
electronics

Article

Multiple Instance Learning with Differential
Evolutionary Pooling

Kamanasish Bhattacharjee 1 , Arti Tiwari 1, Millie Pant 1, Chang Wook Ahn 2,* and Sanghoun Oh 3

����������
�������

Citation: Bhattacharjee, K.; Tiwari,

A.; Pant, M.; Ahn, C.W.; Oh, S.

Multiple Instance Learning with

Differential Evolutionary Pooling.

Electronics 2021, 10, 1403. https://

doi.org/10.3390/electronics10121403

Academic Editor: Fernando

V. Paulovich

Received: 31 March 2021

Accepted: 9 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Science & Engineering, Indian Institute of Technology Roorkee,
Roorkee 247667, India; kbhattacharjee@as.iitr.ac.in (K.B.); atiwari1@as.iitr.ac.in (A.T.);
pant.milli@as.iitr.ac.in (M.P.)

2 AI Graduate School, Gwangju Institute of Science & Technology, Gwangju 61005, Korea
3 Department of Computer Science, Korea National Open University, Seoul 03087, Korea; oosshoun@knou.ac.kr
* Correspondence: cwan@gist.ac.kr

Abstract: While implementing Multiple Instance Learning (MIL) through Deep Neural Networks,
the most important task is to design the bag-level pooling function that defines the instance-to-
bag relationship and eventually determines the class label of a bag. In this article, Differential
Evolutionary (DE) pooling—an MIL pooling function based on Differential Evolution (DE) and a
bio-inspired metaheuristic—is proposed for the optimization of the instance weights in parallel
with training the Deep Neural Network. This article also presents the effects of different parameter
adaptation techniques with different variants of DE on MIL.

Keywords: Multiple Instance Learning (MIL); Differential Evolution (DE); pooling; adaptive; vari-
ant; parameter

1. Introduction

The medical domain is evolving with the usage of huge amounts of data, including text
or images, videos for personal sensing, computer-aided diagnosis, and treatments of severe
diseases. Since these contents are generated from real scenarios, they are loosely controlled,
and it is difficult to label them manually. Thus, Multiple Instance Learning (MIL) is
employed to overcome this barrier of dealing with the inconsistent, incomplete, and weakly
annotated nature of real-world medical data [1,2]. MIL is a form of weakly supervised
learning that was initially proposed by Dietterich et al. [3]. MIL can be used in contexts
in which training samples are ambiguous; i.e., where various instances corresponding
to the same class label have different numbers of attributes or features. In MIL training,
samples are formulated as a bag associated with a class label that contains a set of multiple
instances. The objective of MIL is to train the classifier so that it can predict the class of
unseen bags (bag-level classification).

To label a bag, the learning model will go through every instance of the corresponding
bag and determine the impact of the instances on the bag labeling; i.e., which instances
actively participate in bag labeling. This process will identify the instance-to-bag rela-
tionship. The use of Deep Neural Networks for MIL is relatively a new paradigm in
machine learning, where the instance-to-bag relationship is established through pooling
functions. Throughout the literature, various pooling functions are used. These pooling
functions can be non-trainable or trainable. Sum pooling, mean pooling, max pooling,
and log-sum-exp pooling [4] are non-trainable pooling techniques, while attention-based
pooling, gated attention-based pooling [5], dynamic pooling [6], adaptive pooling [7], and
genetic pooling [8] are trainable pooling techniques. In various works, different pooling
techniques are also used in conjunction [9–11]. K. Bhattacharjee et al. [8] used a bio-inspired
metaheuristic—the Genetic Algorithm (GA)—to design an MIL pooling function. In [12], K.
Bhattacharjee et al. used another metaheuristic technique—Differential Evolution (DE) [13].

Electronics 2021, 10, 1403. https://doi.org/10.3390/electronics10121403 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9828-937X
https://orcid.org/0000-0002-9902-5966
https://doi.org/10.3390/electronics10121403
https://doi.org/10.3390/electronics10121403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121403
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121403?type=check_update&version=2


Electronics 2021, 10, 1403 2 of 14

As future works building on that in [12], different DE variants can be explored to design
the MIL pooling function better. This paper can be considered an extension to [12], where
the most popular DE variants are applied to generate MIL pooling functions. The variants
explored in this paper are SaDE [14], jDE [15], JADE [16], and SHADE [17].

The rest of the paper is divided into five sections. Section 2 gives an overview of
Multiple Instance Learning (MIL). Section 3 briefly discusses the basic Differential Evolution
(DE) and its variants used in this paper. Section 4 defines the proposed methodology, and
in Section 5, results are analyzed. Finally, the concluding remarks are given in Section 6.

2. Multiple Instance Learning

In classical supervised learning, each input vector—i.e., feature vector X—has a
corresponding output label—Y. In case of MIL, the output label Y is mapped to a set of
instances; i.e., bag X = {x1, x2, . . . , xi} instead of a single instance. The cardinalities of the
bags are independent of each other; i.e., i could vary from bag to bag, and the bag instances
are permutation-invariant. It is assumed that each instance of the bag {x1, x2, . . . , xi} is
associated with an output label {y1, y2, . . . , yi} ∈ Y. The prediction of the classifier is based
on a prior assumption that a bag will be labeled positive if it contains at least a single
positive instance, while labeling will be negative if all instances in the bag are negative.

Y =

{
0, i f f ∑

i
yi = 0

1, otherwise
(1)

Benefitting from fast and accurate learning from examples, deep learning with MIL
was initially proposed by J. Ramon and L. De Raedt [4]. The authors extended the classical
neural network to MIL using simple backpropagation. For a deeper understanding of MIL,
interested readers may refer to [18,19].

MIL with deep learning has been applied for the training and prediction of imbalanced
and incomplete real-world medical imaging data [1,5,8,10,11,20–24]. In [20], S.Want et al.
designed a recalibrated multi-instance deep learning to classify gastric cancer. M. Yousefi
et al. [21] integrated MIL with the randomized tree to classify digital breast tomosynthesis
images. To diagnose diabetic retinopathy, P. Cao et al. [22] used multi-class MIL. Landmark-
based deep MILwas proposed by M. Liu et al. [23] for brain disease diagnosis. J. Yao
et al. [24] usedattention-based pooling for whole slide image feature learning. A trainable
pooling using the genetic algorithm was designed in [8] for bag-level labelling. Z. Wang
et al. [11] proposed AMI-Net+, an improvised AMI-Net neural network using multi-head
attention and gated attention-based pooling. In [5], an MIL permutation-invariant bag
score function is generated using the attention-based operator and fully parameterized by
the neural network.

3. Differential Evolution

Differential Evolution (DE) is a population-based metaheuristic technique that is used
to solve complex structured optimization problems in many application areas. DE was
initially proposed by Storn and Price [13] in 1996. For a more profound understanding of
this topic, readers can refer to [25]. In general, DE formulation is divided into two phases:
initialization and evolution. The initialization phase comprises random population genera-
tion, and the evolution phase consists of mutation, crossover, and selection for generating
the new population for the next generation. In view of its “one-to-one- spawning” selection
mechanism, it resembles Swarm Intelligence methods such as PSO, but at the same time, it
is similar to Evolutionary Algorithms such as the GA, as it requires a “mutation” operator,
followed by a “crossover” strategy to produce a new solution. A general flowchart of the
operations of DE is presented in Figure 1.



Electronics 2021, 10, 1403 3 of 14

Figure 1. DE flowchart.

3.1. Operations in Differential Evolution
3.1.1. Initialization

In this step, a set of uniformly distributed random population is generated. These
represent the initial solution points in the search space.

XG = (X1,X2, . . . , XNP) (2)

Xi = (x1,i, x2,i, . . . , xD,i) (3)

xj,i = lower + randj,i ∗ (upper− lower) (4)

where G is generation, NP is the number of individuals in the population, D is the dimension
of an individual, lower is the lower bound, upper is the upper bound, rand ∈ [0, 1] is a
random number, i ∈ {1, . . . , NP}, and j ∈ {1, . . . , D}.

3.1.2. Mutation

After population generation, mutation is performed to expand the search space. In
the mutation strategy, for each target vector, a corresponding mutant vector is generated.
DE has various mutation strategies. In this paper, the “DE/rand/1” strategy is used to
generate mutant vector Vi = (v1,i, v2,i, . . . , vD,i):

Vi = Xr1 + F ∗ (Xr2 −Xr3) (5)

where Vi is the mutant vector, F ∈ (0, 1.2] is the scaling factor, X are individuals in the
population, and r1, r2, r3 ∈ {1, . . . , NP}, where r1 6= r2 6= r3 6= i. After mutation, each
attribute of the mutant vector is checked for infeasibility. If found infeasible (out of bounds),
saturation correction is applied [26]; i.e., it is saturated with the nearest bound—if it is less
than the lower bound, it is saturated with the lower bound, and if it is greater than upper
bound, it is saturated with the upper bound.



Electronics 2021, 10, 1403 4 of 14

3.1.3. Crossover

Crossover is performed between the target vector and mutant vector to increase the
diversity of the population and to assimilate the best individual. After the crossover, trial
vectors are generated. For a trial vector Ui = (u1,i, u2,i, . . . , uD,i),

uj,i =

{
vj,i, i f randj,i ≤ CR ∪ j = jr
xj,i, otherwise

(6)

where CR ∈ [0, 1] is the crossover probability, rand ∈ [0, 1] is a random number, and
jr ∈ {1, . . . , D}. The crossover probability (CR) is the DE parameter that controls the crossover

between target vector and mutant vector; i.e., for a dimension, if rand ≤ CR or j = jr, the
value for that dimension is copied from the mutant vector to trial vector, while the value for
that dimension is otherwise copied from the target vector to trial vector. Thus, the greater
the value of CR, the more the trial vector will resemble the mutant vector; the smaller the
value of CR, the more the trial vector will resemble the target vector.

3.1.4. Selection

Tournament selection is performed between the trial and the target vector, and the
vector with a better fitness value moves on to the next generation.

Xi,G+1 =

{
Ui,G, i f f (Ui,G) ≤ f (Xi,G)
Xi,G, otherwise

(7)

where f (·) is the objective function.
DE is one of the most popular and heavily applied metaheurstics. DE variants are

regular top-ranking algorithms in the IEEE Congress on Evolutionary Computation (CEC),
one of the largest and most important conferences in the field of evolutionary computation.
In recent times, LSHADE-RSP [27], LSHADE-cnEpSin [28], and LSHADE-EpSin [29] gained
third, second, and first ranks in CEC 2018, CEC 2017, and CEC 2016 respectively [25]. A
modified L-SHADE (mL-SHADE) [30] for single objective real-parameter optimization
was introduced in CEC 2019 by Yeh et al. A new adaptive variant Explicit Adaptive Dif-
ferential Evolution (EaDE) [31] was proposed by Zhang et al. this year, which explicitly
controls the exploitation and exploration strategies of DE. A new selection operation for
DE [32] was proposed this year by Zeng et al. In CEC 2019, a new, improved SALSHADE-
cnEpSin algorithm with adaptive parameters [33], a Bi-Level Differential Evolutionary
Algorithm (BLDE) for Constrained Optimization [34], NSADE [35], and Differential Evo-
lutionary Multi-Task Optimization (DEMTO) [36] were published. In CEC 2020, a Novel
Center-Based Differential Evolution Algorithm [37], Clustering-Based Adaptive Differential
Evolution for Numerical Optimization (FCADE) [38], a Differential Evolution Algorithm
with Q-Learning (DE-QL) for Solving Engineering Design Problems [39], Multi-Population
Modified L-SHADE for Single Objective Bound Constrained optimization [40], and an
extension of mL-SHADE were proposed. TheCEC and GECCO conferences and Applied
Soft Computing, Soft Computing, Swarm and Evolutionary Computation, and Evolution-
ary Computation journals are the top-ranking conferences and journals in which most of
the important research regarding DE is published. A thorough discussion of the recent
advances in DE is not within the scope of this paper. Thus, the proceedings of the afore-
mentioned conferences and journals should be explored for a better understanding of the
recent advances in DE. Over time, many variants of DE have been proposed by many
researchers. Among those, the four most popular DE variants in recent times have been
chosen to study their effects on MIL. The parameter adaptation techniques of these four
variants are discussed in the following subsections.

3.2. SaDE

In SaDE [14], Fi takes different random values in the range (0,2], with a normal
distribution having a mean of 0.5 and standard deviation of 0.3 for different individuals in



Electronics 2021, 10, 1403 5 of 14

each generation. F is related to the convergence speed and has more flexibility compared
to CR. A normally distributed F can maintain both a local (with small F values) and global
(with large F values) search ability to generate potential good mutant vectors throughout
the evolution process. CR is much more sensitive to the property and complexity of a
problem than F. In SaDE, previous learning experience within a certain generation interval
is accumulated to dynamically adapt the value of CRi to a suitable range. CRi is initialized
for each individual in a population through a normal distribution in the range (0,1] with an
initial mean of 0.5 and standard deviation of 0.1. CRi values for all individuals remain the
same for several generations (five in the experiments performed here), and then a new set
of CRi values is generated under the same normal distribution. During every generation,
the CRi values associated with trial vectors that successfully enter the next generation
are recorded. After a specified number of generations (10 in the experiments performed
here), the mean of normal distribution of CRi is recalculated according to all the recorded
CRi values corresponding to successful trial vectors during this period. With this new
normal distribution’s mean and a standard deviation of 0.1, the aforementioned procedure
is repeated. As a result, the proper CR value range for the current problem can be learned
to suit the particular problem. The record of the successful CRi values is emptied once
the normal distribution mean is recalculated to avoid possible inappropriate long-term
accumulation effects.

3.3. jDE

In jDE [15], Fi and CRi are initialized for each individual Xi in the population (the
initial Fi and CRi are 0.5 and 0.9 for all individuals in the experiments performedhere). Fi
and CRi are updated in each generation in the following manner:

Fi,G+1 =

{
Fl + rand1 ∗ Fu i f rand2 < t1

Fi,G otherwise
(8)

CRi,G+1 =

{
rand3 i f rand4 < t2

CRi,G otherwise
(9)

where rand1, rand2, rand3, and rand4 are uniform random values in the interval [0, 1].
t1, t2, Fl , and Fu are constants with values of 0.1, 0.1, 0.1, and 0.9, respectively.

3.4. JADE

In JADE [16], for each individual Xi in a population, Fi and CRi are generated in the
interval [0, 1] with thefollowing equations:

Fi = randci(µF, 0.3) (10)

CRi = randni(µCR, 0.3) (11)

where randci(µ, σ) and randni(µ, σ) are Cauchy and normal distributions, respectively,
with their mean µ and standard deviation σ. µF is the mean of the Cauchy distribution
used to generate Fi while µCR is the mean of the normal distribution used to generate CRi.
Both µF and µCR are initialized to 0.5. The F and CR values associated with trial vectors
successfully entering the next generation are recorded in SF and SCR. In each generation,
µF and µCR are updated as follows:

µF = (1− c) ∗ µF + c ∗meanL(SF) (12)

µCR = (1− c) ∗ µCR + c ∗meanA(SCR) (13)

where c is the learning rate, which is taken to be 0.1, meanL is the Lehmer mean, and meanA
is the arithmetic mean.



Electronics 2021, 10, 1403 6 of 14

3.5. SHADE

SHADE [17] performs parameter adaptation depending on the success history. It
maintains a historical memory with H entries (in the experiments performed here, H is
taken to be equal to the population size NP) for both F and CR—MF and MCR, respectively.
All elements of MF and MCR are initialized to 0.5. In each generation, the Fi and CRi used
by each individual Xi are generated as follows:

Fi = randci(MF,r, 0.3) (14)

CRi = randni(MCR,r, 0.3) (15)

where r is a random index in the interval [1, H]. The F and CR values associated with trial
vectors successfully entering the next generation are recorded in SF and SCR, respectively.
In each generation, MF and MCR are updated as follows:

MF,i,G+1 =

{
meanL(SF) i f SF 6= ∅

MF,i,G otherwise
(16)

MCR,i,G+1 =

{
meanA(SCR) i f SCR 6= ∅

MCR,i,G otherwise
(17)

4. Proposed Method

Ilse et al. [5] proposed an attention-based pooling technique where the weighted
average of instances is calculated to determine the bag labels. Weights are generated
through a deep neural network. The problem can be formulated as follows.

For bag H = {h1, h2, . . . , hk} with K instances, the bag label is computed through MIL
pooling as below:

z = sigmoid

(
1
K

K

∑
k=1

akhk

)
(18)

where ak is the weight corresponding to the hk instance in the bag. This can be treated as
an optimization model where the objective is to determine the best combination of weights
so that the value of z is minimized. In this paper, DE is used as an optimizer to minimize
the value of z.

In case of general pooling methods—i.e., sum pooling, mean pooling, max pooling, or
log-sum-exp pooling—a bag of instances is fed to the neural network, which generates the
instance labels, and the pooling function extracts the bag label from these instance labels.
This process is presented in Figure 2.

Figure 2. General pooling functions.



Electronics 2021, 10, 1403 7 of 14

In attention-based and gated attention-based pooling, extra dense layers are used for
generating instance weights; i.e., along with instance label generation, the neural network
also generates instance weights. This instance weight generator is a fully connected layer
that has three layers. Then, these instance labels and instance weights are used by attention-
based and gated attention-based pooling functions to generate the bag labels. This process
is presented in Figure 3.

Figure 3. Attention-based pooling functions.

The evolutionary pooling function removes these extra layers for instance weight
generation, as it randomly initializes a population of attention weights between [0, 1], and
as the neural network trains, these weights are optimized simultaneously through DE or
GA. For each set of weights representing the individuals of the population, the model is
trained, and through a number of generations or passes, optimum values of the weights
are obtained, thereby minimizing the loss. This process is presented in Figure 4.

Figure 4. Evolutionary pooling functions.

The instance weight optimization process through DE is presented in Figure 5. First,



Electronics 2021, 10, 1403 8 of 14

a population of instance weights is initialized with NP individuals. On the other hand,
the neural network generates the instance labels. Now, using these instance labels and the
population of instance weights, NP bag labels are predicted by the model (target bag labels).
Then, through mutation and crossover operations, a trial population of instance weights is
generated. Again, using instance labels and the trial population of instance weights, NP bag
labels are predicted by the model (trial bag label). We already know the true bag labels, and
thus the error in prediction or classification loss is calculated for both target bags as well
as trial bags. Then, a tournament selection is performed for each individual for the target
vector and trial vector. The vector with a smaller error is forwarded to the next generation.
This process is repeated until the stopping criteria are met. An algorithm/pseudo-code for
the MIL pooling function using DE is presented in Algorithm 1.

The pooling function is independent of the neural network architecture. In this paper,
the AMI-Net [10] is used. The architecture and experimental setup are the same as used
in [8] to allow a comparison of the results with other pooling functions. The AMI-Net is
described pictorially in Figure 6. First, through the embedding layer, each instance of the
input (bag of instances) is mapped to a dense vector. Then, in the multi-head attention [41]
layer, the intra-relationship of instances in different embedding subspaces is captured,
where the subspaces represent the organs or body parts affected by a particular disease.
These symptoms are often related to each other and are formulated mathematically by the
multi-head attention layer. Then, to mine the instance correlations, layer normalization [42]
and residual connection are used. In the next step, a set of fully-connected layers is
employed to obtain the instance representations. These instance labels are obtained through
instance-level pooling and act as the bag representations in bag-level pooling, where bag
labels are obtained to classify the bags.

Algorithm 1. MIL Pooling Function using DE

• Set scaling factor F, crossover probability CR, Number of individuals in a population NP
• Set individual index, i = 1
• Set maximum iteration number max_iter
• Set iteration number, iter = 1
• Set number of bags P according to dataset
• Set bag number, p = 1
• Initialize population of instance weights ak for each bag with NP individuals
• While iter<= max_iter
xxxx # While p <= P
xxxxxxxxxxx� While i<= NP
xxxxxxxxxxxxxxxxxx• Run feed-forward pass on neural network to generate instance labels
xxxxxxxxxxxxxxxxxx• Calculate bag label, zp ← sigmoid

(
1
K ∑K

k=1 ap
khp

k

)
xxxxxxxxxxxxxxxxxx• Calculate loss lzp for zp

xxxxxxxxxxxxxxxxxx• Generate 3 random numbers in [0,NP] – j1, j2, j3 where j1 6= j2 6= j3 6=i
xxxxxxxxxxxxxxxxxx• Calculate mutant vp

i = ap
j1 + F ∗

(
ap

j2 − ap
j3

)
xxxxxxxxxxxxxxxxxx• dim = dimension of ap

xxxxxxxxxxxxxxxxxx• for d = 1:dim
xxxxxxxxxxxxxxxxxxxxxxxx# Generate random number r in [0, 1] and random number drand
xxxxxxxxxxxxxxxxxxxxxxxxxxxxin [1,dim]
xxxxxxxxxxxxxxxxxxxxxxxx# if r <= CR or drand = d
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx� up

i(d) = vp
i(d)

xxxxxxxxxxxxxxxxxxxxxxxx# else
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx� up

i(d) = ap
i(d)

xxxxxxxxxxxxxxxxxx• Calculate bag label for up
k, yp ← sigmoid

(
1
K ∑K

k=1 up
khp

k

)
xxxxxxxxxxxxxxxxxx• Calculate loss lyp for yp

xxxxxxxxxxxxxxxxxx• If lyp < lzp

xxxxxxxxxxxxxxxxxxxxxxxx# ap
i = up

i



Electronics 2021, 10, 1403 9 of 14

Figure 5. Instance weight optimization through DE.

Figure 6. AMI-Net with DE pooling.

The DE parameters used include a scaling factor F of 0.5 and crossover probability CR
of 0.8. Binary cross-entropy is used as the objective function to compute the loss between
calculated and desired bag labels. Binary cross-entropy is used here as the dataset has
two classes: schizophrenia relapse and non-relapse. The maximum number of iterations
or epochs is set at 100. Experiments are done on five iterations of the dataset for fair
comparison. To optimize the network, an Adam optimizer is used with a learning rate of
0.00001, β1 = 0.9, β2 = 0.98, and ε = e−8.

5. Results and Discussion
5.1. Experimental Setup

The dataset used in [8,10,11] is used in this study; it is known as The Western Medicine
(WM) dataset, which is a schizophrenia dataset of 3927 patients with 88 medical features.
For a particular patient, there can be a maximum of 21 features and a minimum of 5 features.
This dataset is quite imbalanced, with a positive rate of only 0.057. The objective of this
work is to predict the possibility of relapse of a schizophrenic patient within a duration of
three months.



Electronics 2021, 10, 1403 10 of 14

The evaluation metrics used in this paper are the area under the curve (AUC), average
precision (AP), accuracy, balanced accuracy, negative predictive value (NPV), specificity or
true negative rate (TNR), Zero One loss, and Hamming loss.

Experiments were conducted with aSpyder 4.1.4 Integrated Development Environ-
ment (IDE) with Python 3.7.7 through an Anaconda distribution on an Intel Xeon Gold
6240 2.6 GHz dual processor system with 192 GB RAM, an Nvidia Quadro RTX 8000 GPU,
and a 64-bit Windows 10 Education Operating System.

5.2. Results Analysis

Six bag-level pooling functions—max pooling, mean pooling, sum pooling, log-sum-
exp pooling, gated attention-based pooling, and genetic pooling—were used to compare
the proposed pooling function numerically as well as graphically. The pooling function
designed through the basic DE variant was compared with other methods first to check
whether it performed better than those methods. The numerical results obtained for
different performance metrics are presented in Table 1. Highlighted values represent the
best results obtained for each metric. The results in the table clearly indicate the robust
performance of the proposed method, as it outperformed or performed on par with almost
all the other methods used in this study. From a classification perspective, AUC is the most
important evaluation metric for determining any classification model’s performance. In [8],
it was shown that genetic pooling outperformed the other pooling functions in terms of
AUC. Here, the DE pooling showed a significant increase in AUC (around 12% more than
genetic pooling). DE considers real numbers, while for GA, it is necessary to work with a
chromosomal representation of variables. Thus, in case of numerical optimization, DE tends
to be more effective than GA. The strength of the Differential Evolution approach is that it
often displays better results than a genetic algorithm and other evolutionary algorithms and
can be easily applied to a wide variety of real valued problems despite noisy, multi-modal,
and multi-dimensional spaces, which usually make the optimization of problems very
difficult [43]. This paper deals with the numerical combinatorial optimization problem.
The one-to-one spawning technique of DE explores the search space better thanGA; thus,
DE provides better results than GA.

Table 1. Results (architecture = AMI-Net; dataset = WM).

MIL Pooling AUC AP Accuracy Balanced
Accuracy NPV Specificity Zero One

Loss
Hamming

Loss

Max pooling 0.7283375 0.1879182 0.9377546 0.5026506 0.9427535 0.9943237 0.0622454 0.0622454
Mean pooling 0.7521901 0.2006572 0.9418427 0.5091218 0.9435413 0.9979871 0.0581573 0.0581573
Sum pooling 0.5755536 0.1003711 0.9201445 0.5401024 0.9472548 0.9697003 0.0798555 0.0798555

Log-sum-exp pooling 0.7359605 0.1830831 0.9405848 0.5107879 0.9437524 0.9963193 0.0594152 0.0594152
Gated Attention pooling 0.7544704 0.1958218 0.9424716 0.5023977 0.9427499 0.9996672 0.0575284 0.0575284

Genetic pooling 0.8862781 0.3782898 0.9424716 0.5023977 0.9427499 0.9996672 0.0575284 0.0575284
DE pooling 0.9838043 0.8429034 0.9537898 0.5983575 0.9532767 1 0.0462101 0.0462101

There is a great increase in terms of the Average Precision score, again establishing the
superiority of DE pooling. The approach also exhibits higher accuracy and lower losses.
DE pooling outperforms the other methods in every aspect.

The decaying value of loss is shown through the learning curves depicted in Figure 7.
Here, it can be seen that DE pooling learning curve shows the same characteristics as genetic
pooling. As the number of generations increases, genetic and DE pooling methods achieved
the lowest loss value. Through this experiment, it was determined that, for metaheuristic
approaches, increasing epochs results in a decrease in loss—i.e., better solutions—which is
not the case for other methods. Generally, deep neural network models are trained with a
large number of epochs, and thus metaheuristics-based pooling techniques are suitable in
this case.



Electronics 2021, 10, 1403 11 of 14

Figure 7. Learning curves.

The training curves for GA and DE pooling are quite similar; i.e., they converge
towards the same solution. Their accuracies are also not greatly different. Statistical
analysis is needed when, even after comparing the algorithms, no concrete conclusion
can be reached. Non-parametric statistical models are required in the case of evolutionary
algorithms [44]. Here, the Wilcoxon rank-sum test or Mann–Whitney U test was used to
determine which algorithm ranked higher in terms of various performance measurement
metrics. This test is an alternative to the independent samples t-test when the assumptions
required by the latter are not met by the data. It is used to compare differences between two
independent groups (GA and DE in this case) when the dependent variable is either ordinal
or continuous but not normally distributed. For this test, both algorithms were run for five
iterations and the critical performance metrics—AUC, accuracy, balanced accuracy, NPV,
and Zero One loss—were recorded. The Mann–Whitney test was applied through IBM
SPSS software. The statistical results are presented in Tables 2 and 3, where N represents
the number of samples. Table 2 presents the rankings, while Table 3 shows the test statistics.

Table 2. Mann–Whitney U test rankings.

Ranks

Algorithm N Mean Rank Sum of Ranks

AUC
GA 5 3.00 15.00
DE 5 8.00 40.00

Total 10

Accuracy
GA 5 5.10 25.50
DE 5 5.90 29.50

Total 10

BalancedAccuracy
GA 5 3.50 17.50
DE 5 7.50 37.50

Total 10

NPV
GA 5 5.00 25.00
DE 5 6.00 30.00

Total 10

ZeroOneLoss
GA 5 5.90 29.50
DE 5 5.10 25.50

Total 10



Electronics 2021, 10, 1403 12 of 14

Table 3. Test statistics of Mann–Whitney U test.

Test Statistics a

AUC Accuracy BalancedAccuracy NPV ZeroOneLoss

Mann–Whitney U 0.000 10.500 2.500 10.000 10.500
Wilcoxon W 15.000 25.500 17.500 25.000 25.500

Z −2.611 −0.419 −2.155 −0.522 −0.419
Asymp. Sig. (2-tailed) 0.009 0.675 0.031 0.602 0.675

Exact Sig. [2x(1-tailed Sig.)] 0.008 b 0.690 b 0.032 b 0.690 b 0.690 b

a Grouping variable: algorithm; b not corrected for ties.

From Table 2, if we follow the mean rank, then it is clear that the DE pooling outranks
the GA pooling in terms of AUC, accuracy, balanced accuracy, and NPV, but falls slightly
behind in the case of loss. Furthermore, in Table 3, the Exact Sig. [2 × (1-tailed Sig.)] is the
same as the p-value. For AUC and balanced accuracy, p ≤ 0.05. Thus, we can reject the
null hypothesis (H0) that “there are no significant differences between AUC values and
balanced accuracy values of DE pooling and GA pooling”. However, for accuracy, NPV
and Zero One Loss, p ≥ 0.05. Thus, we cannot reject the null hypothesis (H0) that “there
are no significant differences between accuracy values, NPV values and loss values of DE
pooling and GA pooling”. Finally, from the non-parametric Mann–Whitney U Test results,
it can be concluded that DE pooling significantly improves the AUC and balanced accuracy
of the MIL model.

The comparisons of the basic DE approach and the variants SaDE, jDE, JADE and
SHADE are presented in Table 4. The best result for each metric is highlighted in the table.

Table 4. Comparison of DE variants.

Variant AUC AP Accuracy Balanced Accuracy NPV Specificity Zero One Loss Hamming Loss

DE 0.6883591 0.1278299 0.9424716 0.5 0.9424716 1 0.0575284 0.0575284
SaDE 0.6794218 0.1435111 0.9405858 0.5051259 0.9429468 0.9973487 0.0594142 0.0594142
jDE 0.7101309 0.1285298 0.9512579 0.5074733 0.9426030 0.9866064 0.0691636 0.0691636

JADE 0.6956148 0.1277994 0.9449686 0.5 0.9424716 1 0.0575284 0.0575284
SHADE 0.7292417 0.1323776 0.9512579 0.5 0.9424716 1 0.0575284 0.0575284

From Table 4, it can be seen that, for most of the evaluation metrics, the variants
produce a better result. Although there is no clear winner among the DE variants, it can be
concluded that parameter adaptation improves the MIL DE pooling.

6. Conclusions

A trainable MIL pooling function based on Differential Evolution (DE) is proposed
in this paper and implemented with AMI-Net architecture. The validation of the method
is conducted on The Western Medicine (WM) dataset, and the results are compared with
well-known pooling functions such as max pooling, mean pooling, sum pooling, log-sum-
exp pooling, gated attention pooling, and genetic pooling. Performance metrics used
for comparison are the AUC, average precision Score, accuracy, balanced accuracy, NPV,
Specificity/TNR, Zero One loss, and Hamming loss. It was observed that the proposed
pooling function outperformed other approaches for all the metrics. Though there was no
single best variant that outperformed others in every criterion, it is evident that parameter
adaptation in DE improved the result. For future work, hybrid metaheuristic techniques
can be explored in this case.

Author Contributions: Conceptualization, K.B.; methodology, K.B.; resources, M.P. and C.W.A.; data
curation, K.B.; writing—original draft preparation, K.B. and A.T.; writing—review and editing, K.B.,
A.T. and M.P.; visualization, K.B. and A.T.; supervision, S.O. and C.W.A.; funding acquisition, S.O.
and C.W.A. All authors have read and agreed to the published version of the manuscript.



Electronics 2021, 10, 1403 13 of 14

Funding: This research was partly supported by the Korea government (MSIT) (No. 2019-0-01842,
Artificial Intelligence Graduate School Program (GIST)) and GIST Research Institute (GRI) grant
funded by the GIST in 2021.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: https://
github.com/Zeyuan-Wang/AMI-Net/blob/master/sample_data.xlsx (accessed on 31 March 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Cheplygina, V.; de Bruijne, M.; Pluim, J.P.W. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer

learning in medical image analysis. Med. Image Anal. 2019, 54, 280–296. [CrossRef] [PubMed]
2. Quellec, G.; Cazuguel, G.; Cochener, B.; Lamard, M. Multiple-Instance Learning for Medical Image and Video Analysis. IEEE Rev.

Biomed. Eng. 2017, 10, 213–234. [CrossRef] [PubMed]
3. Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell.

1997, 89, 31–71. [CrossRef]
4. Ramon, J.; De Raedt, L. Multi instance neural networks. In Proceedings of the ICML-2000 Workshop on Attribute-Value and

Relational Learning, Stanford, CA, USA, 2 July 2000; pp. 53–60.
5. Ilse, M.; Tomczak, J.M.; Welling, M. Attention-Based Deep Multiple Instance Learning. In Proceedings of the 35th International

Conference on Machine Learning, Proceedings of Machine Learning Research (PMLR), Stockholm, Sweden, 10–15 July 2018;
pp. 2127–2136.

6. Yan, Y.; Wang, X.; Fang, J.; Liu, W.; Huang, J.; Zhu, J.; Takeuchi, I. Deep Multi-instance Learning with Dynamic Pooling. In
Proceedings of the Asian Conference on Machine Learning, Beijing, China, 14–16 November 2018; pp. 1–16.

7. Liu, D.; Zhou, Y.; Sun, X.; Zha, Z.; Zeng, W. Adaptive Pooling in Multi-instance Learning for Web Video Annotation. In
Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October
2017; pp. 318–327.

8. Bhattacharjee, K.; Pant, M.; Zhang, Y.D.; Satapathy, S.C. Multiple Instance Learning with Genetic Pooling for medical data
analysis. Pattern Recognit. Lett. 2020, 133, 247–255. [CrossRef]

9. Wang, X.; Yan, Y.; Tang, P.; Bai, X.; Liu, W. Revisiting multiple instance neural networks. Pattern Recognit. 2018, 74, 15–24.
[CrossRef]

10. Wang, Z.; Poon, J.; Sun, S.; Poon, S. Attention-based Multi-instance Neural Network for Medical Diagnosis from Incomplete
and Low Quality Data. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19
July 2019.

11. Wang, Z.; Poon, J.; Poon, S. AMI-Net+: A Novel Multi-Instance Neural Network for Medical Diagnosis from Incomplete and
Imbalanced Data. arXiv 2019, arXiv:1907.01734.

12. Bhattacharjee, K.; Tiwari, A.; Pant, M.; Ahn, C.W. A Pooling Function based on Differential Evolution for Multiple Instance
Learning. In Proceedings of the 9th International Conference on Smart Media and Applications (SMA 2020), Jeju, Korea, 17–19
September 2020.

13. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

14. Qin, A.K.; Suganthan, P.N. Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, IEEE CEC 2005, Edinburgh, UK, 2–5 September 2005; Volume 2, pp. 1785–1791.

15. Brest, J.; Greiner, S.; Bošković, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]

16. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009,
13, 945–958. [CrossRef]

17. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for Differential Evolution. In Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, 20–23 June 2013; pp. 71–78.

18. Carbonneau, M.-A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognit. 2018, 77, 329–353. [CrossRef]

19. Amores, J. Multiple instance classification: Review, taxonomy and comparative study. Artif. Intell. 2013, 201, 81–105. [CrossRef]
20. Wang, S.; Zhu, Y.; Yu, L.; Chen, H.; Lin, H.; Wan, X.; Fan, X.; Heng, P.A. RMDL: Recalibrated multi-instance deep learning for

whole slide gastric image classification. Med. Image Anal. 2019, 58, 101549. [CrossRef]
21. Yousefi, M.; Krzyżak, A.; Suen, C.Y. Mass detection in digital breast tomosynthesis data using convolutional neural networks and

multiple instance learning. Comput. Biol. Med. 2018, 96, 283–293. [CrossRef]
22. Cao, P.; Ren, F.; Wan, C.; Yang, J.; Zaiane, O. Efficient multi-kernel multi-instance learning using weakly supervised and

imbalanced data for diabetic retinopathy diagnosis. Comput. Med. Imaging Graph. 2018, 69, 112–124. [CrossRef]

https://github.com/Zeyuan-Wang/AMI-Net/blob/master/sample_data.xlsx
https://github.com/Zeyuan-Wang/AMI-Net/blob/master/sample_data.xlsx
http://doi.org/10.1016/j.media.2019.03.009
http://www.ncbi.nlm.nih.gov/pubmed/30959445
http://doi.org/10.1109/RBME.2017.2651164
http://www.ncbi.nlm.nih.gov/pubmed/28092576
http://doi.org/10.1016/S0004-3702(96)00034-3
http://doi.org/10.1016/j.patrec.2020.02.025
http://doi.org/10.1016/j.patcog.2017.08.026
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1109/TEVC.2006.872133
http://doi.org/10.1109/TEVC.2009.2014613
http://doi.org/10.1016/j.patcog.2017.10.009
http://doi.org/10.1016/j.artint.2013.06.003
http://doi.org/10.1016/j.media.2019.101549
http://doi.org/10.1016/j.compbiomed.2018.04.004
http://doi.org/10.1016/j.compmedimag.2018.08.008


Electronics 2021, 10, 1403 14 of 14

23. Liu, M.; Zhang, J.; Adeli, E.; Shen, D. Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal.
2018, 43, 157–168. [CrossRef]

24. Yao, J.; Zhu, X.; Jonnagaddala, J.; Hawkins, N.; Huang, J. Whole Slide Images based Cancer Survival Prediction using Attention
Guided Deep Multiple Instance Learning Networks. Med. Image Anal. 2020, 65, 101789. [CrossRef]

25. Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of
research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [CrossRef]

26. Caraffini, F.; Kononova, A.V.; Corne, D. Infeasibility and structural bias in differential evolution. Inf. Sci. 2019, 496, 161–179.
[CrossRef]

27. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC
2017 Benchmark Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018, Rio de Janeiro,
Brazil, 8–13 July 2018.

28. Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighbor-
hood for solving CEC2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation, CEC
2017, Donostia, Spain, 5–8 June 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 372–379.

29. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Reynolds, R.G. An ensemble sinusoidal parameter adaptation incorporated with
L-SHADE for solving CEC2014 benchmark problems. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation,
CEC 2016, Vancouver, BC, Canada, 24–29 July 2016; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA,
2016; pp. 2958–2965.

30. Yeh, J.F.; Chen, T.Y.; Chiang, T.C. Modified L-SHADE for Single Objective Real-Parameter Optimization. In Proceedings of the
2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019; Institute of Electrical
and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 381–386.

31. Zhang, S.X.; Chan, W.S.; Tang, K.S.; Zheng, S.Y. Adaptive strategy in differential evolution via explicit exploitation and exploration
controls. Appl. Soft Comput. 2021, 107, 107494. [CrossRef]

32. Zeng, Z.; Zhang, M.; Chen, T.; Hong, Z. A new selection operator for differential evolution algorithm. Knowl. Based Syst. 2021,
226, 107150. [CrossRef]

33. Salgotra, R.; Singh, U.; Saha, S.; Nagar, A. New Improved SALSHADE-cnEpSin Algorithm with Adaptive Parameters. In
Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 3150–3156.

34. Han, G.; Chen, X. A Bi-level Differential Evolutionary Algorithm for Constrained Optimization. In Proceedings of the 2019
IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019; Institute of Electrical and
Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 1628–1633.

35. Yang, Z.; Qiu, H.; Gao, L.; Jiang, C.; Chen, L.; Cai, X. A Novel Surrogate-assisted Differential Evolution for Expensive Optimization
Problems with both Equality and Inequality Constraints. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation,
CEC 2019, Wellington, New Zealand, 10–13 June 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA,
2019; pp. 1688–1695.

36. Zheng, X.; Lei, Y.; Qin, A.K.; Zhou, D.; Shi, J.; Gong, M. Differential Evolutionary Multi-task Optimization. In Proceedings of the
2019 IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, 10–13 June 2019; Institute of Electrical
and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 1914–1921.

37. Mousavirad, S.J.; Rahnamayan, S. A Novel Center-based Differential Evolution Algorithm. In Proceedings of the 2020 IEEE
Congress on Evolutionary Computation, CEC 2020, Glasgow, UK, 19–24 July 2020; Institute of Electrical and Electronics Engineers
Inc.: New York, NY, USA, 2020.

38. Pant, M.; Vig, G. Clustering based Adaptive Differential Evolution for Numerical Optimization. In Proceedings of the 2020
IEEE Congress on Evolutionary Computation, CEC 2020, Glasgow, UK, 19–24 July 2020; Institute of Electrical and Electronics
Engineers Inc.: New York, NY, USA, 2020.

39. Kizilay, D.; Tasgetiren, M.F.; Oztop, H.; Kandiller, L.; Suganthan, P.N. A Differential Evolution Algorithm with Q-Learning for
Solving Engineering Design Problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation, CEC 2020,
Glasgow, UK, 19–24 July 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020.

40. Jou, Y.C.; Wang, S.Y.; Yeh, J.F.; Chiang, T.C. Multi-population Modified L-SHADE for Single Objective Bound Constrained
optimization. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation, CEC 2020, Glasgow, UK, 19–24 July 2020;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020.

41. Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

42. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016, arXiv:1607.06450.
43. Hegerty, B.; Hung, C.-C.; Kasprak, K. A Comparative Study on Differential Evolution and Genetic Algorithms for Some

Combinatorial Problems. In Proceedings of the 8th Mexican International Conference on Artificial Intelligence, Guanajuato,
Mexico, 9–13November 2009.

44. Caraffini, F.; Iacca, G. The SOS platform: Designing, tuning and statistically benchmarking optimisation algorithms. Mathematics
2020, 8, 785. [CrossRef]

http://doi.org/10.1016/j.media.2017.10.005
http://doi.org/10.1016/j.media.2020.101789
http://doi.org/10.1016/j.engappai.2020.103479
http://doi.org/10.1016/j.ins.2019.05.019
http://doi.org/10.1016/j.asoc.2021.107494
http://doi.org/10.1016/j.knosys.2021.107150
http://doi.org/10.3390/math8050785

	Introduction 
	Multiple Instance Learning 
	Differential Evolution 
	Operations in Differential Evolution 
	Initialization 
	Mutation 
	Crossover 
	Selection 

	SaDE 
	jDE 
	JADE 
	SHADE 

	Proposed Method 
	Results and Discussion 
	Experimental Setup 
	Results Analysis 

	Conclusions 
	References

