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Abstract: In recent years the ever-expanding internet of things (IoT) is becoming more empowered to
revolutionize our world with the advent of cutting-edge features and intelligence in an IoT ecosystem.
Thanks to the development of the IoT, researchers have devoted themselves to technologies that
convert a conventional home into an intelligent occupants-aware place to manage electric resources
with autonomous devices to deal with excess energy consumption and providing a comfortable
living environment. There are studies to supplement the innate shortcomings of the IoT and improve
intelligence by using cloud computing and machine learning. However, the machine learning-based
autonomous control devices lack flexibility, and cloud computing is challenging with latency and
security. In this paper, we propose a rule-based optimization mechanism on an embedded edge
platform to provide dynamic home appliance control and advanced intelligence in a smart home.
To provide actional control ability, we design and developed a rule-based objective function in the
EdgeX edge computing platform to control the temperature states of the smart home. Compared
to cloud computing, edge computing can provide faster response and higher quality of services.
The edge computing paradigm provides better analysis, processing, and storage abilities to the
data generated from the IoT sensors to enhance the capability of IoT devices concerning computing,
storage, and network resources. In order to satisfy the paradigm of distributed edge computing, all
the services are implemented as microservices. The microservices are connected to each other through
REST APIs based on the constrained IoT devices to provide all the functionalities that accomplish a
trade-off between energy consumption and occupant-desired environment setting for the smart home
appliances. We simulated our proposed system to control the temperature of a smart home; through
experimental findings, we investigated the application against the delay time and overall memory
consumption by the embedded edge system of EdgeX. The result of this research work suggests that
the implemented services operated efficiently in the raspberry pi 3 hardware of IoT devices.

Keywords: embedded edge system; objective function; EdgeX; microservice; optimization; smart home

1. Introduction

Every year, diverse new devices with advanced features and intelligence are pre-
sented and launched to realize the concept of the IoT. A plethora of IoT applications such
as smart meters, video surveillance, healthcare monitoring, parcel or asset tracking and
transportation are making a significant contribution to the growth of devices and connec-
tions. IoT connections are one of the fastest-growing categories of devices and connections.
According to statistics, IoT will grow nearly 2.4 times over the forecasted period (an av-
erage annual growth rate of 19%), reaching 14.7 billion connections by 2023 [1]. The Iot
can be specified as a network of intelligent devices that have wireless or wired built-in
connectivity or sensors, actuators, and any other functions that can perceive and transfer
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the environment information to the cloud [2,3]. The idea of the IoT is to use the Internet as
the basis of a communication system to create intelligent interactions between people and
surrounding objects while simultaneously bringing different “things” together as a whole.
Cloud computing is an important part of the IoT, which provides valuable services to
IoT-related implementations in many application areas [4]. The IoT is playing an important
role in many areas and domains to improve our quality of life. These applications include
smart homes, industrial automation, and disaster relief for natural and man-made disasters
where human decisions are difficult to make [5].

During the past few decades, the global IoT market has grown enormously. The grow-
ing adoption of cloud computing can be attributed to advance data analytics, cost efficient
connected devices and the flexibility achieved through integration of advance principal
technologies, where computing, storage, and network management functions are oper-
ated in a centralized manner [6]. The cloud-integrated IoT applications offer powerful
computing resources, on-demand data storage, and offline analysis of large amounts of
data [7]. However, with the rapid development of applications for the mobile internet
and IoT, the existing centralized cloud computing architecture-based application faces
major challenges. Mobile devices connected to centralized remote cloud servers attempt to
receive advanced applications that add additional load to both the radio access network
(RAN) and the backhaul network and cause high latency [8]. The IoT presents challenges
such as severe latency, capacity limitations, devices with limited resources, uninterrupted
services with intermittent connections, and increased security that cannot compete with the
legacy of centralized cloud computing architecture [9]. There is an urgent need to develop
an advanced cloud computing paradigm to break the centralized architecture and reduce
the capacity and latency limitations to meet these challenges.

In edge computing, due to bandwidth and power consumption issues, massive
amounts of data collected by various types of IoT devices can be analyzed at the edge of
the network, rather than sent to a centralized cloud infrastructure. Compared to cloud
computing, edge computing can provide faster response and higher quality of services.
Edge computing is better suited to integrate with the IoT paradigm to provide secure and
well-organized services to amounts of end-users, and the edge computing architecture can
be seen as the future IoT infrastructure [10]. The edge computing paradigm is perceived as
a mechanism to satisfy low latency and efficient bandwidth that not only generates data at
the edge of the network but also processes large amounts of data. The sensed data can be
analyzed with the edge computing paradigm at the edge of the network [11–13]. The edge
of the network implicates that the unit is equipped with advanced computing capabilities
that consist of networking, storage, computing, and other core functions to generate and
process data. There are other similar paradigms, such as Fog Computing [14,15] and Mobile
Edge Computing [16,17] that not only provide effective solutions for large-scale computing
but also improve the user experience.

The smart home is focused on improving the living environment of users and saving
energy consumption. The smart home technique uses electric home appliances and IoT
sensors with central control devices to effectively manage energy consumption. The author
of [18] presented a smart home system that integrates IoT devices with cloud computing to
provide a remote control with smartphones and networks. The author of [19] proposes an
IoT and cloud computing-based EMS, which can be accessed remotely by the consumers
with a network. These studies ensure remote control with a smartphone application
or web browser, which is being challenged with intelligence. The authors of [20,21]
present a control mechanism with machine learning algorithms to understand residents’
behavior in energy exploitation and needs and provide accurate forecasts in response to
residents’ demand without wasting energy. However, machine learning-based controllers
lack flexibility because they depend on user behavior of fixed schedule [22].

In this paper, we propose an intelligent optimization mechanism that utilizes optimiza-
tion capability and fuzzy logic in the edge computing framework to provide a trade-off
between energy consumption and the desired environment setting in a smart home. To
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Improve the intelligence, we design and Implement a rule-based objective function in
the EdgeX edge computing platform to control the temperature states of the smart home.
We use the edge computing paradigm to enhance the IoT device capability of computing,
storage, and network. The edge computing framework is an open-source, interoperable,
software platform at the edge of the network, that interacts with the smart home sen-
sors and actuators to provide intelligent home environment control with optimization
mechanism and fuzzy logic algorithm.

The remainder of this paper is constructed as follows. Section 2 is the related work that
gives a concise introduction to edge computing that moves functionality from the cloud
to the edge of the network. Section 3 introduces the proposed intelligent optimization
mechanism architecture for smart home environment control. Section 4 provides some
insight into the implementation and results of the proposed system. Section 5 reports the
performance evaluation of the proposed work. Finally, Section 6 concludes the paper and
discusses some directions for future research.

2. Related Work

The recent research of smart home applications can provide a number of benefits;
for example, it uses energy efficiency while improving the user experience. However, it
is still a difficult task to design a common communication model for each entity of the
integrated smart home system.

The author [23] proposed a smart home control system based on a ZigBee network
with the help of a coordinator. The proposed work comprises of energy control system
that consists of a home appliance control system and a light control system supported
by a ZigBee sensor connected to each home appliance and a light sensor placed in the
smart home. An intelligent management system has been developed to effectively control
the operating time of electronic devices of a smart home. The author [24] proposed
a smart home system design based on the communication technology of ZigBee and
Powerline Carrier. A communication gateway has also been designed. The author [18]
presented a smart home system that integrates ZigBee devices, smart Wi-Fi plugs, IR
devices, and cloud computing. Customers can use smartphones and networks to control
devices with different communication protocols. The author [25] proposed the design
of a smart home environmental monitoring system based on the ARM Cortex-A53 core
Raspberry Pi, B / S architecture, and wireless network functionality. The system consists of
the smart home controller, EnOcean / Wi-Fi wireless sensor control network, and smart
home client. The smart home client allows users to connect to the smart home controller
through the client PC. The system uses a wireless EnOcean and Wi-Fi network to query the
working status of the home environment in real-time.

In a typical smart home, residents can control the devices in the apartment, e.g., TVs,
lamps, radios, fans, air conditioners and monitor living conditions. These devices have
many different communication protocols such as ZigBee, Wi-Fi, and Ethernet. It is there-
fore necessary to integrate heterogeneous network protocols in smart homes. However,
the smart home network integrates sensors, embedded devices, wireless technology, dis-
tributed data processing, etc. Heterogeneous communication is important, but embedded
computing and distributed information processing have great significance. However,
the authors generally do not care about the scalability and flexibility of the system in the
smart home.

We also explore several open-source platforms that can be used to develop edge com-
puting. EdgeX Foundry is a vendor-neutral interoperability platform for edge computing
of IoT. It hosts microservices at edge nodes such as gateways, and routers [26]. It provides
connectivity with various sensors and actuators via several protocols, controls them, senses
information from them, and transfers the data to an application that is located at the edge of
the cloud for advanced processing. EdgeX can be operated at various hardware and operat-
ing system. In order to shift analytics from cloud to edge devices, Microsoft Azure presents
Azure IoT Edge as a cloud service provider [27]. The edge devices are routers, gateways,
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or other nodes, which support computing resources. The user who has their applications in
the cloud can move them to edge devices through Azure IoT Edge to reduce latency. It can
simplify the development complexity of applications of edge devices. In addition, users can
make use of Azure functions, Azure ML, and Azure stream analytics to install complex jobs
on the edge nodes such as machine learning, image recognition, and other services related
to AI. Apache Edgent [28] is a programming model and lightweight runtime that can be
running in small nodes such as gateways and routers. It is dedicated to data analytics at
the network of edge, trying to accelerate the implementation of data analysis. CORD [29]
is an ONF project, initiated by AT&T and presented for network operators. Network
equipment suppliers provide network infrastructure with closed proprietary-integrated
systems. With the dependency of network equipment suppliers, the network capability is
hard to manage with network operators. Therefore, computing and networking resources
are wasted. CORD tries to use software-defined networks, network function virtualization,
and cloud technologies to reconstruct the infrastructure of edge networks to build data
centers. It divides the resources of reconstructed datacenters such as computing, storage,
and network to provide clouds at the edge network.

We propose an intelligent optimization mechanism for efficient home appliances
control based on embedded edge computing for a smart home. IoT devices require het-
erogeneous capabilities related to protocols, operating systems, and applications. Table 1,
provides a summary of the open-source edge computing platforms. we compare them
considering several aspects such as operating systems, programming languages, goals,
and system characteristics. EdgeX Foundry is agnostic to hardware, the CPU, operating sys-
tems, supports several programming languages, and is designed to provide interoperability,
which can be used to satisfy the requirements of heterogeneity of IoT devices.

Table 1. Comparison of Open Source Platforms for Edge Computing.

Categories Platforms EdgeX Foundry Azure IoT Edge Apache Edgent CORD

Operating System Various OS Various OS Various OS Ubuntu
Programming

languages
Go lang, Python, java

etc.
Java, .NET, C, Python,

etc. Java Shell script, Python

Goals Provide Interoperability
for IoT edge

Support hybrid
cloud-edge analytics

Support process
of data analysis

Transform edge
of the operator network
into agile service
delivery platforms

System characteristics A common API
for device management

Powerful
Azure services

APIs for
data analytics

Widespread edge
clouds

3. Intelligent Optimization Mechanism for Efficient Home Appliances Control

In this section, we describe the structure of our proposed system that is integrated
into the smart home. To realize enhanced intelligence and make up for the shortcomings of
IoT devices, the objective function, and fuzzy logic control logic are also explained.

3.1. Proposed Optimization Mechanism Architecture for Home Appliances Control

We propose an intelligent optimization mechanism based on embedded edge comput-
ing that employs optimization functions and fuzzy logic in an edge computing framework
to balance energy consumption and environmental factors required in a smart home.
As shown in the following Figure 1, the proposed system consists of an intelligent edge
computing platform and a smart home environment.

The smart home environment includes temperature sensors, and heating and cooling
actuators. The temperature sensors sense the temperature of the smart home and send it to
intelligent edge computing platform to provide automatic temperature control through
execution of a cooler or heater properly. The sensors and actuators are located in a smart
home to support connection with intelligent edge computing platforms via the internet.
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The intelligent edge computing platform services are running in an embedded system that
is equipped with a WIFI network to provide connectivity.

Figure 1. Conceptual Distributed Edge Computing Architecture of a Home Appliances Environment.

The intelligent edge computing platform consists of several fine-grained and self-
contained microservices with individual functionalities such as storage service, an intel-
ligent service, processing service, and internet capabilities. The microservices provide
services and communicate with each other through a well-defined message interface, such
as REST APIs. The microservices can be independently developed with individual tech-
nologies and programming languages that can deploy on the embedded system such as
raspberry pi. The Raspberry Pi contains a System-on-a-Chip that is as powerful as a regular
computer and can run a full operating system like Linux. Hence, It is possible to develop
the applications on the machine itself, making embedded development easier.

3.2. Architecture of Distributed Intelligent Edge Computing in Home Appliances Environment

The proposed system functions are separated into three tiers including the client,
intelligent edge computing platform, and IoT networks as shown in Figure 2.



Electronics 2021, 10, 1460 6 of 22

The client tier imposes the edge client to provide information about the smart home
to the users. It interacts with the intelligent edge computing platform through the visual-
ization capability of the client to present readings of device information and sensing data
in various styles.

The intelligent edge computing tier includes a connectivity layer, basic services layer,
optimal control service layer, and client support layer to distribute computing processes of
IoT devices at the edge of the network based on an intelligent method. In order to derive
a user-desired result, the optimization engine and fuzzy control jointly control the IoT
device. For interacting with IoT devices, the intelligent edge computing platform provides
a command transfer service, and data repository to manage device information, storage
sensing data, and issues a command to the device using connectivity layer services to link
the IoT devices to the cyber world. In addition, the client support layer services allow users
to access the displayed virtual object for accessing the actual device over the Internet.

The IoT network tier is constructed with various small single-board computers, sens-
ing devices, and actuators. The IoT devices are deployed in a smart home to collect data
from the physical world and operate the actuator to control electric appliances. Typically,
sensors and actuators do not have network functionality. Therefore, to transfer collected
data from sensors to the intelligent edge computing platform, they directly connect with
IoT devices through the native interface. The single-board computer as an IoT device is
able to provide wireless or wired connection ability to communicate with intelligent edge
computing framework through internet protocols such as Hypertext Transfer Protocol
(HTTP) and Constrained Application Protocol (CoAP).

Figure 2. Proposed Distributed Intelligent Edge Computing Functionalities for Home Appliances Control.

3.3. Development Model of Proposed Microservices of Intelligent Edge Computing Platform

Figure 3 illustrates the development model of client services. To improve user con-
venience, we designed the client services with device support service and data support
service. With the device support service, users can gain information about the device list
managed by the intelligent edge computing platform, device details provide a detailed
profile of the device, and device command that is served by this device. The data support
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service provides statistic data, history data, and real-time data which are generated by
the devices.

Figure 3. Development Model of Client Services.

Figure 4, illustrates the development model of the intelligent edge computing platform
using EdgeX. The model is separated into six functionalities including the device service,
EdgeX core data, EdgeX core command, rules engine, optimization engine, and device con-
troller.

Figure 4. Development Model of the Intelligent Edge Computing Platform based on the Proposed Optimization Mechanism
using EdgeX.

The device service is the edge device connector interacting with physical devices that
are managed by the intelligent edge computing platform. The sensing data provided by
physical devices are ingested to other services and converted into common EdgeX data
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formats through device service. The device service exposes REST APIs with the device
service interface component to transfer command from other services in the intelligent
edge computing platform.

The EdgeX core services such as core data, and the core command are supported by
EdgeX. The core data are responsible for storing and managing service for data collected
from the device service. The core commands facilitates and controls device actuation re-
quests from other services. To provide the intelligent optimization mechanism in embedded
edge computing, we modified the rule engine, and designed an optimization engine and a
device controller. The rule engine includes a ZeroMQ subscriber, rule engine, rule reposi-
tory, and rule creator functions. The rule creator generates rules requested by the users.
The generated rules are stored in the rule repository. Afterwards the ZeroMQ subscriber
receives flow data provided by the devices and then fed to the rule engine for further
processing. The optimization engine consists of an objective function and a data converter.
The data converter of the optimization engine converts the data of optimization request
to unified formats of the optimization engine and delivers them to the objective function
to generate optimized parameters. The device controller is responsible for generating the
actuation mechanism of devices based on parameters generated by the optimization engine
through fuzzy logic.

To provide sensing data to the intelligent edge computing platform, the simulated
IoT device is designed in raspberry pi 3 model B. The designed model is launched on the
ubuntu operating system and libraries as an application. The model composes an event
generator, event publisher, device handler, and simulated device interfaces. The simulated
device interface receives requests from the device service of the intelligent edge computing
platform, then invokes proper functions of the device handler to generate an event and
finally publishes the event with the event publisher. Detailed Information is depicted in
Figure 5.

Figure 5. Development Model of the Simulated IoT Device.

3.4. Sequence Diagram of Smart Home Environment Control Using the Intelligent Edge
Computing Platform

The sequence diagram of the proposed intelligent edge computing platform for con-
trolling the smart home environment is depicted in Figure 6. The sensors in the IoT
networks detect temperature information of a smart home. Then, previously transfer data
to the data repository by REST APIs are exposed by the data repository. When the data
repository receives the data sent from sensors of IoT networks, it will issue the data with an
event and store them. The rules engine is listening to the event with the ZeroMQ subscriber.
When the data repository issues an event through the ZeroMQ publisher it will deliver
to receivers of this event. If data match any rules that are registered in the rule engine,
they will invoke a related function to execute further processing. In our scenario, when
the received event brings the current temperature of the smart home, the rules engine
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will invoke an optimization engine to obtain the optimized temperature that is a trade-off
responds energy consumption and the desired environment setting of residents in a smart
home. When an optimization engine response with an optimized temperature, the rules
engine invokes the device controller to properly control the smart home. Finally, the device
controller calls the command transfer service to send the commands to actuators of IoT
networks to maintain the status of the smart home.

Figure 6. Optimization Mechanism-based Sequence Diagram for Home Appliances Control.

3.5. Proposed Energy Efficiency Objective Function Model for Home Appliances Control

We illustrate the block diagram of the proposed objective function model of the opti-
mization mechanism in Figure 7. The proposed model is comprised of input data, output,
system constraints, temperature requirements, and an optimization engine. The input data
inject the current temperature into the optimization engine; with the system constraints
and temperature requirements of users, the optimization engine generates optimized
temperature.
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Figure 7. Objective Function Model of the Intelligent Optimization Mechanism.

In order to infer the functional expression, the following assumptions are made.
The current sensing data for temperature in the smart home are expressed as Tc. In order to
express the user’s acceptable range of temperatures, we denoted them as Td. The user pre-
ferred maximum and minimum values for temperature are represented as Td = [Tmin, Tmax].
It is assumed that within the expected range, the maximum value represents the maximum
expected value of the user’s comfort temperature, and the minimum value represents
the minimum acceptable value of the smart home parameter for indoor spaces. If energy
costs are not an influencing factor, the occupant wants certainly to keep the indoor pa-
rameters in a smart home at their maximum level. Setting the indoor parameters to the
maximum value in a smart home would incur higher energy costs, so there is a trade-off
between the energy consumption and the environmental settings required in the smart
home. To be concise, we set the length of the temperature range as 4T = [Tmax − Tmin].
In this scenario, two smart home actuators (heater, cooler) should be used to maintain
the required temperature settings in the smart home. Moreover, there are constraints to
operate actuators, such as if Tc < Tmin, then the heater is operated to increase smart home
temperature. Similarly, if Tmax > Tc, then the cooler will be operated to cool down the
indoor temperature. We considered that the consumption by the heater and cooler in per
unit change in temperature is estimated by Ph and Pc, respectively. Being unaffected by
the high-cost constraint associated with more power consumption, the user can simply set
temperature as per their comfort zones and the user desired parameters but, in practice,
we cannot afford this all the time. Therefore, we need to find some trade-off between the
user desired setting in the smart home and energy consumption. Table 2 presents a brief
description of the various notations used in this formulation.
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Table 2. Proposed Objective Function Notations.

Notation Description

SHPd Td
Tmin Desired smart home parameter for Temperature with ranges
Tmax

SHPc Tc Current smart home parameter for Temperature

SHPo To Optimal smart home parameter for Temperature

Energy Consumption

Eopt Total energy consumption in optimal conditions

Emin Total energy consumption in minimum parameter settings

Emax Total energy consumption in maximum parameter settings

αp User preference for indoor parameter settings

αe User preference for energy saving

Pa
Power consumption in per unit change in indoor parameters
α ∈ {heater, cooler}

DT Deficiency in achieving optimal settings for parameter T

Gp Gain in optimal parameter settings

Ge Gain in energy saving

We assume To is the optimal parameter that can compromise the required environ-
mental settings and energy consumption. With the user’s acceptable range of temperatures,
the optimal parameter To ∈ [Tmin, Tmax]. With the above assumption the total energy
to maintain the optimal setting Eo pt in the smart home is expressed with the following
formula.

Eopt =

{
Ph ∗ (To − Tc) if Tc < Tmin

Pc ∗ (Tc − To) if Tmax < Tc
(1)

Similarly, we can obtain the minimum and maximum power consumption with the
following formula.

Emin =

{
Ph ∗ (Tmin − Tc) if Tc < Tmin

Pc ∗ (Tc − Tmax) if Tmax < Tc
(2)

Emax =

{
Ph ∗ (Tmax − Tc) if Tc < Tmin

Pc ∗ (Tc − Tmin) if Tmax < Tc
(3)

We want to attain the maximum comfort status of the smart home with minimum
energy consumption. We specify that Gp and Ge are the gain in making optimal environ-
mental settings and gain in energy saving, respectively. If the user-defined preferences for
the optimal environmental setting and energy saving are αp and αe, respectively, then the
objective function is represented through the following equation.

Max(αpGp + αeGe) (4)

There is a constraint which is αp + αe = 1. The gain in having the optimal environ-
mental setting Gp can be expressed as follows.

Gp = (1− DT2) (5)

There is DT which is the deficiency in having an optimal setting for temperature.
If we want to maximize the gain through the optimal preference setting Gp, the deficiency
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component for the temperature parameter should be minimized. The formula is given by
the following.

DT =

{
Tmax−To
4T if Tc < Tmin

To−Tmin
4T if Tmax < Tc

(6)

When Tc < Tmin then the optimal preference setting should be to set To ≈ Tmax. When
To → Tmax then DT → 0, that will help in maximizing the desired Gp. The gain in energy
saving Ge can be expressed as the following formula.

Ge =
(

1−
( Eopt − Emin

Emax − Emin

)2
)

(7)

If we want to maximize energy saving, the energy consumed required for optimal
setting should be minimized, i.e., Eopt. When Eopt → Emin then Ge → 1, which is helpful to
maximize the energy-saving component Ge. Finally, the objective function can be expressed
with the following formula.

Max
(

αp
(
1− DT2

)
+ αe

(
1−

( Eopt − Emin

Emax − Emin

)2
))

(8)

There are some constraints such as :
For the cooling case : Tc < Tmin ≤ To ≤ Tmax
For the heating case : Tmin < To ≤ Tmax < Tc
0 < Emin ≤ Eo ≤ Emax

3.6. Proposed Fuzzy Logic-Based Home Appliances Control Model

The given Figure 8, illustrates a fuzzy knowledge-based model that is used to control
the smart home environment. The fuzzification comprises of the process of transforming
values such as current temperature, deviation from optimized temperature into grades
of membership for linguistic terms of fuzzy sets. The current temperature is divided into
a fuzzy set such as Cool, Normal, Warm, Hot, and Very Hot. The deviation from the
optimization temperature is divided into a fuzzy set that includes Negative Long (NL),
Negative Short (NS), Optimal (O), Positive Short (PS), Positive Long (PL). The fuzzy rule-
based inference engine performs the inference operations based on the rules with input
values to map corresponding linguistic terms of heater and cooler. The defuzzification
transforms the fuzzy results of the fuzzy rule inference engine into a crisp output.

The Algorithm 1 represents an algorithm that generates the level of cooling and
heating using the current temperature and deviation from the optimized temperature.
In order to generate a proper level of cooling and heating, we leverage a fuzzy logic. Fuzzy
logic is much closer in spirit to human thinking and natural language than the traditional
logical systems. Basically, it provides an effective means of capturing the approximate,
inexact nature of the real world. The Fuzzy logic takes the current temperature and its
deviation from optimized temperature as inputs and outputs the appropriate heating and
cooling levels based on the fuzzy rules. Finally, an output class is created to include the
result. Through the fuzzy logic-based method, the device control mechanism could provide
a proper control level of the cooler and heater.
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Figure 8. Home Appliances Control Mechanism Using Fuzzy Logic.

Algorithm 1: Device Control Algorithm.
Input: current temperature, and optimized temperature.
Output: level of cooler, and heater.
Initialize double dot to store deviation from the optimization temperature.
Initialize double ht to store the level of the heater.
Initialize double cl to store the level of the cooler.
Initialize class output to store the level the of cooler and heater.
Initialize fuzzy logic inference engine as f is to generate the level of the cooler and heater.
dot = optimized temperature – current temperature;
f is set the variable current temperature with the current temperature;
f is set the variable store deviation from the optimization temperature with dot;
f is evaluate to generate the level of the cooler and heater;
ht = f is obtain the variable of the heater;
cl = f is obtain the variable of the cooler;
output set the heater with ht;
output set the cooler with cl;
return output;

The following Table 3, is the membership function for the current temperature. We
assume the proposed fuzzy logic controller of temperature works perfectly at any tempera-
ture within range 13 ◦C–39 ◦C.
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Table 3. Membership Functions for Current Temperature.

Membership Functions Range (◦C)

Cool 13–19
Normal 18–22
Warm 21–27
Hot 26–32

VeryHot 31–39

The following Table 4, is the membership functions for deviation from the current
temperature. It gives the difference between the user’s preferred temperature and the
current temperature of the room as recorded by the temperature sensor in the room. As this
model can work in temperature range 13–32 ◦C and the user can set the desired temperature
from 18 to 26 ◦C, so the temperature difference between the current and the optimized
temperature cannot exceed −21◦C (18 ◦C–39 ◦C) and 13 ◦C (26 ◦C–13 ◦C). Thus, (−21
◦C) and (+13 ◦C) are the lower and upper limits of the input variable “deviation from
optimized-temperature”.

Table 4. Membership Functions for Deviation from the current Temperature.

Membership Functions Range (◦C)

NL −21 to −10
NS −12 to −2
O −3 to 3
PS 1 to 7.5
PL 6 to 13

The heater can either be in the ON or OFF state depending on the temperature
preference in the room. The heater settings are categorized into 1. STOP 2. SLOW 3.
MEDIUM 4. HIGH. If the current temperature of the room is below the desired temperature,
the heater is turned on automatically according to temperature difference. The detailed
information is presented in Table 5.

Table 5. Membership Functions for the Heater.

Membership Functions Range (%)

Stop 0–5
Slow 0–45

Medium 35–65
High 60–100

The cooler settings are categorized into 1. STOP 2. SLOW 3. MEDIUM 4. HIGH.
If the current temperature of the room exceeds the desired temperature then this cooler
turns on automatically according to the temperature difference. The detailed information
is presented in Table 6.

Table 6. Membership Functions for the Cooler.

Membership Functions Range (%)

Stop 0–5
Slow 0–45

Medium 35–65
High 60–100
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4. Implementation and Result

In this chapter, we present the development environment for implementing the pro-
posed system and the detailed implementation results in pictures.

4.1. Development Model of Implemented Microservices of Intelligent Edge Computing Platform

Figure 9 illustrates the developed functionalities of intelligent edge computing plat-
forms using EdgeX. The intelligent edge computing platform contains several microservices.
The device microservice for communicating with IoT devices is located between the intel-
ligent edge computing platform and the IoT device for transmitting data or commands
in both directions. EdgeX core services provide basic services required for an intelligent
edge computing platform. The core data manage and stores data, core metadata manage
information of IoT devices, and all services related to the intelligent edge computing plat-
form while the core metadata manage and deliver commands through REST APIs to the
services provided by IoT devices. The rule engine, which provides basic intelligence in
the intelligent edge computing platform, provides basic judgment to the intelligent edge
computing platform based on pre-registered rules. In controlling the environment of a
smart house, we propose an optimization engine and a fuzzy controller that supports the
rule engine to minimize energy consumption while maintaining user preferences. Based
on the currently collected temperature information, the optimization engine provides an
optimized temperature that can satisfy user requirements while minimizing energy con-
sumption, and the fuzzy-based controller properly controls the temperature environment
of the smart house based on data of both the optimization, desired temperature and the
current temperature.

Figure 9. Developed Functionalities of the Intelligent Edge Computing Platform Using EdgeX.
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4.2. Development Environment Specifications of the Intelligent Edge Computing Platform

To implement the embedded service, the optimization engine and device service
were implemented on the desktop, and the execution environment was installed on the
Raspberry. Optimization engine was implemented in C# using ASP.NET Core framework,
and device service was implemented in Java language using Spring boot framework.
The detailed specifications are depicting in Table 7.

Table 7. Develop and Executing Specifications of Intelligent Edge Computing Platform

Environment Category Items Descriptions

Develop Environment

Hardware
(Desktop)

OS Windows 10
CPU Intel® core™ i5-8500

Memory 8 GB
Hard Disk 150 GB

Software

ASP.NET Core,
Swashbuckle A framework to develop web applications

Spring Boot A framework for modern Java-based
enterprise applications

Executing Environment

Hardware
(Raspberry Pi 3)

OS Ubuntu 20.04 64 bit

CPU Quad Core 1.2 GHz Broadcom BCM2837
64 bit CPU

Memory 1 GB
MicroSD Card 16 GB

Software Docker and Docker
Compose

A platform to develop, ship, and run
applications

4.3. Implemented Results of Intelligent Edge Computing Platform

As shown in Figure 10, the client services and intelligent microservices are deployed
in the corresponding platform to provide services.

Figure 10a, the edge client service is a web client-server that provides the information
through UIs to users. During experimentation, the Chrome web browser runs on a laptop to
access the intelligent edge computing platform through the Internet. The UIs are provided
by the client support provider from the intelligent edge computing platform. Furthermore,
the Bootstrap and Jquery libraries are used for implementing the contents of UIs based on
the Spring Boot framework.

Figure 10b, the optimization engine is developed with C# based on ASP.NET Core to
provide microservices. The fuzzy control is developed with Java-based on the Spring boot
framework to provide microservices. In the experiment, these modules are deployed in
Raspberry Pi 3 that includes 1 GB memory to runs the Ubuntu 64 bit OS smoothly.

Figure 11, shows the deployed microservices in the corresponding platforms. Figure 11a,
Spring Boot 2.1.4 is used for developing a rules engine to provide microservices. Figure 11b,
EdgeX core services are implemented using Go to provide web services through multiple
microservices providers. Figure 11c, the device service is implemented using Go based on
the implementation template from the EdgeX foundry. The IoT device is a java application
that runs on the ubuntu 20.04 operating system based on Raspberry Pi 3. We develop a
temperature generation application with Java and expose that with REST APIs. When a
user requests to generate random temperature, the application will be publishing evens to
the core data service of the intelligent edge computing platform to trigger the fuzzy control
approach based on the rules engine.
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Figure 10. Implemented Client Services and Intelligent microservices of the proposed embedded edge computing. (a) Exe-
cuted Client Services. (b) Executed Optimization Engine and Fuzzy Control.

Figure 11. Implemented Rules Engine and Device Service microservices of the proposed embedded edge computing.
(a) Executed Rules Engine. (b) Executed EdgeX Core Services. (c) Executed Device Service.

Figure 12, shows an implementation result of device management using a user inter-
face of the web client service. The user interface displays the device list page that includes
a device list and each item presents a device ID, name, and URI. The item of the device list
provides the function of accessing the device detail page that presents detailed information
of the clicked item. The button detail provides device detail page that presents detailed
device information. The detailed device information is retrieved by the selected device ID.
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Figure 12. The Implemented Result of Device List of Client Services.

Figure 13, shows an implementation result of device management for presenting
device detail information to the user using a user interface of the web client service. The user
interface displays the device detail page that includes device detail including the device’s
ID, name, profile name, service name, and resource list. The information is retrieved by
the selected device ID from the Device List Page. The information is delivered as a JSON
format data provided from Metadata of EdgeX framework. The detailed information of a
device includes properties of the device and a list of resources. Each resource in the list
has two types of method used for accessing the resource to obtain the sensing data and
control actuator.

Figure 13. The Implemented Result of the Device Detail of Client Services.

Figure 14 shows the implementation result for presenting history data of a device that
is selected from the device list. The selected device may have multiple resources, and data
of resources are sent to the EdgeX framework through event publishing. The data are
stored in the core data service of EdgeX framework, and the Web Client requests the data
from the EdgeX framework.

Figure 15, represents the implementation result for presenting statistical data of a
device that is selected from the device list. For each resource of the selected device,
the history data are requested and calculated to be statistical data. Once a device is selected
for presenting the statistical data, the Web Client requests the EdgeX framework to obtain
the history data and results from the statistical data for each resource. The first statistic bar
presents an average of the retrieved data, the second is a standard deviation, the third is
the maximum, and the fourth one is the minimum.
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Figure 14. The Implemented Result of History Data of Client Services.

Figure 15. The Implemented Result of Static Data of Client Services.

Figure 16, shows the implementation result for presenting real-time data of a device
that is selected from the device list. For presenting the data of each resource, the Web Client
requests to the device and obtains the real-time data. For accessing the selected device
in real-time, the Web Client requests the EdgeX framework to gain device information
for sending a command to the device. The real-time data are collected by requesting
the resources of the selected device. In this process, the Web Client requests the device
periodically; therefore, it consumes higher network resources.

Figure 16. The Implemented Result of Real-Time Data of Client Services.
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5. Performance and Evaluation

Figure 17, illustrates the memory usage of the proposed microservices of the system on
the Raspberry Pi 3. We use two Raspberry Pi 3 pieces of hardware, as shown in Figure 17a,b,
to execute the system. The total memory of each device is 929,996 kb, in which the running
process takes 196,988 kb, and 281,128 kb, the total available memory is 1,332,356 kb.
According to Figure 17c, the total memory of the microservices is 964,024 kb, and hence we
have enough memory to run the microservices. The rules engine, client service provider,
fuzzy controller, and simulated device microservices take most memory usage. All the
services are developed with a java-based spring boot framework that supports REST APIs
for other services and clients. The optimal engine takes 63,532 kb to provide optimization
capability to the intelligent edge computing framework and developed with the ASP.net
Core framework which is based on the C# language. The EdgeX core services, such as core
data, core command, and core metadata running on the Docker container are implemented
with Go to provide basic services for the intelligent edge computing framework through
consuming 44,948 kb of memory. The device service is also implemented with Go to
provide services that take 3536 kb of memory. According to the statistics, it is evident that
Go-based services consume less memory compared to C#- and Java-based services.

Figure 17. Proposed Microservices Memory Usage on Raspberry Pi 3. (a) A Raspberry Pi 3. (b) A Raspberry Pi 3. (c) Total
Memory of Microservices.

Figure 18, shows request delays for executing the proposed system based on the intel-
ligent edge computing framework in the network edge. For evaluating the performance
of the executing latency, the executing time of the optimization engine and fuzzy control
is measured.

Figure 18a presents the execution time of the optimization engine that is requested by
the rules engine. The optimization engine is implemented with the C# language to provide
optimization capability to the intelligent edge computing framework. According to the
statistics, we can understand that the minimum time is 0.152 s, averaging at 0.177 s, and the
maximum time is 0.207 s.

Figure 18b presents the execution time of fuzzy control that is invoked by the rules
engine. The fuzzy control is implemented with the java language to provide a control
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function to the managed devices of the intelligent edge computing framework. According
to the statistics, the minimum time is 0.169 s, average time is 0.199 s, and the maximum
time is 0.252 s.

Figure 18. Proposed Microservices Memory Usage on Raspberry Pi 3. (a) Optimization Engine.
(b) Fuzzy Control.

6. Conclusions

In this paper, We conducted research on improving the intelligence of smart control
systems and supplementing the inherent deficiencies of IoT using embedded edge comput-
ing and rule-based objective functions. In order to control the smart home temperature
according to user desired parameters and the comfort index, an optimization engine and
fuzzy control service are implemented. The optimization engine is developed with the
C# language to provide optimization ability to intelligent edge computing. The fuzzy
control service is developed with the java language to support the control mechanism
to the devices managed by intelligent edge computing. When looking at the simulation
results, it can be seen that all services that control the temperature of the smart home
operate automatically on the two Raspberry devices without human intervention. We
have overcome the deficiencies of IoT with edge computing and have improved smart
home controller intelligence with a rule-based optimization mechanism so that it can be
executed automatically without human intervention. In future work, we are considering
implementing the optimization algorithm with other factors affecting the smart home and
testing it in a real smart home environment.
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