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Abstract: Distrust between data providers and data consumers is one of the main obstacles hamper-
ing the take-off of digital-data commerce. Data providers want to get paid for what they offer, while
data consumers want to know exactly what they are paying for before actually paying for it. In this
article, we present a protocol that overcomes this obstacle by building trust based on two main ideas.
First, a probabilistic verification protocol, where some random samples of the real dataset are shown
to buyers in order to allow them to make an assessment before committing any payment; and second,
a guaranteed, protected payment process enforced with smart contracts on a public blockchain that
guarantees the payment of data if and only if the provided data meet the agreed terms, and that
honest players are otherwise refunded.

Keywords: blockchain; marketplace; privacy; fairness; conflict resolution; non-repudiation; proba-
bilistic verification

1. Introduction

The use of data has increasingly become a crucial factor in the success of businesses.
Research has shown that proper use of big data techniques helps to identify new insights,
optimise operating processes, and make better and faster decisions [1]. In this context,
ecosystems have grown to fulfill the data needs of diverse actors, such as data suppliers,
data custodians, or data aggregators. As a result, businesses not only collect and analyse the
data they generate but increasingly rely on third party data to enhance their business value.
The necessity of exchanging data between different parties gives rise to an ecosystem that
has an inherent regulatory complexity and a need for privacy. In general, making proper
data agreements is not easy, especially the task of valuing data and convincing customers
of their value without giving them away [2]. The creation of marketplaces addresses many
of these problems. Allowing providers and consumers to deal with common interests
in a platform where both parties can meet each other and trade information solves the
integration problem of connecting consumers and providers.

In this article, we focus on the problem of convincing consumers of data value, which
can be seen as a form of lack of trust towards data providers. Traditionally, this problem
could not be solved without previously establishing a certain confidence between parties.
This fact represents an entry barrier to new providers in the market, hurting competence
and thus reducing utility for consumers. Achieving the exchange of virtual products
between many parties while minimising risks is the main goal of virtual commerce. In
order to exchange value safely, it is essential to ensure that consumers get the product they
pay for and that providers get paid. These two things are often carried out without any
strict protocols and guaranteed just by existing trust. Typically, counterparties that know
each other from previous experience or whose future interests are aligned are confident
that no intent to scam will be made by the other party, since confidence is often more
beneficial than gains from fraud.
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Nonetheless, when stronger assurance than that is needed, it is a common practice to
use a trusted third party (TTP) that all parties trust to guarantee that the process is carried
out correctly by all involved individuals. TTPs solve the crucial aspect of minimising
risks, but ensuring its viability entails an extra cost for all parties. Moreover, centralising
interactions between businesses via the TTP generates a single point of failure that could
produce critical delays and denial of services. Distributed ledger technologies (DLTs) can
be seen as a paradigm shift when it comes to the need of TTPs. Using DLTs, all participants
in the network can maintain a set of synchronised data (who owns what) without the
need for a central authority (TTP) guaranteeing integrity, fairness, and data availability. In
addition, recent studies have shown that replacing TTPs with DLTs represents an important
optimisation of time and overall costs [3].

In this article we present DEFS, a protocol that addresses the lack-of-trust problem
between providers and consumers in a data trade. Our protocol preserves the security,
privacy, and fairness standards that marketplaces should guarantee, and it also includes the
capability of checking some sample portions of the dataset before committing to purchase
to enhance the trust of the consumers in the data value.

The article is organised the following way: In Section 2, we give an overview of the
technologies used in our protocol. Section 3 contains the state of the art on decentralised
data marketplaces. In Section 4, we explain our protocol. First, we give a general overview,
and afterwards, we provide a detailed description of each step of the protocol. In the
following section, Section 5, we present a security analysis and, finally, we conclude
in Section 6.

2. Background
2.1. Distributed Ledger Technologies

The main technology to build a public ledger is a blockchain network. In a blockchain
network, users can run a blockchain node to send their transactions or use some available
node that allows them to do so. Then, in a distributed way, the blockchain network can
create a unique sequence of ordered transactions. In more detail, the network creates a
chain of blocks following a consensus algorithm to order transactions [4]. A block contains
several transactions, and an important property of these systems is that once the consensus
algorithm definitively accepts a block, all nodes get to know this block and it becomes
impossible to manipulate or delete it [5].

In a blockchain network, users can own one or more accounts. Accounts are identified
via a public identifier (usually derived from a random public key using a hash function).
New blockchain accounts can be created by simply generating a pair of asymmetric keys
and deriving the account identifier from the public key. In general, account identifiers
are not directly linked with any user data, so they can be considered pseudo-anonymous
identifiers. Transactions carry the source account identifier and a destination account
identifier, and they are all digitally signed using the private key of the source account. All
the nodes that form the blockchain network see the same state (also known as world state)
that results from executing all the transactions in order.

2.2. Smart Contracts

Some blockchains not only allow executing regular transactions that modify the
cryptocurrency balances on the ledger but also have the capability of deploying and
executing public and auditable programs called smart contracts. Smart contracts have their
own state, and in their code we can define the business logic we want to process transactions.
Once a smart contract is deployed in the blockchain network, its code is replicated on every
node and, consequently, these programs have the same availability and integrity as regular
transactions. The Ethereum [6] mainnet is a good candidate to implement our proposal
because it is a public blockchain, capable of running smart contracts, and it is the platform
of choice for many developers for implementing decentralised applications (DApps).



Electronics 2021, 10, 1455 3 of 25

2.3. Merkle Hash Trees

A Merkle hash tree (MHT) is an authenticated data structure where every leaf node of
the tree contains the cryptographic hash of a data block and every non-leaf node contains
the concatenated hashes of its child nodes [7]. MHTs allow linking a set of data to a unique
hash value, the Merkle hash tree root (MR), allowing efficient and secure verification of the
consistency and content of large sets of data.

Figure 1 contains an example of a MHT with 8 leaves. To show that a certain value is
stored in a leaf of the MHT, one can create a Merkle proof (MP), which consists of a list of
the additional nodes required to compute the root of the tree. For instance, a MP showing
that h3 is stored in the MHT from Figure 2 would consist of the nodes

MP(h3) = {h2, h01, h4567, h01234567}.

Note that with h3 and the first three nodes of this list, anyone can compute the root of
the tree. If the root matches h01234567, then the proof is valid proof of membership for h3 in
the tree.

Figure 1. Merkle hash tree (MHT) of 8 leaves.

Figure 2. The Merkle proof (MP) of h3 is the set {h01234567, h4567, h01, h2}, which contains the nodes needed to compute the
MR of the tree.
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The security of a MP reduces to the collision resistance of the underlying hash function [8].
For this reason, we assume the hash function H used to build MHTs is cryptographically
secure. That is, that the probability of finding a preimage or a hash collision is negligible [9].

3. State of the Art

Traditional data marketplaces build trust by requiring identifying information to
the different stakeholders. This information and the process to get it is typically known
as know your customer (KYC). The belief is that KYC constitutes an entry barrier to
fraudsters, since KYC data would help victims to refer to law enforcement if tangible fraud
is committed. However, marketplaces with KYC lead to regulatory complexity and are, in
general, difficult to operate with. This fact hinders the growth of digital-data trading and
can make stakeholders feel that their privacy has been violated. In addition, law execution
is slow and, in some cases, might be even useless. For the previous reasons, there have been
attempts in the research community to design new approaches to mitigate these limitations
with technology and not regulations. In this context, decentralised marketplaces have
arisen as a solution to enhance security, sovereignty and trust in data exchanges [10–12].

One interesting initiative is GAIA-X [13], which is an European project created to
develop the foundations for a federated open-data infrastructure connecting both classical
architectures with decentralised infrastructures in order to build a transparent ecosystem
for the end users taking advantage of the decentralised benefits.

One of the main technologies that is fostering data marketplaces is the Internet of
Things (IoT), which generates huge amounts of data from sensors and devices. The in-
creasing necessity of monetising these data is also pushing research. In the literature,
we can find several works that propose decentralised marketplaces for IoT using dis-
tributed ledger technologies to enhance the data exchanges with transparency, trust, and
integrity [14–16]. Among others, decentralised marketplaces are being implemented in new
disruptive scenarios such as artificial intelligence [17], smart cities [18,19], and connected
cars [20]. In fact, the value of data is becoming more important in business interactions,
which is reflected in the new technologies and their necessity to generate this new era of
decentralised marketplaces.

A remarkable example of a decentralised data trading solution is presented in [21].
As in our protocol, the data on sale are not stored on the blockchain but in some external
(and possibly distributed) storage platform. Similar to our protocol, the proposed solution
symmetrically encrypts data on sale and uses a MHT of cryptograms to register the
associated trades on the blockchain. However, the solution proposed not only requires
to generate symmetric cryptograms but also the need of asymmetrically sign each of
these cryptograms. Additionally, authors propose using plaintext checkable encryption
(PCE) [22] to check, on chain, that cryptograms have been correctly encrypted. In our
protocol, we avoid using asymmetric encryption, which is much slower than symmetric
encryption. With DEFS, we achieve a faster and easier solution by providing structure to
symmetric keys and generating a MHT with these keys to allow solving disputes with
regards to data encryption. In addition, Ref. [21] considers three roles: data buyers, data
sellers, and miners. The main problem of directly involving miners in the implementation
of the solution is that the mining software then needs to be modified, which is, in general,
not a trivial thing to do. Mining software is extremely subtle, since any error in an
implementation can lead to a lack of consensus in the network. In our protocol, we also
consider the roles of data buyers and data sellers, but the role of miners is abstracted,
and we use the API provided by smart contracts which is a much easier and safer way of
implementing the logic of data trades in the blockchain.

Another remarkable implementation of a decentralised data trading solution is pre-
sented in [23], where the authors present SDTE, a secure blockchain-based data trading
ecosystem. As with our protocol, SDTE tries to mitigate the existence of dishonest parties in
data exchanges. However, SDTE focuses on an scenario in which the buyer does not need to
have access to a complete dataset but it only needs the findings from the data analysis. For
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this case, SDTE proposes a data processing-as-a-service, where the buyer is paying for the
analysis of the seller’s dataset. SDTE is build using an Intel’s SGX-based secure execution
environment to protect the data processing, the source data, and the analysis results. As
we will show in the following section, DEFS is not designed as data processing-as-a-service
but as data exchange-as-a-service. In the latter, the seller wants to buy the complete dataset,
not computed data. For this scenario, DEFS provides a probabilistic verification protocol
and a conflict resolution protocol that is guaranteed and supported by a smart contract.

4. Data Exchange Protocol

In this section we introduce DEFS, a protocol that addresses the problem of data
trading between a provider and potential consumers using a smart contract deployed in
the blockchain as a broker. To mitigate gender issues when referring to a single provider
and a single consumer, we will assume the provider is a woman and the consumer a man.

As we explained before, the use of DLTs can replace the role of TTPs in payment
processes. When using DLTs, participants in the network can maintain synchronised
data and share payment information without the need for a central authority, in this way
guaranteeing the integrity, fairness, and availability of the data. In this manner, DEFS makes
use of a smart contract to preserve the security and privacy standards that marketplaces
should guarantee.

Another gap to cover in this data trading scenario is generating trust between data
consumers and data providers. Here comes the novelty of DEFS: our proposed data
exchange protocol is designed with the capability of checking random samples from the
dataset so that consumers are able to infer if the complete dataset is worth paying for,
enhancing the trust from the consumer’s side. On the other side, the smart contract acts
as a broker during the payment procedure, ensuring providers that they will receive the
payment for the data they exchanged.

4.1. Protocol Overview

First, we give a general overview of DEFS, and in Section 4.3, we describe in greater
detail all the steps the entities involved (consumer, provider, and smart contract) should
follow. We assume that before starting the protocol, a data provider advertises their data
to the public using off-blockchain means, such as a data marketplace. Then, a consumer
interested in a particular dataset contacts the provider, who starts the DEFS protocol to
perform the data exchange and payment. To prevent potential extensive leaks of the
data, it is important that the DEFS protocol is executed independently per each individual
consumer. DEFS consists of three different phases:

1. Protocol preparation. In this initial phase, the provider prepares not only the data
to be exchanged but also all the parameters and cryptographic material necessary
to demonstrate that the data exchange is secure and private. More specifically,
the provider:

• Divides the complete dataset in portions. These portions are chosen randomly
(not consecutively) from the dataset.

• Generates a seed to generate symmetric cryptographic keys.
• Uses these keys to create a MHT, whose root can be used to check the correctness

of this cryptographic material.
• Encrypts a random permutation of the data portions with the keys, obtaining an

encrypted and randomised version of the whole dataset.
• Creates another MHT using the hashes of these cryptograms as leaves, whose

root can be used to verify the correctness of the cryptograms generated.
• Deploys a smart contract in the blockchain that includes among other informa-

tion, the roots of the previous trees.

If a consumer has interest in obtaining the dataset, the protocol continues as follows:
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• The consumer receives the whole dataset encrypted but it cannot be decrypted
at that very moment.

• The consumer queries the smart contract to obtain the root of the tree of cryp-
tograms and verifies that all the cryptograms belong to this tree.

As previously stated, this is only a brief summary of the steps to follow in this phase.
A more exhaustive explanation of the protocol preparation phase can be found in
Section 4.3.3. At this point, all entities (consumer, provider, and smart contract) are
ready to start the protocol execution phase, in which the consumer will have access to
the complete dataset and will perform the payment.

2. Protocol execution. In this phase, the consumer gets some samples of the dataset (for
free) to evaluate if it is worth to pay for the whole set, and if so, he will obtain the
dataset and the provider will get paid:

• The consumer chooses at random some sample portions to be revealed. Note
that the provider committed the shuffled encrypted data at the very beginning of
the protocol. Since the consumer requests random samples, neither consumers
nor providers have control over the samples that will be revealed.

• The provider discloses the keys for those samples so the consumer can evaluate
the quality of the dataset.

• If the consumer is not convinced, the protocol ends here. However, if they
decides that it is worth paying for the dataset, they commit the payment to the
smart contract.

• The provider is asked to publish the seed (that will disclose all the encryption
keys) in the smart contract.

• If the consumer is able to properly decrypt the dataset, after a timeout, the
provider gets paid and the protocol ends.

• If the consumer is able to prove that there were problems with the previous
procedure, he starts a conflict resolution phase to obtain a refund.

A more exhaustive explanation of the protocol execution phase can be found in
Section 4.3.4.
The following phase will only be needed in case the consumer considers that he has
been cheated on.

3. Conflict resolution. This phase is optional and only takes place if the consumer
detects provider misbehaviour. The conflict resolution can end with a refund if the
consumer is able to demonstrate one of the following misbehaviours:

• A key is not properly generated.
• A cryptogram does not have the proper format when decrypted.

A more exhaustive explanation can be found in Section 4.3.5.

4.2. Protocol Properties

The main properties provided by our protocol are as follows:

1. Data sample evaluation. The consumer gets a free set of fair samples of the data
being traded before paying. The protocol ensures that neither the consumer nor the
provider are able to manipulate the chosen data or select specific samples.

2. Payment guarantees. The provider gets paid if and only if the consumer has access
to the whole set of data. That is, the consumer cannot get the data without paying for
it and the provider does not get paid without disclosing the data.

3. The solution is cost-efficient. Due to high fees on public ledgers, DEFS minimises
the amount of data stored on the ledger, which is also independent of the quantity of
data traded. This way, both the amount of data stored and the number of interactions
with the distributed ledger are constant.
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4. Non-repudiation. The DEFS protocol ensures that any party involved in the exchange
is not able to cancel and/or deny the data exchange once an agreement is made.

5. Liveness. The different timeouts guarantee that the protocol reaches a final state,
even when one of the parties quits in advance.

4.3. The DEFS Protocol

In this section, we describe the DEFS protocol. We establish the notation in Section 4.3.2.
The procedure before initiating the exchange is detailed in Section 4.3.3. Then, the inter-
actions to do a fair transaction are explained in Section 4.3.4. The conflict resolution is
detailed in Section 4.3.5. Finally, we present the state diagram of the smart contract in
Section 4.3.6.

4.3.1. Requirements

The DEFS protocol assumes that measures to meet the following requirements are
already in place:

Secure off-chain channel between provider and consumer: It is assumed that the off-chain
channel between consumer and provider is end-to-end protected. This requirement can
be easily met by using the widely supported TLS protocol—e.g., with HTTPS. TLS only
requires the server to hold a valid certificate (and its complementary private key) in
order to create the secure channel. That is to say, consumers just need a valid TLS
client, which is implemented by default in most programming languages, application
frameworks, and/or web browsers.

Validation of data blocks’ format: It is assumed that consumers can verify received data
blocks according to a previously agreed schema. The process that verifies that a
data portion meets a predefined format is usually called a validator. Validators are
used by many technologies to check received responses before processing them. In
object-oriented programming, this process is usually done by trying to parse the
response as a given type of object, which will produce an error if it does not. There
are also specific standards with well-known implementations, such as JSON-LD [24],
that help define and validate specific data schemas.

Identification system: The DEFS protocol releases random samples of the dataset to po-
tential consumers before they commit paying for the entire dataset. However, there
is a risk of an attacker using multiple identities to retrieve a representative portion
of the dataset for free. In this context, DEFS assumes that there are off-chain solu-
tions run by the providers which could effectively limit the amount of identities an
attacker could take. A known example is binding the identity to an e-mail account or
a mobile phone. The provider should decide the most suitable authentication method
depending on the price of the traded data and the type of consumers. For example, in
some cases, authenticating with an e-mail can be enough. In other scenarios, e-mail
might not be enough because it is not hard to generate multiple “identities” based on
different e-mail accounts. In the latter case, providers might require authenticating
with a mobile phone or even with both factors. In some specific cases, authentication
could involve more factors, such as physical key generators, smart cards, etc.

4.3.2. Notation

The notation of the DEFS protocol is summarised in Table 1.

4.3.3. Protocol Preparation

In Figure 3, we detail the interactions between provider, consumer, and smart contract
during the preparation phase of the DEFS protocol.
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Table 1. Notation for the DEFS protocol.

Notation Description

collateral Price that the provider must pay in order to ensure fairness.

C = {c0...cn−1} Encrypted data portions (cryptograms) such that ci = EKi (di).

D = {d0...dn−1} Data portions.

e Index of an invalid cryptogram.

id Data-exchange identifier.

K = {k0...kn−1} Encryption keys for data portions, such that ki = hash(s + i).

MHT(C) Merkle hash tree of cryptograms.

MHT(K) Merkle hash tree of keys.

MRC Root of the Merkle hash tree of cryptograms.

MRK Root of the Merkle hash tree of keys.

MPCi Merkle proof of a cryptogram with index i.

MPKi Merkle proof of an encryption key with index i.

n Number of data portions.

p Price of the dataset.

R = {r0...rv−1} Set of indexes of the sample portions to be revealed.

s Seed. Random number for key generation.

v Number of sample portions to be revealed.

Provider
«Smart Contract»
Data Exchange Consumer

1. request (data)

2. get (id,p,n,v,collateral)

3. generate (s=rand())

4. compute (K=[k0 ... kn-1] |
ki = h(s+i) )

5. generate (MHT(K), MRK)

6. generate (D=[d0 ... dn-1] |
di = concat(i, datai) )

7. encrypt (C=[c0 ... cn-1] |
ci = E(ki , di) )

8. generate (MHT(C), MRC)

9. deploy smart contract
(id, n, p, v, MRC, MRK, collateral)

10. (id,C)

11. request (id)

12. (n, p, v, MRC, MRK)

13. verify (MPCi |
∀i ∈{0...n-1} )

Figure 3. Protocol preparation: sequence diagram.
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The steps of this phase are enumerated and explained immediately below:

1. Consumer→Provider: Request data.
The protocol starts with the consumer’s interest in a dataset. Through the marketplace,
the consumer requests some offered data to the provider. Note that each time the
consumer desires a dataset, a new instance of the DEFS protocol is required.

2. Provider: Set id, p, n, v, collateral.
In this step the provider has to decide the main parameters associated to the dataset.
These parameters are the identifier of the data exchange (id); the price of the dataset
(p); the number of portions in which the dataset will be divided (n); the number of
sample portions to be revealed before the payment (v); and, finally, the associated
amount of cryptocurrency to ensure a complete refund in case a conflict resolution
ends in favour of the consumer (collateral).
How to choose v depends on the identification system in use (see Section 4.3.1) and
the resilience from providing, for free, a representative part of the dataset to one or
multiple attackers. The analysis in Section 5.3 shows how to properly choose v based
on the size of the dataset and the estimated amount of identities an attacker can hold.

3. Provider: Generate s.
The provider should generate the symmetric encryption keys in such a way that in
the case of disclosing some of them, the consumer will not be able to derive any other
key (or the whole set). In addition, the consumer must be able to easily derive all
the keys when they agree to buy the dataset. A simple way to achieve these features
is by generating an initially private seed and to use a cryptographic hash function
to compute the whole set of keys. For that reason, the seed s is calculated using a
random number generator.

4. Provider: Compute K = [k0...kn−1] | ki = h(s + i)i∀i ∈{0...n−1}.
The provider has to compute a set of n symmetric encryption keys (K = [k0..kn−1]).
In DEFS, we compute each key as the hash function, for instance Keccak256, of the
sum of the seed s and the index i using the following formula:

ki = hash(s + i)∀i ∈ {0...n− 1}.

This construction has the expected properties: without the seed s the consumer cannot
derive any other key, but once the seed is known, it is easy for the consumer to
calculate the whole sequence of keys.

5. Provider: Generate MHT(K).
The provider builds a binary MHT for the set of keys, which is going to be used to
generate the proof of the correctness of the keys used to encrypt the data portions.
We denote the MHT of encryption keys as MHT(K), its root MRK, and we refer to
a membership proof of a leaf i as MPKi. Figure 4 shows an example of a MHT(K).
An exhaustive explanation about the algorithm to construct these trees can be found
in [25]. Here, we will simply include a brief summary of this algorithm. To construct
the MHT(K), keys must be sorted by using their indexes, from 0 to n− 1. The leaves
of the tree are calculated by hashing the keys in their respective position (hashed
keys). The rest of the intermediate nodes in upper levels are just calculated by
hashing the concatenation of the lower left and right nodes of the same branch. The
tree construction continues until reaching the top level, in which we obtain the MRK.
Notice that the MRK is the digest of the complete key set K, and it can be used as a
proof of its correctness. It is also important to remark that the algorithm to construct
this tree should be public, and all the entities have to use the same algorithm because
any change in the keys or in the order of constructing it will cause an avalanche effect
that will result in the root MRK being completely different.

6. Provider: Generate D = [d0...dn−1] | di = concat(i, datai)∀i ∈ {0...n− 1}.
Now, using the pre-existing data to be exchanged, the provider has to build an
array (D = [d0...dn−1]) with the portions where each di has the corresponding data
and the index as a header di = concat(i, datai). This format is going to allow the
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smart contract to determine if the cryptograms di have been properly generated. It
is also important to note that each data portion datai contains a group of random
registries, not consecutive ones. To do that, registries are sorted using an external
random generator tool provided by the marketplace, which should be open source
and auditable to avoid duplicated entries in the same portion. This will avoid a
potential attack where the consumer replicates several data requests to obtain free
samples without committing any payment. More details about potential attacks can
be found in Section 5.3.

7. Provider: Encrypt data. C = [c0...cn−1] | ci = Eki
(di)∀i ∈ {0...n− 1}.

Now the provider is able to encrypt all the portions of the dataset di, and obtain the
set of cryptograms C.

8. Provider: Generate MHT(C).
The provider builds a binary MHT for the set of cryptograms, which is going to be
the proof of their correctness. We denote the MHT of cryptograms as MHT(C), its
root MRC, and we refer to a membership proof of a leaf i as MPCi. Figure 5 shows an
example of an MHT(C). The algorithm of the MHT(C) is the same as the MHT(K),
but just changing the information used to construct it. Cryptograms are sorted by
using their indexes, from 0 to n− 1. The leaves of the tree are calculated by hashing
the cryptograms in their respective position (hashed encrypted data). The rest of the
intermediate nodes in upper levels are just calculated by hashing the concatenation of
the lower left and right nodes of the same branch. The tree construction continues
until reaching the top level, in which we obtain the root of the Merkle hash tree of
cryptograms (MRC). Note that the MRC is the digest of the complete set C, and it
can be used as a proof of its correctness.

9. Provider→SC: Deploy smart contract with parameters (id, n, p, v, MRC, MRK,
collateral).
Next, the provider deploys a smart contract in a ledger that stores the data-exchange
identifier (id), the total number of portions (n), the number of sample portions to
be revealed before the payment, the price (p) of the dataset, and the amount of
cryptocurrency to assure the fairness from the provider on the conflict resolution
process (collateral), and the root of both Merkle hash trees (MRC,MRK). These roots
will allow proving whether an element is or is not a cryptogram or a key and its
position in the MHT. Using this, the system is able to efficiently assure the consumer
that the provider cannot alter the committed dataset.

10. Provider→Consumer: Send id and the complete set of cryptograms (C).
Finally, the provider delivers the smart contract address, the data-exchange identifier
id, and the complete set of cryptograms C to the consumer. Obviously, it would
be totally impractical to exchange that amount of data using the ledger as storage.
Instead, the exchange of cryptograms between the provider and consumer is done
off-blockchain. Notice also that since the seed will be public at the end of the process,
all the off-blockchain traffic must have been exchanged using a secure channel.

11. Consumer→SC: Request data from id.
At this point, the consumer has the id which is related to the deployed smart contract
and can read the values set by the provider in step 9.

12. SC→Consumer: Reply with values n, p, v, MRC, MRK.
Now the consumer has the total number of portions (n), the number of samples they
can obtain before committing the payment (v), the price of the data (p), the Merkle
roots of both trees (MRC,MRK), and the complete set of cryptograms (C).

13. Consumer: Compute MHT(C) and verify MRC.
As the consumer has the complete set of cryptograms C, he has the capability and
responsibility to re-generate MHT(C) to verify that the root MRC calculated is coher-
ent with the one at the smart contract. If so, the consumer knows that all cryptograms
ci ∀i ∈ {0...n− 1} were properly generated and match the MRC. The consumer is
responsible for verifying the MHT(C) at this very moment, and if he continues with
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the protocol, tacitly accepts the correctness of the generation of the cryptograms. This
means that in the case of later conflict resolution, the consumer cannot argue that the
cryptograms were wrongly generated to get a refund.

Figure 4. Tree of keys MHT(K). In this example, MRK = H0123.

Figure 5. Tree of cryptograms MHT(C). In this example, MRC = H0123.

4.3.4. Protocol Execution

Once the protocol preparation phase is completed, the consumer requests the provider
to reveal some sample portions. If these samples convince the consumer about the quality
of the dataset, the consumer commits the payment. It is important to note that if this
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protocol execution phase ends as expected, the protocol is completed, and there is no need
to execute the conflict resolution procedure.

Figure 6 details the interactions between provider, consumer, and smart contract
during the execution phase of the DEFS protocol. The steps of this phase are enumerated as:

1. Consumer: Generate R = [r0...rv−1] | ∀ri ∈{0...n− 1}.
The consumer selects, at random, the set of indexes R which correspond to the sample
portions to be revealed (for free). We consider that the provider should not decide
on its own which data samples will be revealed because they could decide to use a
biased (not fair) set of samples. The consumer is also not able to purposely choose
particular registries because the dataset was previously randomly sorted by the
provider. Therefore, the consumer will choose an array of v values, at random, within
the range 0 to n− 1, corresponding to the indexes of the sample portions. As none
of the entities control which registries are going to be disclosed, the fairness of this
process is assured.

2. Consumer→Provider: Request R which contains v indexes to be revealed.
The consumer informs the provider of the v indexes of the sample portions to be
revealed (R).

3. Provider→Consumer: Return ki and MPKi ∀i∈{R}.
The provider discloses the keys associated with the v indexes and the Merkle proofs
to verify them in the MHT(K). This process is done totally off-blockchain. Note
that allowing the consumer to choose v sample portions with no cost could result in
attacks as the consumer could try to get a large amount of free data by repeating the
process of getting small samples. We do not consider this attack especially dangerous
because the consumer cannot choose particular registries of the dataset. In addition,
the provider can decide how many times consumers are allowed to get a sample set
without making a final deal, and they can use the marketplace to blacklist abusive
consumers. Nonetheless, a comprehensive analysis of potential attacks is made in
Section 5.3. As shown in the analysis, the provider should carefully choose v and n to
minimise the impact of such attacks.

4. Consumer: Verify each proof. MPKi ∀i ∈{R}.
The customer should verify that the proofs sent by the provider match the MRK.
To provide a partial example, consider the case of Figure 4, in which n = 4. Let
us consider the case of one single sample portion v = 1, and the consumer has
chosen index 3 to disclose. In this case, k3 is sent to the consumer, and the proofs
of the correctness are MPK3 = (h01,h2). The consumer should verify if the following
expression matches:

hash(concat(h01, hash(concat(h2, hash(k3))))) == MRK

Note that the expression is just calculating the root of MHT(K), and comparing it
with the MRK value published in the smart contract. If the values match, the key can
be considered valid as it matches the proofs, and the consumer will continue with the
protocol. If not, that means that the provider did not send the proper proofs and that
the key is not verifiable. In this case, the consumer can abandon the protocol.

5. Consumer: Decrypt and verify each data sample.
Now that the consumer is sure that the v keys are valid, he can decrypt the sample
portions with the received keys:

di = E−1
ki

(ci)∀i ∈ R

Once this is done, the consumer has to verify that the resulting data portions have the
expected format:

di = concat(i, datai)
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If not, the data samples are invalid, and the consumer can end the protocol at this
moment. If the format is valid, the consumer will evaluate the data samples datai ∀i
∈ R. If the samples do not convince the consumer to pay for the whole dataset, the
protocol ends here, but if they do, they will continue with the following steps.

6. Consumer→SC: Transaction committing payment.
If the samples convinced the consumer, he will send a transaction to the smart contract
with the payment (p) to buy the dataset.

7. Consumer→SC: Subscription to seed revelation.
The consumer also subscribes to the ‘seedReleased’ event, expecting to receive a
notification when the provider publishes the seed to allow complete data decryption.

8. (Timeout 1) Consumer→SC: Seed not released and the consumer is refunded.
If the provider has not released the seed in time, a first timeout (Timeout 1) will expire,
and after that, the smart contract will allow the consumer to refund the payment. This
is an unhappy path in the protocol.

9. Provider→SC: Transaction publishing the seed.
The provider discloses the seed value s via a blockchain transaction before Timeout 1
expires. This is the happy path of the protocol.

10. SC→Consumer: Event to consumer about seed revelation.
As result of executing the transaction, the smart contract generates an event, and the
consumer will be notified that the seed value s has been revealed. The smart contract
stops Timeout 1 (due to seed revelation), and starts Timeout 2, allowing the consumer
to start conflict resolution. Once that the consumer has the seed, they can derive all
the keys:

ki = hash(s + i)∀i ∈ {0..(n− 1)}

Now the consumer has all the cryptographic material to decrypt the cryptograms
C but, previously, they had to verify that all the keys are correct. The procedure is
similar to the one performed in Step 4, but with the difference that now the consumer
has the capacity of re-generating the whole MHT(K). If the consumer detects that
(one or several) keys were not properly generated, they can start the optional phase
of conflict resolution to obtain a refund. On the contrary, if all the keys were properly
generated, the consumer can decrypt the previously received cryptograms C and
access the whole dataset:

di = E−1
ki

(ci)∀i ∈ {0..(n− 1)}

The consumer also has to verify that the di have the proper format, in the same
manner that was done in Step 5 but for all the cryptograms. If the consumer detects
that one or more cryptograms were not properly generated (they do not have the
proper format), they can start the optional phase of conflict resolution to obtain a
refund. Note that at this point, the consumer cannot argue that the cryptograms
do not match the MHT(C) because this should have been verified in the protocol
preparation phase. On the contrary, if all the cryptograms (once decrypted) have the
proper format, the consumer has the complete dataset and can consider the protocol
ended.

11. (Timeout 2) Provider→SC: Withdraw and protocol end.
If Timeout 2 expires, it means that the consumer considers that the keys were properly
generated and the cryptograms have the proper format (because if not, they would
have previously started the conflict resolution). In this case, the provider can send a
transaction to the smart contract to withdraw the payment and end the protocol.
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> Timeout 1

> Timeout 2

Provider
«Smart Contract»
Data Exchange Consumer

1. generate
(R=[r0 ... rv-1]|ri ∈{0...n-1})

2. request (R)

3. (ki, MPKi | ∀i ∈R)

4. verify (MPKi | ∀i ∈R)

5. decrypt and verify
(di = E-1(ki , ci) | ∀i ∈R)

6. tx: pay(p)

7. subscribe : seedReleased

alt [seed not released]

[seed released]

8. tx: refund(p)

9. tx: releaseSeed(seed)

10. event: seedReleased

11. tx: withdraw()

> Timeout 1

> Timeout 2

Figure 6. Protocol execution: sequence diagram.

4.3.5. Conflict Resolution

The final aspect that our protocol has to solve is conflict resolution, which may appear
if the consumer detects misbehaviour. As previously stated, the consumer must start the
conflict resolution phase before the expiration of Timeout 2 in the protocol execution phase.
If Timeout 2 expires, the smart contract considers the protocol ended and the provider can
receive payment.

We will consider two cases that are relevant and can end with a refund if the consumer
is able to demonstrate the misbehaviour: (1) a key is not properly generated; and (2) a
decryption of a cryptogram does not have the proper format. There are also a couple of
extra cases for dispute that will not end with a refund: (3) cryptograms are not properly
generated; and (4) dataset is of bad quality.

1. A key is not properly generated:
When consumers obtain the seed s in Step 9 of the protocol execution phase, they
are able to generate the whole set of keys K. The way to check if the set of keys is
compliant or not is by generating the whole set K with the formula ki = hash(s + i)
and also re-constructing the whole MHT(K) and verifying that the calculated root
matches the one published in the smart contract. At this moment, a consumer can
know that the registered MRK is incorrect. However, in general, he cannot detect
which keys were not properly generated. Although not possible in general, there
are particular cases in which the consumer can do the detection of wrong keys.
The detection is possible when the wrong keys are either one of the keys used for
encrypting the samples, or a sibling key of them. In both cases, the consumer has got
an MPK from the provider that matches the registered MRK. Then, if one of those
keys does not follow the agreed format hash (i + s), the consumer can send the hash
of the wrong key, its MPK, and the index in conflict to prove to the smart contract that
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the provider committed an incorrect MRK. For simplicity, we will assume that the
consumer detects one single not-compliant key ke, but this discussion is completely
valid in the case of having multiple not compliant keys (DEFS does not distinguish
between one or several not compliant keys, and in the case where it is demonstrated
that one single key is not properly generated, the entire payment will be refunded
to the consumer). The following are the steps that the consumer, smart contract,
and provider have to follow during conflict resolution about a specific key ke. The
associated sequence diagram is detailed in Figure 7:

Provider
«Smart Contract»
Data Exchange Consumer

1. tx: conflictK(e, h(ke),MPKe)

2. verify (h(ke) with MPKe)

3. verify (h(ke) != h(h(s+e)))

alt [provider
cheating]

[provider did not
cheat]

4. refund

5. withdraw

Figure 7. Protocol resolution-k: sequence diagram.

(1) Consumer→SC: tx: conflictK(e, h(ke), MPKe)
This conflict resolution is performed with a transaction from the consumer
to the smart contract calling the function ‘conflictK’. In this transaction, the
consumer sends as parameters the problematic index (e), the hash of the invalid
key (h(ke)), and its associated proof (MPKe).

(2) SC: Verify h(ke) with the MPKe
The smart contract verifies that h(ke) and MPKe match the MRK from Step 9.

(3) SC: Verify h(ke) != h(h(s + e))
The smart contract verifies whether h(ke) matches h(h(s + e)) or not. If there is
a match, it means that the provider did not cheat, while if the check does not
match, then it means that the provider cheated.

(4) SC: Provider cheating
If the provider cheated, the smart contract refunds the consumer. In this case, the
consumer receives the price of the data (p) and also the cost of the transactions he
sent. The cost of the transactions is taken from the provider’s collateral.

(5) SC: Provider not cheating
If the provider did not cheat, the smart contract automatically transfers the
payment (p) to the provider.
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2. Cryptograms do not have the proper format:
This situation happens when there is a conflict in D, and so one or several data
portions do not have the proper format. Just a remark that there was a previous
checking of this type in Step 5 of the protocol execution phase, in which v of the
possible sample portions were tested to see if they had the proper format:

di = concat(i, datai)

However, not all the data portions were tested (only v of n). For simplicity, we
will assume that there is one single not-compliant portion de, but this discussion is
completely valid in case of having multiple not compliant portions.
This scenario implies that the decryption of a ce results in a de that does not correspond
with the expected format de = concat(e, datae). Specifically, the decrypted cryptogram
does not start with the expected index (e). In this case, the consumer can start the
conflict resolution about the format of data. Figure 8 shows the sequence diagram
about this scenario.

Provider
«Smart Contract»
Data Exchange Consumer

1. tx: conflictD(e, ce, MPCe)

2. verify (ce with MPCe)

3. compute (ke=hash(s+e))

4. decrypt (de = E-1
ke(ce))

5. verify (de)

alt [provider
cheating]

6. refund

[provider did not cheat]

7. withdraw

Figure 8. Protocol resolution-d: sequence diagram.

(1) tx: conflictD:
The conflict resolution about a ce starts with a transaction from the consumer to
the smart contract. To do that, the transaction calls the smart contract function
‘conflictD’ and sends as parameters the problematic index (e), the cryptogram
involved ce, and the proofs of the validity of this particular cryptogram. The
intention of the consumer is to show that the cryptogram ce was properly
generated by the provider, but that after decrypting it with ke, the resulting
data portion has a bad format.
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In this case, the protocol can be resolved in a single transaction from the con-
sumer, because the smart contract can compute ke. Note that there is no need
for an extra timeout because the provider does not need to send anything, and
all the proofs are available for the smart contract to compute.

(2) Verify MPCe:
The smart contract has to verify that the cryptogram provided by the consumer
is valid, that is to say, that calculating MRC for the problematic cryptogram ce
from MPCe is coherent with the root stored in the smart contract. To provide
some piece of example, consider the case of Figure 5, in which n = 4. Let us
consider the case of demonstrating that c3 is properly generated. In this case,
the proofs of the correctness of c3 are MPK3 = (h01,h2). The smart contract
should verify if this expression matches:

hash(concat(h01, hash(concat(h2, hash(c3))))) == MRC

Notice that the expression is just calculating the root of MHT(C), and com-
paring it with the MRC value published in the smart contract. If these values
match, the cryptogram can be considered valid as it matches the proofs, and
the protocol continues with the following step. If not, the consumer did not
send the proper proofs to demonstrate that the provider was cheating and that
the withdrawal of the money is automatically received as shown in Step (7).

(3) Compute ke:
Now the smart contract knows that the cryptogram ce is valid. Next, the
smart contract computes the associated key ke = hash(s + e). Remember that
s was published by means of the transaction sent in Step 9 of the protocol
execution phase.

(4) Decrypt ce:
The smart contract has the valid key and the valid cryptogram, so it is able to
decrypt and obtain de=E−1

ke
(ce).

(5) Verify de format:
The smart contract can verify if the data portion de has the correct format.

(6) refund:
If the data portion de does not start with the index e, the provider was cheating,
so the transaction ends transferring the costs (p+collateral) to the consumer.

(7) withdraw:
If the data portion de start with the index e, the provider was not cheating,
and the transaction ends transferring the payment (p) and the collateral to the
provider.

3. Cryptograms are not properly generated:
This case happens when there is a conflict in C and one or several cryptograms do
not match the root MRC of the tree MHT(C). As previously stated, the consumer
receives all the cryptograms C in Step 10 of the protocol preparation and verifies the
correctness of the whole set of cryptograms in Step 13. The consumer was responsible
for verifying the MHT(C) at this very moment, and if any problem during this
checking was found, the protocol will simply be aborted before committing any
payment. However, if the consumer continued with the protocol, they were tacitly
accepting the correctness of the generation of the cryptograms and the corresponding
MHT(C) and MRC. In case the consumer detects a cryptogram (ce) not matching the
MRC at the protocol execution or protocol resolution phases, they cannot try to get a
refund, and for this reason, the conflict resolution is not considering that case.

4. Dataset is of bad quality:
This case happens when the consumer obtains a valid data portion de (with the correct
format de = concat(e, datae), but the content does not have the quality expected by the
consumer. In this particular case, the DEFS protocol is not able to consider the quality
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of the dataset (most probably, assessing the goodness of a dataset requires human
interaction and cannot be made automatically by the smart contract), so this case is
out of its scope of discussion and no refund can be requested from the consumer’s
side. The v sample portions that were disclosed in Step 5 of the protocol execution
(for free, prior to any payment) alleviate this possibility. In any case, the marketplace
can consider having a reputation tool to value data providers and try to avoid this
kind of behaviour.

4.3.6. State Diagram

The protocol operation and the interactions between the different stakeholders and
the smart contract are detailed in Figure 9.

  

timeOut2
elapsed

tx Consumer SC:→
 conflictK(·)
 conflictD(·)

tx Provider SC:→
  releaseSeed(·)

tx Provider SC:→
  constructor(·)

contractCreated

consumer
HasPaid

seedReleasedconsumer
RefundAllowed

provider
WithdrawalAllowed

tx Consumer SC:→
  pay(·)

provider
cheated?true false

tx Provider SC:→
  cancelContract(·)

timeOut1
elapsed

tx Consumer SC:→
  refund(·) tx Provider SC:→

  withdraw(·)

Figure 9. State diagram of the smart contract.

5. Security Analysis

The DEFS enables providers and consumers to make commercial agreements via a
smart contract. Essentially, the smart contract ensures that if a consumer agrees to purchase
a dataset based on the provided random samples, then the provider receives the right
amount of money and the consumer gets access to the whole dataset.
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5.1. Protection against Channel Attacks

Channel attacks are those in which the attacker purposely tries to eavesdrop informa-
tion from the channel. In our proposal, two different channels must be considered: the
on-chain channel with the interactions with the smart contract, and the off-chain channel
between the data provider and the data consumer.

It is assumed in this work that the off-chain channel is protected from overhearing
and tampering, for instance, by forcing it to use transport layer security (TLS). As a result,
no information would be exposed in this channel. However, the on-chain channel is public
and all the interactions with the smart contract will be available for an attacker, namely the
data-exchange identifier id, number of data portions n, the price of the dataset p, and the
roots of the MHT of cryptograms MRC and keys MRK.

The only valuable information an attacker could obtain is the size n and price p of the
dataset. The data-exchange identifier id is just an identifier. The MRC and MRK leak no
information regarding the keys and cryptograms since the cryptographic hash function
used to create the MHT is assumed to be preimage- and collision-resistant.

5.2. Consumer’s Protection against Provider Attacks

In the first part of the protocol, the consumer gets access to a set of free random
samples from the dataset. The provider commits the structure of cryptograms and key
structure (when committing the MRC and MRK to the smart contract). Then, the consumer
can request a specific set of random samples before making an assessment with regard to
buying the dataset or not.

A malicious provider would like to send a selected set of samples that make the dataset
more appealing. However, the provider has no control over the selected samples and
changing them on the fly would require that the fake sample keys and cryptograms collude
with the committed ones. This attack is assumed to be unfeasible since the probability of
finding collisions in the cryptographic hash function used to generate the Merkle trees is
assumed to be negligible.

Providers would also hold datasets with both good and bad data, meaning bad fake or
even duplicated data. However, since providers cannot choose the requested free samples,
bad samples could be detected during the evaluation of the free samples. In any case, it is
up to the consumer to decide if the amount of samples is representative enough to get a
fair idea of the content.

Finally, another potential attack would be that of a provider releasing wrong keys,
wrong cryptograms, or incorrectly encrypted data after getting paid. In these cases, the
consumer can make use of the different conflict resolutions explained in Section 4.3.5 and
get a refund. Recall that, in the case of incorrect cryptograms, it is important that the
consumer validates all cryptograms before doing the payment, since otherwise he will not
have access to the conflict resolution.

5.3. Provider’s Protection against Consumer Attacks

Every time a consumer engages in the protocol, he receives v samples of the product.
A dishonest consumer with several identities could accumulate free samples and try to get
the whole dataset without paying for it or, equivalently, collaborate with other consumers
to get as many data samples as possible for free. As we show hereunder, the provider can
adjust the amount of samples disclosed to the consumer to reduce the probability of these
attacks succeeding.

Before analysing a general setup, let us consider a simple example in which the
provider has 2 different samples and every consumer gets 1 for free. That is, n = 2 and
v = 1. Let us compute what is the probability that a malicious consumer with several
identities gets both samples. With one interaction, the consumer gets only half of the
product for free. If the consumer creates a new identity, he would get a new sample, but
he would only get the whole product if the new sample is different from the previous
one. Hence, we need to compute what is the probability that a new sample is different
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from the previous one. We can think of this scenario as tossing two coins and finding
the probability that we get a head (H) and a tail (T), which is 1/2. Therefore, with two
identities, a dishonest consumer would have a 50% chance to get the whole set of samples.
If the consumer creates a new identity and gets a third sample, the probability of them
getting the two different samples goes up to 75%, which is the probability that in a sequence
of 3 coin tosses, at least one is a head and another a tail.

In general, it is assumed that a consumer gets v random samples and is able to interact
with the provider with k different identities, obtaining a total of m = k× v free random
samples. Like before, the probability that among m samples, n of them are different, is
the same as the probability of having n different elements in a sequence of m elements. If
m < n, then clearly this probability is 0. If m = n, then there are n! different sequences with
the n elements. Hence, the probability of getting a sequence of this kind is n!/nn. When
n is large enough, this probability is very low. To get an idea, we show in Table 2 what
happens if the provider discloses 10% of samples of his dataset and the consumer creates
10 identities to get a total of n samples. Note that, even for small values of n, the probability
that a consumer gets the whole dataset is very low.

Table 2. Probability that the consumer gets the whole dataset if the provider makes 10 interactions
with the consumer and discloses 10% of his dataset every time.

n v k = m/v Probability of Getting the Whole Dataset

10 1 10 3.62× 10−4

100 10 10 9.33× 10−43

1000 100 10 4.02× 10−433

10,000 1000 10 ∼10−4340

100,000 10,000 10 ∼10−43426

To increase the odds of getting all samples, a dishonest consumer would create more
identities so that m ≥ n. In this scenario, we need to calculate what is the probability that
among the nm possible outcomes, the consumer gets n distinct data samples. If we go back
to the case n = 2, v = 1, and a consumer with three identities (k = 3), we should count how
many sequences of three elements contain 2 distinct elements. Or equivalently, what is the
probability that after three coin tosses, we get at least one head and one tail. We can think
of this problem as counting the different ways in which we can assign the three positions
of the sequence {1, 2, 3} to a head or a tail such that at least one is a head and another
a tail. This counting is precisely the number of ways in which we can partition the set
{1, 2, 3} into two non-empty sets: {1, 2} ∪ {3}, {1, 3} ∪ {2}, and {2, 3} ∪ {1}. If we assign
the first set to heads and the second set to tails, the partitions lead to the three sequences
HHT, HTH, TTH, and if we do the opposite assignment, we get TTH, THT, HHT. As
a result, we get a total of 3 × 2 = 6 different sequences containing at least one head
and one tail, which divided by the 23 = 8 possibilities, results in the 75% chances we
claimed before.

In general, the number of sequences of m elements that contain n distinct elements is
equivalent to the number of ways we can partition the m positions of the sequence into
n non-empty sets multiplied by the number of permutations of n distinct elements. This
count is precisely the Stirling number of the second kind S(m, n) multiplied by the number
of permutations of n elements [26]:

S(m, n)n! =
n

∑
j=0

(
n
j

)
(−1)n−j jm.
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Hence, the probability that a consumer with k = m/v identities gets the whole
dataset is

S(m, n)n!
nm =

1
nm

n

∑
j=0

(
n
j

)
(−1)n−j jm.

In Figure 10, we illustrate the probability that a consumer with k identities that gets
10% of free samples with each identity, obtains the whole dataset of n registries.
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Figure 10. Probability that a consumer with k different identities that gets a 10% of samples with
each identity obtains all n different data samples.

Note that a provider with a dataset of 10,000 registries disclosing a random 10% of
it for free should almost only be worried about consumers that are able to create more
than 50 different identities. The off-chain identification system (see Section 4.3.1) should
be chosen to minimise or even impede the likelihood of an attacker getting more than k
identities. Typically, n is several orders of magnitude higher than 10,000, so the amount of
fake identities needed to perform this attack would make it infeasible in practice.

Even if the probability of getting the whole dataset is low enough, the provider may
also want to avoid disclosing a large valuable set of data. We analyse the probability
of obtaining a meaningful amount of samples for different values of m. In the same
way as we argued before, the probability of getting x different samples is the number of
combinations of sequences of m elements with x distinct elements, but now multiplied by
the combinations of x elements that we can make with n distinct elements. That is,

P(get exactly x distinct samples) =
S(m, x)x!

nm

(
n
x

)
=

1
nm

(
n
x

) x

∑
j=0

(
x
j

)
(−1)x−j jm.
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Therefore, the probability of getting x distinct elements in a sequence of m elements is

P(get at least x distinct samples) = 1−
x−1

∑
i=0

P(get exactly i distinct samples)

= 1−
x−1

∑
i=0

(
n
i

)
S(m, i)i!

nm .

To illustrate the tendency of these probabilities, we have depicted in Figure 11 the
probability of obtaining at least 5, 10, 15, . . . , 100 different samples from a dataset with
100 different samples. The different lines correspond to the probabilities using a different
number of identities.
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Figure 11. In a database of n = 100 portions and v = 10 free samples per consumer, this graphic
depicts the probability of getting a different portion of samples for free with several identities: k = 10
(large red circles), k = 15 (blue squares), k = 20 (small orange circles), k = 25 (purple lines).

As we can see, there is a significant drop in the probability of obtaining at least a 65%
of samples with 10 identities, but with more identities, this inflection point moves up to
80% (with k = 15), 90% (with k = 20), and 95% (with k = 25). Therefore, even though the
probability of obtaining the whole 100% of the dataset is very close to 0, with 25 identities,
it is possible to obtain at least the 90% of it with probability 0.84.

As we have shown, the provider can mitigate the risks of identity-replication by
strongly authenticating consumers through the off-chain channel (see Section 4.3.1) and by
adjusting the amount of free samples disclosed to the consumer.

In general, the provider should find a trade-off between securing the dataset while, at
the same time, letting the consumer get a fair idea its content.

Lastly, we would like to remark that the provider is protected against a consumer that
does not pay after acknowledging the protocol since the result is revealed only once the
payment is in the smart contract, and the cryptograms are useless without it.
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6. Conclusions

Distrust is one of the main obstacles to implementing exchanges between data providers
and data consumers in a decentralised way. In this article, we present a protocol that allows
a consumer to probabilistically obtain and check a subset of a dataset on sale from a provider
before committing to payment. The protocol is executed using a smart contract deployed
in a public distributed ledger. Once the consumer agrees to buy the dataset, the payment
process, the agreed terms, and the possible refunds are managed and enforced by the
smart contract. To expose the dataset, our protocol splits the data in portions and encrypts
and stores each portion off-chain. Then, we created a MHT for the cryptograms and
another MHT for the encryption keys. The encryption keys are related to each other using
a cryptographic hash function in a way that allows us to implement a cost-efficient conflict
resolution mechanism. The security analysis of our protocol shows that consumers and
providers are economically protected and that the provider can reduce the risks of identity-
replication attacks by adjusting the amount of free samples disclosed to the consumer.
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