
electronics

Article

A Deep Learning-Based Classification Scheme for False Data
Injection Attack Detection in Power System

Yucheng Ding 1,* , Kang Ma 2, Tianjiao Pu 1, Xinying Wang 1, Ran Li 3 and Dongxia Zhang 1

����������
�������

Citation: Ding, Y.; Ma, K.; Pu, T.;

Wang, X.; Li, R.; Zhang, D. A Deep

Learning-Based Classification Scheme

for False Data Injection Attack

Detection in Power System.

Electronics 2021, 10, 1459. https://

doi.org/10.3390/electronics10121459

Academic Editor: Rui Pedro Lopes

Received: 27 April 2021

Accepted: 2 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 China Electric Power Research Institute, Beijing 100192, China; tjpu@epri.sgcc.com.cn (T.P.);
wangxinying@epri.sgcc.com.cn (X.W.); zhangdx@epri.sgcc.com.cn (D.Z.)

2 Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK; K.Ma@bath.ac.uk
3 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China; rl272@bath.ac.uk
* Correspondence: dingyucheng007@gmail.com; Tel.: +86-188-1110-9859

Abstract: A smart grid improves power grid efficiency by using modern information and communi-
cation technologies. However, at the same time, due to the dependence on information technology
and the deep integration of electrical components and computing information in cyber space, the
system might become increasingly vulnerable to cyber-attacks. Among various emerging security
problems, a false data injection attack (FDIA) is a new type of attack against the state estimation. In
this article, a deep learning-based identification scheme is developed to detect and mitigate infor-
mation corruption. The scheme implements a conditional deep belief network (CDBN) to analyze
time-series input data and leverages captured features to detect the FDIA. The performance of our
detection mechanism is validated by using the IEEE 14-bus test system for simulation. Different attack
scenarios and parameters are set to demonstrate the feasibility and effectiveness of the developed
scheme. Compared with the artificial neural network (ANN) and the support vector machine (SVM),
the experimental analyses indicate that the results of our detection mechanism are better than those
of the other two in terms of FDIA detection accuracy and robustness.

Keywords: conditional deep belief network; cyber security; false data injection attacks detection;
feature extraction; deep learning; smart grids; state estimation

1. Introduction

The power system is a complex and interconnected network that transfers electrical
energy from generators to users [1,2]. The power grid is continuously operated and
monitored by a supervisory control and data acquisition system (SCADA) to ensure a
normal operating condition. In particular, the state of the power system is estimated by
the measured value, and the system operators use the estimated state to control the actual
operation [3–5].

By integrating various advanced communication technologies, the power system is
moving towards the direction of the smart grid [6–8]. However, due to the deep integration
of the cyber space with the physical space, the power grid is facing increasing security
challenges. In addition, massive real-time power system data has brought about the
transformative potential and challenge of protecting smart grid systems. Physical security
and cyber security are two significant aspects of power system security. Physical security
is the ability of a power system to maintain continuous supply in the event of equipment
breakdowns. Cyber security refers to the security of a SCADA system that maintains the
operation of the power system. Recently, cyber-attacks have gradually threatened modern
power systems due to the ubiquitous use of communication technologies [9–11]. Besides,
because of the close interlinking between the physical and SCADA systems, the physical
security of power systems can be compromised by cyber security vulnerabilities [12–14].
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Cyber-attacks have led to numerous incidents and have been concerned by both power
system operators and users. They can undermine or even completely disrupt the control
system of the power grid. For instance, in 2010, the Iranian nuclear power plant was
invaded by a Stuxnet worm that falsely altered the system status, which spread across the
whole SCADA system and disrupted system protection strategies. On December 23th, 2015,
three Ukrainian regional electric power distribution companies experienced a cyber-attack,
which caused power outages affecting nearly 225,000 customers for several hours. Barely a
month after the incident, ransomware attacked the Israel Electric Authority through online
phishing. The events are fresh examples of the vulnerability of a highly automated smart
grid to cyber-attacks. Generally, there are three major types of cyber-attacks: denial of
service attack (DoS), replay attack (RA), and false data injection attack (FDIA). The DoS
attack occurs when an attacker inserts artificial loads to the service source such that the
normal trend of service will be no longer accessible to legitimate requests [15]. The RA
involves an attacker replacing the current data with the measurement of a certain period of
time before the control center can make correct decisions about the current system state [16].
The FDIA means that an attacker can access the current power system configuration and
manipulate the stored data and measurements. This article focuses on the FDIA, which is
regarded as a severe threat to the SCADA system.

There is a growing body of literature that recognizes the FDIA. Studies over the past
decades have provided valuable information on the FDIA scenarios and the corresponding
detection strategies. Bobba et al. [17] investigated the detection of the FDIA by a strategi-
cally selected set of measurements and state variables. The authors show that it is useful
to defend against such attacks by protecting a set of basic measurements. Pasqualetti
et al. [18] proposed a mathematical framework for cyber-physical systems, characterized
fundamental monitoring limitations from system-theoretic and graph-theoretic perspec-
tives, and designed centralized and distributed attack detection and identification monitors.
In Reference [19], the authors introduced the attack model with the least amount of effort
and formulated the attack strategy, in which several meters are selected for manipulation
to cause the maximum damage. To defend against the attacks, the authors also investigated
the protection-based defence and detection-based defence. In Reference [20], the problem
of false data detection was modelled as a matrix separation problem. The nuclear norm
minimization method and low rank matrix factorization method are presented. The au-
thors in [21] introduced two distributed detection methods: distributed observable island
detection (DOID) algorithm and distributed time approaching detection (DTAD) algorithm.
In Reference [22], the equivalent measurement transformation and the residual researching
method are utilized to identify false data. However, to some extent, the above-mentioned
traditional methods strongly depend on the prescribed bad data detection threshold and
are sensitive to environmental noise. Moreover, they are easily affected by the attack
intensity, i.e., the smaller the attack intensity, the lower the detection accuracy.

With the rapid development of artificial intelligence technology, the FDIA detection
method based on artificial intelligence has also been widely studied. In Reference [23], the
authors designed a support vector machine (SVM) based on the the alternating direction
method of multipliers, which can effectively identify whether the power system is under
attack. Multilayer perceptrons (MLPs), as deep learning models, have been used to detect
attacks in [24–26]. They treated the FDIA detection problem as a supervised classifica-
tion problem. In Reference [27], the authors combined discrete wavelet transform(DWT),
dropout with recurrent neural network(RNN), extracted the hidden time-frequency do-
main characteristics, solved the overfitting problem, and increased the accuracy of FDIA
detection. This type of artificial intelligence detection model automatically processes fea-
tures and the detection accuracy is often higher than the traditional methods, but the
training of the model relies on large sample datasets and requires too much computation.
In addition, the existing works do not consider the impact of historical measurements on
the current situation.
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In the recent past, a deep belief network (DBN) was proposed as an unsupervised
learning method to learn the hierarchical representations and correlation from real-time
data [28,29]. It is one of the basic deep learning technologies built by stacking restricted
Boltzmann machines (RBMs) [30–32]. By implementing automatic feature extraction,
the DBN can achieve higher efficiency and accuracy than traditional machine learning
algorithms [33–35]. Although the DBN demonstrates good performance in static modelling,
it encounters challenges in capturing complicated temporal dynamics from time-series
input [36]. In light of this, this paper develops an extended version of the DBN, called the
conditional deep belief network (CDBN), which updates a conditional Gaussian–Bernoulli
RBM (CGBRBM) to model temporal data [37–39]. The CDBN-based approach can then
identify the hidden correlation and estimate the reliability of the measurement data. The
main contributions of this paper are as follows:

• The standard DBN is improved to deal with the continuous real-time series data of
the power system flexibly and extract the time correlation.

• A CDBN-based FDIA detection scheme is proposed to evaluate the reliability of the
measurement and ensure the safe and stable operation of the power grid.

• By simulating different attack scenarios, the performance of the proposed scheme is
evaluated from multiple aspects to ensure its feasibility and effectiveness.

Section 2 presents the system model, the state estimation, and the conventional bad
data detection (BDD) system. Section 3 mathematically models the FDIA. Section 4 presents
the basic principles of the CDBN and formulates a deep learning-based detection scheme.
Section 5 performs case studies to evaluate the performance and effectiveness of the
developed methodology. The last section draws conclusions and suggests future work.

2. System Model
2.1. State Estimation in Power Systems

Generation, transmission, and distribution are the three main parts of the power
system. In a power grid, the control centre must monitor the state of all buses and nodes to
make operational decisions as quickly as possible. However, it is impossible to measure all
the data directly. On this subject, the control centre estimates the operating conditions of
the system by collecting the readings from remote meters.

Let z = [z1, z2, . . . , zm]
T be an m × 1 vector of all measurements, including loads and

power injections at buses, power flows at transmission lines, and so on. x = [x1, x2, . . . , xn]
T

denotes an n × 1 state vector, where m� n. e = [e1, e2, . . . , em]
T, where em ∼ N

(
0, σ2

m
)

is the measurement error. We have

z = h(x) + e (1)

where h(·) shows the nonlinear relationship between the measurement z and the state x. In
a DC power flow model, Equation (1) can be written in the form of a linear matrix:

z = Hx + e (2)

where H is an m × n Jacobian matrix, and e ∼ N
(
0, σ2) is the environmental noise. On

this basis, the state vector can be calculated by

x =
(

HTWH
)−1

HTWz (3)

where

W =


σ−2

1
σ−2

2
.

.
σ−2

m

 (4)
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2.2. Conventional Bad Data Detection

Erroneous data measurements can occur for a variety of reasons (e.g., device miscon-
figuration and malicious attacks). These measurements could get incorrect state estimates.
Therefore, they must be recognized and removed in time. The BDD system can eliminate
some random errors. When detecting and identifying the erroneous data, the L2-norm
of measurement residual is first calculated. By comparing the calculated result r with a
prescribed threshold τ, it reports normal data measurements if

r =‖ z−Hx ‖< τ (5)

holds, or bad ones otherwise.

3. False Data Injection Attack

When an adversary launches the FDIA, he can manipulate the measurement z to cause
an arbitrary change in the estimated value without being detected by the BDD system [40].
Figure 1 presents the process when the state estimation is attacked. Under the condition
of the FDIA, an original measurement z can be replaced by a compromised za, where
za = z + a and a is an m × 1 malicious data vector. If so, the result of the state estimation
then becomes xa. In general, the BDD system is likely to recognize the random attack vector
a. However, in [40], it was found that a few well-designed attack vectors (such as a = Hc)
can bypass the BDD because the injected false data do not affect the residue:

za −Hxa = z + a−H(x + c) = z−Hx (6)

where
xa =

(
HTWH

)−1HTWza
=
(
HTWH

)−1HTW(z + a)
=
(
HTWH

)−1HTWz +
(
HTWH

)−1HTWa
= x +

(
HTWH

)−1HTWHc
= x + c

(7)

and c = [c1, c2, . . . , cn]
T is an arbitrary n × 1 vector. Therefore, the attack is stealthy and

can inject any malicious data into the state estimation.
However, adversaries can usually only compromise a limited number of measure-

ments, so two main realistic attack scenarios are considered as follows:

1. Least-effort attack [19]: k = 1, adversaries manipulate the minimum number of mea-
surements to launch the FDIA;

2. Multiple attacks [40]: k > 1, adversaries can compromise up to k measurements to
launch the FDIA;

where k is the number of attacked measurements. However, the FDIAs are not
constrained by these two scenarios. In the IEEE 14-bus test system, Figure 2 shows the
difference in the economic dispatch of the power system before and after the measurement
z is attacked. We can see that the total generation and the production cost are higher than
those of the original case. Furthermore, as the attack intensity increases, the difference
increases accordingly. We find that the FDIA can leave the system out of control and even
cause security risks. Our developed scheme can specifically detect this kind of attack.
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Figure 1. The state estimation under the attack.

Figure 2. The immediate damaging effect to the power system.

4. Deep Learning-Based Identification Scheme

In order to detect the FDIA, a deep learning-based identification scheme is developed.
We propose a CDBN by combining a conventional DBN with a CGBRBM, which can
process real-valued data and consider the impact of previous measurements on current
detection results. Figure 3 shows the framework of the CDBN. We employ a CGBRBM and
stack K − 1 standard RBMs on top, where K is the number of hidden layers. To indicate
whether the measurements are attacked by the FDIA, a BP output unit is added at the end
of the scheme to make it a binary classifier.
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Figure 3. The structure of the CDBN.

4.1. Conventional RBM

The RBM is a two-layer neural network, which is the core of the CDBN. As Figure 4
shows, its two layers are the visible layer and the hidden layer. The units between adja-
cent layers are connected, but there is no connection inside each layer. The visible layer
corresponds to the measurement, and the hidden layer can represent feature extraction.
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Figure 4. The structure of the RBM.

The RBM is an energy-based undirected generation model, and its system energy is

E(v, h) =
n

∑
i=1

m

∑
j=1

viwijhj −
n

∑
i=1

aivi −
m

∑
j=1

bjhj (8)

where vi and hj are the state of visible unit i and hidden unit j, wij is the weight between
them, ai and bj index the standard biases, n and m are the numbers of visible and hidden
units, respectively. According to the property of the RBM, given the state of the visible
layer, the activation probability of the jth hidden unit is:

P

(
hj = 1 | v) = sigm

(
n

∑
i=1

wijvi + bj

)
(9)

Similarly, given the state of the hidden layer, the activation probability of the ith visible
unit is:

P

(
vi = 1 | h) = sigm

(
m

∑
j=1

wijhj + ai

)
(10)

where sigm(x) = 1/(1 + exp(x)).
The goal of the RBM training is to obtain the parameters to maximize the likelihood

function by gradient descent. By calculating the derivative of the log-likelihood, the
weights and the biases can be updated as follows:

wij = wij + ε
(〈

vihj
〉

data −
〈
vihj

〉
model

)
ai = ai + ε(〈vi〉data − 〈vi〉model)

bj = bj + ε
(〈

hj
〉

data −
〈

hj
〉

model
) (11)

where ε is the learning rate, 〈·〉data and 〈·〉model are the expectations calculated from the
data and model distributions, respectively. 〈·〉data is easily obtained by Equations (9) and
(10). However, getting 〈·〉model is much more difficult. To simplify the process, Hinton
proposed an efficient and straightforward contrast divergence (CD) algorithm based on
Gibbs sampling [41].

4.2. Conditional Gaussian-Bernoulli RBM

In the standard type of the RBM, input data are binary and static, but the measure-
ments in the power system are usually real-valued and time-series data. To address this
limitation, we adopt a conditional Gaussian–Bernoulli RBM(CGBRBM) as the basis for the
detection algorithm.

It can be seen from Figure 5 that the CGBRBM is a variant of the conventional RBM.
First, the input units are linear with Gaussian noise, whereas the hidden units are still
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binary. The second improvement is that the time-series data can be modelled by considering
the visible variables in previous time steps. The energy function of the CGBRBM is:

E(vt, . . . , vt−NI , h) =
n

∑
i=1

(vi,t − ai,t)
2

2σi
2 −

m

∑
j=1

bj,thj −
n

∑
i=1

m

∑
j=1

vi,t

σi
wijhj (12)

where vi,t is the ith real-valued visible element at time step t, hj is the state of hidden unit j,
wij expresses the weight between vi,t and hj, σi is the standard deviation of the ith visible
element, N is the size of the observation window at the previous time, I represents the time
interval between two adjacent time steps, n and m are the numbers of visible and hidden

units, respectively. at = a +
N
∑

k=1
vt−kI Ak and bt = b +

N
∑

k=1
vt−kI Bk represent the dynamic

biases from the past to the visible bias vector a and the hidden bias vector b, where k =
1, . . . , N, vt−kI is the kth previous visible vector, Ak and Bk are the weight matrices of the
kth previous visible vector to the current visible unit and the hidden unit, respectively.
According to Equation (12), the corresponding activation probabilities become

P

(
hj = 1 | vt, . . . , vt−NI) = sigm

(
n

∑
i=1

wij
vi,t

σi
+ bj,t

)
(13)

P

(
vi,t = 1 | h) = N

(
m

∑
j=1

wijhj + ai,t, σ2
i

)
(14)

where N
(
µ, σ2) is a Gaussian with mean µ and variance σ2. In practice, when σi

2 is fixed
to 1, it can make the learning work better [37]. So, in this case, similar to the conventional
RBM, by using the CD algorithm, we can update the weights and the biases as follows:

wij = wij + ε
(〈

vi,thj
〉

data −
〈
vi,thj

〉
model

)
aijk = aijk + ε

(〈
vi,t−kIvj,t

〉
data −

〈
vi,t−kIvj,t

〉
model

)
bijk = bijk + ε

(〈
vi,t−kIhj

〉
data −

〈
vi,t−kIhj

〉
model

)
ai,t = ai,t + ε(〈vi,t〉data − 〈vi,t〉model)

bj = bj + ε
(〈

hj
〉

data −
〈

hj
〉

model
) (15)

where aijk and bijk are the elements of Ak and Bk.

4.3. CDBN

The CDBN is a probability generation model. It is a deep learning classifier composed
of the CGBRBM, the RBM, and the BP [42]. As Figure 3 shows, the data are first input
into the CGBRBM at the bottom for training and feature extraction. Then, the extracted
features are used as the input values of another RBM. In this way, more RBM layers can be
stacked [28]. The training process of the CDBN model consists of two steps [30]: layer-wise
unsupervised learning and fine-turning.

The first step is an unsupervised learning process. By using the CD algorithm, the
RBM of each layer is trained layer-by-layer. Finally, we get the CDBN with a few layers, the
parameters of which are suitable for extracting the characteristics of this type of data [31].
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Figure 5. The structure of the CGBRBM.

In order to optimize the parameters mapped to each layer, the whole CDBN model
should be fine-tuned. This process uses the labelled data and the BP network for top-down
supervised learning. The binary output node can be calculated by Equation (9), and it can
be utilized to represent the compromised label and the normal one. In the calculation of
the kth hidden layer, the weights and the biases are updated in the following:{

∆Wk,i,j = −ηδk,j pk−1,i
∆bk,j = −ηδk,j

(16)

where η is the learning rate, pk−1,i is the ith activation probability of the (k − 1)th hidden
layer, and

δk,j = pk,j

(
1− pk−1,j

) H

∑
h

δk+1,hWk+1,j,h (17)

where pk,j is the jth activation probability of the kth hidden layer, Wk+1,j,h is the jhth element
of the (k + 1)th layer weight matrix, H is the number of elements. Correspondingly, for the
output layer, the updated values of the weights and the biases are as follows:{

∆Wi,o = −ηδo pK,i
∆bo = −ηδo

(18)

where pK,i is the ith activation probability of the last RBM layer, and

δo = po(1− po)(lo − L), (19)

where po is the activation probability of the output layer, lo and L represent the predicted
value and the actual one, respectively.

As shown in Figure 6, the detection process of our scheme can be mainly divided into
three steps: data preprocessing stage, training stage, and testing stage. The first stage is to
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obtain the measurement vector z and inject the attack vector a into it according to a certain
proportion. After the normalization process, some sample data are selected as the training
set and others as the test set. Next, by completing layer-wise unsupervised learning and
fine-turning, the model is trained in the second stage. Finally, the trained model is used
to predict whether the sample data in the test set is under attack. By comparing with the
actual value, the accuracy of our developed scheme can be evaluated.

Figure 6. The CDBN-based detection model flow chart.
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5. Simulation

In this simulation, the performance of our developed scheme is evaluated in the
IEEE 14-bus test system. All the data used in the simulation, including the vector of
measurements and the Jacobian matrix H, are based on the MATPOWER 7.1. MATPOWER
is an open-source Matlab (R2017b, MathWorks, Natick, Massachusetts, USA) power system
simulation package, which has been widely used in research and education for solving
power flow and optimal power flow problems. Included are numerous example power
flow and optimal power flow cases. It can simulate most power system scenarios, and the
generated data are consistent with the actual situation, which can satisfy the verification of
algorithm performance.

In the IEEE 14-bus test system, by changing the active and reactive power of the load,
we first use MATPOWER to complete the power flow calculation for 30,000 consecutive
moments. Then, some values (including the branch power flow, the active and reactive
power of the generator, and the node voltage, a total of 39 values) are selected from the
calculation results of each power flow, and Gaussian noise (such as (0, 0.25)) is injected
into them. Finally, the calculation result is regarded as the measurement of state estimation.
There are 30,000 measurements in total, and the number of elements in each measurement
is 39. Next, according to the method in [40], the FDIA is launched randomly on 15,000
measurements. The measurement residual after the attack is guaranteed to be less than
the prescribed threshold τ, so as to avoid bad data detection. These 30,000 measurements
are divided into three parts on average, which are used as the training set, the verification
set, and the test set, respectively. For the above two scenarios (least-effort attack and
multiple attacks), we consider the following three aspects to evaluate the performance of
the mechanism. Each value of the simulation is an average among 30 independent trials.

5.1. Experimental Results
5.1.1. Structural Design

I. Effect of the height and width of the CDBN

We first study the effect of the number of hidden layers and the number of units per
layer on the performance of our developed scheme. In this simulation, the number of
attacked measurements k is set to 1, the size of the observation window (N) is 1, the time
interval (I) is 2, and the number of hidden layers is changed from 2 to 5, the hidden layer
units range from 20 to 60. From Figure 7, when there are three hidden layers and the
number of units in each layer is 30, we can see that the accuracy can be up to 97.3%.

Figure 7. Accuracy of different hidden layers and different hidden layer units.

II. Effect of the Observation Window Structure
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Next, we consider the effect of the size of the observation window at the previous
time (N) and the time interval (I) between two adjacent time steps on the effectiveness of
our scheme, where N and I are defined before. According to the conclusion of the previous
section, we build a CDBN structure with three hidden layers and 30 units in each layer.
The range of N is set from 1 to 4, and I is increased from 1 to 5. We can see the simulation
results in Figure 8. Considering the accuracy and the availability, N = 1 and I = 2 represent
a reasonable choice for detecting the FDIA.

Figure 8. Accuracy of different N and I.

5.1.2. Multi-Scenario Validation

In this experiment, we discuss the accuracy of our developed scheme in the least-effort
attack (k = 1) and multiple attacks (k > 1), respectively. According to Section 5.1.1, we
simulate a 3-layer CDBN model with 30 units per layer, set N to 1, and I to 2. Besides,
by using the same data set, we compare the performance of our method with the ANN
and the SVM, where the ANN consists of a hidden layer with 30 units and the radial basis
function (RBF) kernel is used in the SVM. Figure 9 shows the detection results. Specifically,
when k = 1, 4, 7, 10, the receiver operating characteristics (ROC) curves of the method are
shown in Figure 10 [43]. ROC is one of the essential metrics for evaluating the performance
of a classification model.

Figure 9. Accuracy of different number of attacked measurements.
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Figure 10. ROC curve when k = 1,4,7,10.

5.1.3. Robustness Validation

In the previous experiment, we set N (0, 0.25) as the environmental noise. It means
that we use a Gaussian with mean 0 and variance 0.25 as the environmental noise. However,
the real environment may be much worse. To evaluate the robustness, in this part, we fix the
number of attacked measurements (k) to 4, and the standard deviation σ of environmental
noise ~N (0, σ) changes from 0.25 to 2.5. The settings of the other structural parameters
are the same as Section 5.1.2. Figure 11 compares the accuracy obtained from the ANN, the
SVM, and our developed scheme.

Figure 11. Accuracy of different standard deviation σ.

5.2. Analysis of Results

In the verification of the CDBN structure, the number of hidden layers, the number
of units per layer, the size of the observation window (N), and the time interval (I) are
four important parameters. The function of depth is to abstract layer by layer and extract
features continuously, while the function of width is to allow each layer of RBM to learn
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more features. Generally speaking, the performance of an algorithm is more sensitive to
depth, and an appropriate width is easier to improve performance. Setting too few or too
many layers and hidden units may cause under-fitting and over-fitting, which will decrease
the accuracy [44]. If N is larger or smaller than what is required, the observation window
cannot adequately reflect the recent changes in the measurements. Similarly, a larger I
tends to smooth out or even ignore some short-term but critical fluctuations, whereas a
smaller I may cause this change to be too dramatic and lose its reference value [45]. So, by
choosing the appropriate parameters, the accuracy of the mechanism can be significantly
improved. According to the experimental results, we simulate a three-layer CDBN model
with 30 units per layer, set N to 1, and I to 2.

In the multi-scenario validation, we can find that the accuracy of our CDBN-based
method is higher than the other two. Moreover, with the increase of k, the detection
performance is stable, and the accuracy can reach up to 98.4%. The area under curve
(AUC) is close to 1. The developed scheme not only considers the time correlation of the
measurements, but the structure of deep learning also makes the feature extraction more
accurate. It can be inferred that the CDBN model has good performance and can accurately
identify FDIA.

In the robustness validation, as the noise level increases, the accuracy of the three
methods decreases. It is understandable. Because the higher the noise level, the harder it is
to distinguish between normal and compromised measurements. However, the accuracy
of the developed method is always the highest of the three. It can be concluded that the
CDBN-model can deal with more severe situations and is more suitable for FDIA detection
in actual power scenarios. Especially when σ < 2.0, the accuracy can be more than 90%.
That is to say, when the difference caused by the environmental noise is smaller than that
caused by the FDIA, our CDBN-based method is competent and has good robustness.

Although the detection accuracy is high, there are still some FDIAs undetected. There
are three main reasons for this:

1. The choice of the parameters
2. The presence of environmental noise
3. Insufficient data

In conclusion, our developed scheme has the advantages of high detection accuracy,
stable performance, and good robustness. It has great practical value in FDIA detection.

6. Conclusions

This article presents an in-depth study of the state estimation, analyzes the basic
principles of the FDIA, and focuses on the detection of power system cyber-attacks. By
integrating the DBN structure with the CGBRBM, which can process time-series real-
valued measurement data, we introduce a deep learning-based scheme to recognize the
potential FDIA for maintaining the stability of the smart grid. It can extract the high-
dimensional temporal behaviour features from the input data to construct a classification
model and perform detection. In the simulation, we first optimize the model parameters
suitable for the FDIA detection. By simulating two realistic attack scenarios, according to
the determined optimal parameters, the performance is then demonstrated. The results
indicate that our scheme can efficiently detect the FDIA and achieve better accuracy and
robustness than the ANN and the SVM. In our future work, more sophisticated attack
scenarios will be investigated based on the developed mechanism. Additionally, to be
more widely used in the field of the FDIA detection, we will explore our scheme in the AC
power system model.
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Nomenclature

ANN Artificial neural network
AUC Area under curve
BDD Bad data detection
CDBN Conditional deep belief network
CGBRBM Conditional Gaussian-Bernoulli RBM
CD Contrast divergence
DOID Distributed observable island detection
DTAD Distributed time approaching detection
DBN Deep belief network
FDIA False data injection attack
RBM Restricted boltzmann machine
ROC Receiver operating characteristics
SVM Support vector machine
SCADA Supervisory control and data acquisition system
a Attack vector
ai, bj Standard biases
at Dynamic biases from the past to the visible bias vector
Ak Weight matrices of the kth previous visible vector to the current visible unit
aijk Elements of Ak
Bk Weight matrices of the kth previous visible vector to the current hidden unit
bijk Elements of Bk
bt Dynamic biases from the past to the hidden bias vector
c Arbitrary vector added to the state variable
e Measurement error vector
H Jacobian matrix
H Number of elements in each layer of CDBN
hj State of hidden unit j
h(·) Nonlinear relationship between the measurement z and the state x
I Time interval between two adjacent time steps
k Number of attacked measurements
lo Predicted value
L Actual value
N Size of the observation window at the previous time
N
(
µ, σ2) Gaussian with mean µ and variance σ2

n, m Numbers of visible and hidden units
pk−1,i ith activation probability of the (k − 1)th hidden layer
pk,j jth activation probability of the kth hidden layer
po Activation probability of the output layer
vi State of visible unit i
vi,t ith real-valued visible element at time step t
wij Weight between unit i and unit j
Wk+1,j,h jhth element of the (k + 1)th layer weight matrix
x State vector
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xa Compromised state vector
za Compromised vector of all measurements
z Vector of all measurements
τ Threshold of BDD system
ε, η Learning rate
〈·〉data Expectations calculated from the data
〈·〉model Expectations calculated from the model distributions
σi Standard deviation of the ith visible element
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