dB, an average isolation of 35 dB, an input/output return losses better
than 10 dB, and a switch speed of 50 ns, respectively.
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