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Abstract: The strawberry market in South Korea is actually the largest market among horticultural
crops. Strawberry cultivation in South Korea changed from field cultivation to facility cultivation
in order to increase production. However, the decrease in production manpower due to aging
is increasing the demand for the automation of strawberry cultivation. Predicting the harvest of
strawberries is an important research topic, as strawberry production requires the most manpower
for harvest. In addition, the growing environment has a great influence on strawberry production
as hydroponic cultivation of strawberries is increasing. In this paper, we design and implement an
integrated system that monitors strawberry hydroponic environmental data and determines when to
harvest with the concept of IoT-Edge-AI-Cloud. The proposed monitoring system collects, stores and
visualizes strawberry growing environment data. The proposed harvest decision system classifies the
strawberry maturity level in images using a deep learning algorithm. The monitoring and analysis
results are visualized in an integrated interface, which provides a variety of basic data for strawberry
cultivation. Even if the strawberry cultivation area increases, the proposed system can be easily
expanded and flexibly based on a virtualized container with the concept of IoT-Edge-AI-Cloud. The
monitoring system was verified by monitoring a hydroponic strawberry environment for 4 months.
In addition, the harvest decision system was verified using strawberry pictures acquired from Smart
Berry Farm.

Keywords: strawberry; cultivation environment monitoring; harvest decision; IoT edge; AI cloud;
deep learning; hydroponic

1. Introduction

Strawberry cultivation is one of the most globalized horticultural industries, as straw-
berries are extensively consumed worldwide. The global strawberry market size is expected
to reach USD 22,450 million by 2026, from USD 18,370 million in 2020. In other words,
it is expected to grow at an annual average of 3.4% from 2021 to 2026. According to the
Food and Agriculture Organization (FAO), worldwide strawberry production increased
by 39.4% between 2008 and 2018. Strawberry production is increasing every year with
increasing consumption [1,2].

Harvest maturity is an important factor in determining the shelf life and the quality,
taste, juice and texture of the final fruit. Harvesting of immature strawberries leads to
poor quality, internal deterioration and easy spoilage. Conversely, delayed harvesting
of strawberries significantly increases fruit damage, which can lead to rapid losses after
harvest. To manage the quantitative or qualitative loss of strawberries before and after
harvesting, it is important to understand the delicacy of strawberries, conditions of phys-
iological maturity, timely harvesting methods and other factors. The degradation of the
quality of strawberries is a major problem for strawberry growers. Monitoring the growth
and environment of strawberries can reduce damage to strawberries during harvest or
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help farmers to control ripening progress. In general, the detection of all types of dis-
eases and evaluation of the ripening stage of strawberries are carried out through manual
inspection and evaluation according to the personal experience of the farmer. Manual
identification of mature strawberries for harvesting is time- and labor-intensive. At the
same time, strawberry production has to overcome unfavorable agricultural conditions,
such as water shortages, changes in the growing environment and climate change. Thus,
improving various strawberry farming practices with innovative technologies can enhance
the strategic advantage of agricultural production.

In order to overcome such obstacles to strawberry farming, this paper designs and
develops a system capable of monitoring the strawberry cultivation environment in real
time and supporting decision makers with enhanced information about harvesting timing.
The proposed system is designed to collect, store and analyze strawberry environmental
data and photos with the concept of IoT-Edge-AI-Cloud [3,4]. The proposed monitoring
system collects 13 types of related cultivation environment data using the IoT-Edge module.
The collected environmental data are stored and visualized in a nano-sized private cloud-
based database server and visualization server, respectively. The proposed harvest decision
system classifies strawberry objects according to their maturity level using a classification
model based on a deep learning YOLO (You Only Look Once) algorithm in a nano-sized
private AI-Cloud-based analysis server. The IoT-Edge device of the proposed system
can be implemented cost-effectively based on Arduino and Raspberry Pi. The proposed
system can also easily and flexibly expand the system via container virtualization of the
system based on AI-Cloud, even if the applied strawberry farm area increases. In other
words, the number of container servers based on virtualization can easily be increased
whenever necessary. The system can efficiently manage strawberry cultivation and harvest
by integrating and visualizing strawberry cultivation environment monitoring data and
strawberry ripeness classification. The monitoring and analysis results are visualized in
an integrated interface, which provides a variety of basic data (e.g., production volume,
harvest time and pest diagnosis) for strawberry cultivation. The proposed monitoring
system can easily and stably construct big data of strawberry cultivation environments.
In other words, it can monitor the 13 types of collected environmental data in real time to
understand the growth environment. Additionally, the optimal growth environment can
be analyzed by utilizing big data that have been accumulated from the growth cycle. The
remainder of this paper is organized as follows: Section 2 describes the related studies on
methods of growing environment monitoring and maturity classification; Section 3 explains
the hydroponic strawberry monitoring and harvest decision system; Section 4 describes the
operational use cases of the hydroponic strawberry monitoring and the tests of the harvest
decision system. Finally, Section 5 discusses the conclusions and future direction.

2. Related Works

This chapter reviews the related studies on fruit and vegetable cultivation monitoring
and maturity classification. Bharti et al. [5] proposed a hydroponic tomato monitoring
system that uses a microprocessor to transmit temperature and plant size data to the
cloud using the message queuing telemetry transport (MQTT). It can also check the saved
data via an Android application. Joshitha et al. [6] used Raspberry Pi and sensors to
store data on temperature, humidity, water level, soil level, etc., in the Ubidots cloud
database from a hydroponic cultivation system. Herman and Surantha [7] proposed an
intelligent monitoring and control system for hydroponic precision farming. The system
was used to monitor the water and nutrition needs of plants, while fuzzy logic was designed
to precisely control the supply of water and nutrients. Fakhrurroja et al. [8] proposed
an automatic pH (potential of hydrogen) and humidity control system for hydroponic
cultivation using a pH sensor, humidity sensor, Arduino, Raspberry Pi, and fuzzy logic.
As a result of the fuzzy model, the pH of the water is controlled using a nutrient pump
and a weak acid pump. Verma et al. [9] proposed a framework to predict the absolute
crop growth rate using a machine learning method for the tomato crop in a hydroponic



Electronics 2021, 10, 1400 3 of 15

system. Their method helps to understand the impact of important variables in the correct
nutrient supply. Pawar et al. [10] designed an IoT-enabled Automated Hydroponics
system using NodeMCU and Blynk. Their method consists of a monitoring stage and
automation. In the monitoring stage, temperature, humidity and pH are monitored.
During automation, the levels of pH, water, temperature and humidity are adjusted.
Issarny et al. [11] introduced the LATTICE framework for the optimization of IoT system
configuration at the edge, provided the ontological description of the target IoT system.
The framework showed an example applied to a hydroponic room of vegetables for
monitoring and controlling several physical variables (e.g., temperature, humidity, CO2,
air flow, lighting and fertilizer concentration, balance and pH). Samijayani et al. [12]
implemented wireless sensor networks with Zigbee and Wi-Fi for hydroponics plants. The
networks are used by the Zigbee-based transceiver in the sensor node and the Wi-Fi-based
gateway in the coordinator node. Adidrana and Surantha [13] proposed a monitoring
system to measure pH, TDS (total dissolved solids) and nutrient temperature values in the
nutrient film technique using a couple of sensors. The system used lettuce as the object of
experiments and applied the k-nearest neighbor algorithm to predict the classification of
nutrient conditions.

Ge et al. [14] presented a machine vision system in a strawberry-harvesting robot
for the localization of strawberries and environment perception in tabletop strawberry
production. The system utilized a deep learning network for instance segmentation to
detect the target strawberries. An environment perception algorithm was proposed to
identify a safe manipulation region and the strawberries within this region. A safe region
classification method was proposed to identify the pickable strawberries. Yu et al. [15]
proposed a harvesting robot for ridge-planted strawberries and a fruit pose estimator.
The proposed harvesting robot was designed on the servo control system of a strawberry-
harvesting robot suitable for the narrow ridge-planting mode. The fruit pose estimator,
based on the rotated YOLO (R-YOLO), was suitable for strawberry fruit in the narrow
spaces of the ridge-planting mode. Feng et al. [16] designed a harvesting robot for tabletop-
cultivated strawberry. The robot system consists of an information acquisition part, a
harvesting execution part, a controller and other auxiliaries. The information acquisition
part includes a distant- and close-view camera, an artificial light source and obstacle
detection sensors. The distant-view camera is used to dynamically identify and locate the
mature fruit in the robot’s view field. The close-range camera is used to obtain close-view
images of the fruit. The artificial light source can compensate for the variable sunlight
conditions under agricultural environments. Huang et al. [17] proposed a fuzzy Mask
R-CNN (regions with convolutional neural network) model to automatically identify the
ripeness levels of cherry tomatoes. The proposed method used a fuzzy c-means model to
maintain the spatial information of various foreground and background elements of the
image. It also used Mask R-CNN to precisely identify each tomato. The method used a
hue saturation value color model and fuzzy inference rules to predict the ripeness of the
tomatoes. Altaheri et al. [18] proposed a machine vision framework for date fruit harvesting,
which uses three classification models to classify date fruit images in real time according
to their type, maturity and harvesting decision. Zhang et al. [19] proposed a CNN-based
classification method for a tomato-harvesting robot to improve the accuracy and scalability
of tomato ripeness with a small amount of training data. The authors of [20] proposed
a scheme using machine-vision-based techniques for automated grading of mangoes
according to their maturity level in terms of actual days to rot and quality attributes such
as size and shape. Saputro et al. [21] introduced a banana maturity prediction system using
visible near-infrared imaging based on the chlorophyll characteristic to estimate maturity
and chlorophyll content non-destructively. Kuang et al. [22] proposed a kiwifruit classifier
using a multivariate alternating decision tree and deep learning.

The proposed system collects 13 types of strawberry growth environment data,
whereas the environmental information monitored in the previous related works [5–13]
consisted of two to eight types. By collecting more environmental information compared
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to the related works, it is possible to access more diverse methods when analyzing the
growing environment. As the related works [5–13] involve simply collecting environ-
mental data or simply storing the collected data in the cloud, the addition of functions to
the related works is limited. By contrast, the proposed method is designed to facilitate
function expansion and analysis, as it consists of an IoT-Edge module and a nano-sized
private AI-Cloud module. The proposed method determines the strawberry harvest time
by using a deep-learning-based method similar to related studies [14,15,17,19]. However,
the difference from the related studies is that it is designed based on a virtualized container
to increase the scalability of the function.

3. Hydroponic Strawberry Monitoring and Harvest Decision System

The following sections describe the components of the device hardware and module
architecture for the hydroponic strawberry monitoring and harvest decision system.

3.1. System Overview and Device Components

A hydroponic strawberry monitoring and harvest decision system prototype was de-
signed for collecting growth environment data, analyzing optimal growing environments and
identifying mature strawberries. The proposed system consists of a hydroponic strawberry
monitoring IoT-Edge device and a GPU workstation device, as shown in Figure 1.
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3.1.1. Hydroponics System

In this paper, a home hydroponic cultivation system was used to monitor strawberry
growth information and verify harvest decision information, as shown in Figure 1(6). The
hydroponic cultivation system consists of a hydroponic shelf, a water tank and a water
pump. The hydroponic shelf consists of a total of three floors with two pipes per floor and
32 plants. Seolhyang strawberry [23] was grown in the hydroponic cultivation system.

3.1.2. Hydroponic Strawberry Monitoring IoT-Edge Device

The IoT-Edge device collects growth environment data for optimal cultivation environ-
ment analysis when growing the hydroponic strawberry solution. In addition, strawberry
images are taken for identification of mature strawberries and calculation of the normalized
difference vegetation index (NDVI). The IoT-Edge device is composed of Raspberry Pi,
Arduino, sensors, Raspberry Pi cameras and a power supply, as shown in Figure 1b. Table 1
shows the component hardware specification of the IoT-Edge device. In this study, environ-
mental data and strawberry photos were collected in a fixed environment for verification of
the proposed system. For this reason, one strawberry plant was selected and the distance
between the camera and the strawberry plant was fixed. The Raspberry Pi Camera v2.1
module has a fixed focus, so we manually turned the focus ring to focus. The camera
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module in Figure 1(4) is connected to the Arducam multi-camera module that is connected
to the Raspberry Pi module in Figure 1(1).

Table 1. The component hardware specification of the IoT-Edge device.

Component Hardware Specification

Raspberry Pi
(Figure 1(1))

• Raspberry Pi 3B+

- CPU: ARM Cortex-A53 1.4 GHz
- RAM: 1 GB SRAM
- Wi-Fi: 2.4 GHz and 5 GHz
- Ethernet: 300Mbps

• microSD 256 GB
• Arducam Multi Camera Adapter Module V2.1

- Work with 5 MP or 8 MP cameras
- Accommodate 4 Raspberry Pi cameras on a single RPi board
- 3 GPIOs required for multiplexing
- Cameras work sequentially, not simultaneously

Arduino
(Figure 1(2))

• Arduino Mega 2560

- Microcontroller: ATmega2560
- Digital I/O pins: 54
- Analog input pins: 16
- Flash memory: 256 KB
- SRAM: 8 KB
- EEPROM: 4 KB
- Clock speed: 16 MHz

Sensors
(Figure 1(3))

• Light intensity sensor (lux): GY-30
• pH sensor: SEN0161 (pH probe, circuit board, analog cable)
• Dissolved oxygen sensor: Kit-103DX (DO circuit, probe, carrier board)
• Ultraviolet sensor: ML8511
• TDS Sensor: Gravity TDS Meter v1.0 (EC (electrical conductivity),

TDS (total dissolved solids))
• Temperature/Humidity/Pressure/Altitude: BME/BMP280
• Water temperature sensor: DS18B20
• CO2 sensor (value, status): MG811

Cameras
(Figure 1(4))

• Raspberry PI Camera Module V2.1/Raspberry PI NoIR Camera
Module V2.1 (8 megapixel)

- 3280 × 2464 resolution
- CSI (camera serial interface)-2 bus
- Fixed focus module

Power supply
(Figure 1(5)) • USB Smart Charger 5v 2A 5 ports

3.1.3. GPU Workstation

The GPU workstation device in Figure 1c stores the growing-environment data and
strawberry images collected from the IoT-Edge device. It also selects images of mature
strawberries that can be harvested. The NDVI value is calculated to determine if the
strawberry is healthy. Table 2 shows the component hardware specification of the GPU
workstation device.
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Table 2. The component hardware specification of the GPU workstation device (Figure 1c).

Component Hardware Specification

CPU

• AMD Ryzen Threadripper 2950X

- 16-Core Processor 32 Thread
- 3.5 GHz (4.4 GHz Max Boost)

• Water cooling system

RAM
• Samsung DDR4

- 16 GB ∗ 8 = 128 GB
- Configuration clock speed: 2666 MT/s

SSD • m.2 NVMe 1TB

Main board

• X399 AORUS PRO

- Supports AMD 2nd Generation Ryzen™
Threadripper™

- Quad Channel ECC/Non-ECC DDR4, 8 DIMMs
- Fast Front and Rear USB 3.1 Type-C™ Interface
- 4-Way Graphics Support

GPU

• ASUS ROG STRIX GTX 1080ti ∗ 4

- Base Clock 1596 MHZ
- Core 3584

• Water cooling system

3.2. System Module Architecture

The system module architecture was designed to collect, store and analyze strawberry
cultivation environment information from a software point of view for functions’ imple-
mentation. The system module consists of a monitoring IoT-Edge module and an analysis
station module, as shown in Figure 2.
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3.2.1. Monitoring IoT-Edge Module

The IoT-Edge module has functions of collecting sensor data, transmitting sensing data
to a database, taking multi-camera images and transmitting the images to a storage device. As
shown in Figure 2a, the hardware of the IoT-Edge module consists of an Arduino module that
acts as an IoT sensor hub and a Raspberry Pi module that acts as an edge device. Raspberry
Pi’s GPIO (General Purpose Input Output) does not support analog sensors because it does
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not support ADCs (analog-to-digital converters). Additionally, the number of sensors that
can be attached is limited because there are special-purpose GPIO pins. The Arduino module
has 16 analog input pins and 54 digital input/output pins, so it can easily add sensors. The
Arducam Multi Camera Adapter Module uses a single CSI camera port on the Raspberry
Pi module to connect two cameras. It also uses three GPIOs on the Raspberry Pi module
for multiplexing support. The Sensor Data Collector of Figure 2(1) collects 13 types of
environmental data from eight sensors. Table 3 shows the sensors related to the data being
collected. The Data Collector is programmed in C language using Sketch, an Arduino
integrated development environment (IDE), to send the 13 types of sensing data to the
IoT-Edge device every 0.5 s. The monitoring function of the IoT-Edge module is verified by
collecting and transmitting data that are repeated every 0.5 s.

The Sensors Data Sender in Figure 2(4) stores the data collected through USB serial
communication in the database of the GPU workstation. The Data Sender is programmed
to receive sensing data from /dev/ttyUSB0 of the Raspberry Pi serial communication
port using Python language and store it in the sensors table of the Maria database (i.e.,
Figure 2(7) Sensors Data DB LXD Container) of the workstation. The Multi Camera Image
Collector in Figure 2(2) captures and stores strawberry images from IR cut (infrared cut-
off filter) and non-IR cut cameras. The Python example program code of the Arducam
Multi Camera Adapter (i.e., Multi_Camera_Adapter_V2.2_python [24]) was modified to
capture strawberry images every 2 h with IR cut and non-IR cut cameras and store them
in the IoT-Edge device. The Multi Camera Image Sender in Figure 2(3) saves the images
stored on the IoT-Edge device to the workstation’s image storage. The Image Sender
was programmed in Bash shell script using the Linux command line utility SCP (Secure
Copy) so that strawberry images stored on the Raspberry Pi module can be saved to the
workstation’s image storage every day.

3.2.2. Analysis Station Module

The analysis station module was designed with the concept of AI-Cloud, so if the
system needs to be expanded, the server container can be flexibly and easily increased. In
other words, the number of container servers based on virtualization can be easily increased
whenever the strawberry cultivation area increases. As shown in Figure 2b, the analysis
station module has functions, such as an image storage server in Figure 3c, analysis server
in Figure 3d, database server in Figure 3b and visualization server in Figure 3e. The module
was designed as a nano-sized private AI-Cloud to increase availability by separating it
into containers for each function. This means it is separated into a virtualized container
so that one of the analysis functions is shut down; as such, it cannot affect the operation
of other functions. In addition, in order to increase the hardware resource pool efficiency
and flexibility in relation to the functions of modules, it is composed of an infrastructure
in which AI and cloud are hyper-converged. As shown in Figure 3, the servers for each
function are containerized using Ubuntu’s LXD [25]. LXD is a container hypervisor that
Canonical made open source by improving the Linux container. Ubuntu version 18.04 was
used as the operating system for the host server of the analysis station module, and as the
operating system for the guest container server for each function.

The Database Server container in Figure 3b is a database server that stores sensor data
from the Sensor Data Sender in Figure 2(4). MariaDB version 10.1.47 was installed in the
container. To store sensor data, a database named “growing_environment” was created,
and a table named “sensors” was created. Table 3 shows the schema of the sensor table by
the “DESC sensor” query command. As shown in Table 4, the sensors table has 16 fields.
The id field is a primary key, of which the number is automatically increased from 1. The
time_sec field records a timestamp of the time point at which sensor data are stored in
order to process them as a time series. The sensor field is used to identify IoT-Edge devices.
In this work, since only one IoT-Edge device is used, 1 is recorded in the sensor field. The
thirteen data types collected from the eight sensors in Table 1 (sensors) are stored fields in
Table 3, from temperature to tds.



Electronics 2021, 10, 1400 8 of 15
Electronics 2021, 10, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Nano-sized private AI-Cloud for the functions of analysis station module. 

Table 3. The sensors table schema in the growing_environment database. 

Field Type Null Key Default Extra 
id bigint (20) NO PRI NULL auto_increment 

time_sec timestamp NO  
CUR-

RENT_TIMESTAMP 
on update CUR-

RENT_TIMESTAMP 
sensor int (11) YES  NULL  

temperature float YES  NULL  
pressure float YES  NULL  
altitude float YES  NULL  

humidity float YES  NULL  
lux float YES  NULL  
uv float YES  NULL  
co2 float YES  NULL  

co2status char (2) YES  NULL  
wtemperature float YES  NULL  

ph float YES  NULL  
do float YES  NULL  
ec float YES  NULL  
tds float YES  NULL  

The Image Storage Server container in Figure 3c is an image storage server that stores 
strawberry pictures from the Multi Camera Image Sender in Figure 2(3). An image storage 
pool was created to separate the server container’s storage pool. The name of the created 
image storage pool is img-storage, and the name of the existing storage pool is lxd-storage. 
The storage server container is attached by the img-storage pool, in which image data can 
be saved as a file in ext4 file system format [26,27]. 

The Analysis Server container in Figure 3d has the function of classifying strawberry 
images and calculating the normalized difference vegetation index (NDVI) [28]. Straw-
berry image classification is used to determine the harvest time. 

The Visualization Server container in Figure 3e visualizes the sensor data of the Da-
tabase Server container in Figure 3b and the results of strawberry object classification of 
the Analysis Server container in Figure 3d. Grafana version 7.1.5 was installed in the con-
tainer for the visualization of sensor data and images. Ten fields were visualized by con-
necting Grafana with MariaDB’s growing_environment database on the Database Server 
container. In addition, it visualizes the strawberry image of the Image Storage Server con-
tainer in Figure 3c and the classified strawberry image of the Analysis Server container. 

3.2.3. Data Handling of Analysis Server 

Figure 3. Nano-sized private AI-Cloud for the functions of analysis station module.

Table 3. The sensors table schema in the growing_environment database.

Field Type Null Key Default Extra

id bigint (20) NO PRI NULL auto_increment

time_sec timestamp NO CURRENT_TIMESTAMP on update CUR-
RENT_TIMESTAMP

sensor int (11) YES NULL
temperature float YES NULL

pressure float YES NULL
altitude float YES NULL

humidity float YES NULL
lux float YES NULL
uv float YES NULL
co2 float YES NULL

co2status char (2) YES NULL
wtemperature float YES NULL

ph float YES NULL
do float YES NULL
ec float YES NULL
tds float YES NULL

The Image Storage Server container in Figure 3c is an image storage server that stores
strawberry pictures from the Multi Camera Image Sender in Figure 2(3). An image storage
pool was created to separate the server container’s storage pool. The name of the created
image storage pool is img-storage, and the name of the existing storage pool is lxd-storage.
The storage server container is attached by the img-storage pool, in which image data can
be saved as a file in ext4 file system format [26,27].

The Analysis Server container in Figure 3d has the function of classifying strawberry
images and calculating the normalized difference vegetation index (NDVI) [28]. Strawberry
image classification is used to determine the harvest time.

The Visualization Server container in Figure 3e visualizes the sensor data of the
Database Server container in Figure 3b and the results of strawberry object classification
of the Analysis Server container in Figure 3d. Grafana version 7.1.5 was installed in the
container for the visualization of sensor data and images. Ten fields were visualized
by connecting Grafana with MariaDB’s growing_environment database on the Database
Server container. In addition, it visualizes the strawberry image of the Image Storage Server
container in Figure 3c and the classified strawberry image of the Analysis Server container.

3.2.3. Data Handling of Analysis Server

NDVI can be used to analyze plant health by accurately indicating the state of chloro-
phyll by observing changes in near-infrared light compared to red light. The strawberry
image classification function classifies the object of the strawberry image into six categories
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according to the appearance maturity of the strawberry using a YOLO (You Only Look
Once) algorithm. The YOLO algorithm enables end-to-end training and real-time speeds
while maintaining high average precision. The algorithm is essentially a unified detection
model without a complex processing pipeline that uses the whole image as the network
input, which will be divided into an S × S grid. After selection from the network, the
model directly outputs the position of the object border and the corresponding category
in the output layer. However, the algorithm is not effective in detecting close objects
and small populations. The versions of the YOLO algorithm consist of YOLO V1, YOLO
V2 and YOLO V3. YOLO V1 transforms the target detection problem into a regression
problem using a single convolutional neural network that extracts bounding boxes and
class probabilities directly from the image. YOLO V2 is the improved version of YOLO
V1. The modeling architecture and training model of YOLO V2 are proposed based on
Darknet-19 and five anchor boxes. YOLO V3 integrates Darknet-19 from YOLO V2 to
propose a new deeper and wider feature extraction network called Darknet-53. TinyYOLO
is the light version of the YOLO. TinyYOLO is lighter and faster than YOLO while also
outperforming other light models’ accuracy [29,30].

Figure 4 shows a flowchart of the task of training a strawberry image classification
function using the YOLO V3 algorithm and inferring strawberry image classification using
the trained function. As shown in Figure 4a, 6156 strawberry images were classified
into six categories by strawberry experts using YOLO Mark [31] for training the data.
Figure 4b shows the inference of classification categories using the trained model and
real strawberry image data. The categories consisted of immature, 30% mature, 50%
mature, 60% mature, 80% mature and mature. Table 5 shows the classification categories
of strawberry images and the number of training data sets. The maturation period of
strawberries lasts up to 50 to 60 days in winter, and the maturation period gradually
shortens as the temperature increases in spring. The category criteria in Table 4 are set
for the spring season. The strawberry NDVI calculation function was calculated by using
Equation (1) and the position coordinates of the strawberry object by the strawberry image
classification function.

NDVI =
NIR − RED
NIR + RED

(1)

where NDVI is the normalized differential vegetation index, NIR is a near-infrared value
and RED is a red value. NIR and RED represent reflectivity measured in the near-infrared
and red wavelength bands, respectively.
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Table 4. Strawberry image classification categories and training data sets.

Category

Label 0 1 2 3 4 5

Sum
Meaning

Immature 30% Mature 50% Mature 60% Mature 80% Mature Mature

Harvest
after 1 Month

Harvest
after 3 Weeks

Harvest
after 2 Weeks

Harvest
after 1 Week

Harvest
after 3 Days

Harvest
after 1 Day

Number of images 1005 1012 1017 1043 1038 1042 6156

4. Operational Use Case and Test

This section describes the operational use cases of the hydroponic strawberry mon-
itoring and the tests of the harvest decision system. The monitoring system monitored
environmental data for 5 months. Seolhyang strawberries [23] were grown for strawberry
monitoring in a home hydroponic cultivation system. The monitoring system was located
in our office with good natural light. April and May are actually the growing seasons of
strawberries. From June, the temperature was so high that all the strawberries dried up
and died. For this reason, only environmental information of the hydroponic cultivation
system was monitored from June to August. The experiment data of the strawberry harvest
decision system used 1575 strawberry photos taken using an MAPIR camera [32] at the
Smart Berry Farm [33] in South Korea. In order to evaluate the classification accuracy of
strawberry objects, 4329 strawberry objects included in the pictures were classified into the
categories in Table 4 by strawberry-growing experts.

4.1. Database Server for Monitoring Data

Monitoring data collected by the IoT-Edge module were stored and managed in the
MariaDB database server. The database server had a growing_environment database, which
contained a sensor table. The sensor table was composed of the DB schema of Table 3.
In the database server, 1,316,848 real data pieces, related to 13 categories of growing
environmental data, were stored from 4 April 2020, to 31 August 2020. Table 5 shows the
last 20 records stored in the sensors table using the query “select * from sensors order by id
desc limit 20”.

Table 5. Monitoring data of strawberry growing environment.

Id time_sec Sensor Temperature Pressure Altitude Humidity lux uv CO2 CO2 Status Wtemperature ph do ec tds

93263 2020-08-26 13:55 1 30.97 992.31 175.8 28.43 357.5 0.16 515 NR 32.75 7.3 2.16 0.01 943.76

93264 2020-08-26 13:57 1 31.23 991.94 178.97 30.29 189.17 0.12 500 NR 32.44 7.31 2.13 0.01 943.76

93265 2020-08-26 13:59 1 31.24 991.98 178.63 30.33 197.5 0.12 497 NR 32.44 7.31 2.1 0.01 943.76

93266 2020-08-26 14:00 1 31.24 991.99 178.51 30.31 199.17 0.12 495 NR 32.44 7.31 2.07 0.01 943.76

93267 2020-08-26 14:00 1 31.22 992 178.42 30.22 200.83 0.16 495 NR 32.44 7.31 2.04 0.01 943.76

93268 2020-08-26 14:01 1 31.22 991.97 178.73 30.28 190 0.12 509 NR 32.44 7.31 2.02 0.01 943.76

93269 2020-08-26 14:03 1 31.17 992.01 178.39 30.48 203.33 0.12 508 NR 32.44 7.31 2.07 0.01 943.76

93270 2020-08-26 14:05 1 31.19 991.96 178.76 30.38 199.17 0.12 510 NR 32.44 7.31 2.05 0.01 943.76

93271 2020-08-26 14:05 1 31.2 991.99 178.54 30.38 197.5 0.12 510 NR 32.44 7.31 2.04 0.01 943.76

93272 2020-08-26 14:06 1 31.19 991.96 178.76 30.38 195 0.12 510 NR 32.44 7.31 2.05 0.01 943.76

93273 2020-08-26 14:06 1 31.21 991.99 178.55 30.43 191.67 0.12 508 NR 32.44 7.31 2.06 0.01 943.76

93274 2020-08-26 14:08 1 31.06 991.97 178.69 30.03 187.5 0.12 510 NR 32.44 7.31 2.03 0.01 943.76

93275 2020-08-26 14:10 1 30.92 991.92 179.13 30.31 183.33 0.12 495 NR 32.44 7.31 2.05 0.01 943.76

93276 2020-08-26 14:11 1 30.88 991.94 178.95 30.1 183.33 0.16 496 NR 32.44 7.31 2.14 0.01 943.76

93277 2020-08-26 14:11 1 30.85 992 178.41 30.46 184.17 0.12 498 NR 32.44 7.31 2.08 0.01 943.76

93278 2020-08-26 14:12 1 30.81 991.99 178.53 30.58 185 0.16 500 NR 32.44 7.31 2.03 0.01 943.76

93279 2020-08-26 14:14 1 30.88 991.91 179.24 30.88 193.33 0.13 499 NR 32.44 7.31 2.12 0.01 943.76

93280 2020-08-26 14:16 1 30.93 991.93 179.04 30.32 210.83 0.12 511 NR 32.44 7.31 2.05 0.01 943.76

93281 2020-08-26 14:16 1 30.96 991.91 179.24 30.75 216.67 0.16 511 NR 32.44 7.31 2.1 0.01 943.76

93282 2020-08-26 14:17 1 30.96 991.9 179.27 30.59 223.33 0.12 511 NR 32.44 7.31 2.13 0.01 943.76

4.2. Image Storage Server for Analysis Data

Strawberry pictures for strawberry harvest determination and NDVI calculation
were taken by the IoT-Edge module and stored in the image storage server. In total,



Electronics 2021, 10, 1400 11 of 15

3248 strawberry photos were taken and saved from 10 April 2020 to 25 August 2020. Half
of the 3248 photos were taken with an IR cut camera and the other half with a non-IR cut
camera. Figure 5 shows the pictures of strawberries stored on the image-storage server.
These pictures were taken at intervals of 2 h. The photos named with camera-A were taken
with the IR cut camera, and the photos named with camera-B were taken with the non-IR
cut camera.
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4.3. Analysis Server for Strawberry Harvest Determination and NDVI Calculation

In this subsection, the strawberry classification function and NDVI calculation tests
are described. The classification accuracy was used to test the strawberry classification
function. The accuracy rate was calculated by comparing the category classified by the
strawberry classification model and the category classified by the expert. The classification
model was created using the strawberry training data in Table 5 and the YOLO algorithm.
The training of the classification model (i.e., YOLO V3) was repeated 50,020 times in 12 h
and 5 min. Four NVidia GTX 1080ti graphic cards were used for training. Figure 6 shows an
average loss rate of the training data of 0.0328 for 50,019 iterations in the YOLO V3 model.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 6. Average loss rate of training data for the strawberry classification model. 

The training data in Table 4 were labeled to be optimized for the YOLO algorithm. 
For this reason, comparison with other methods is meaningless; therefore, in this paper, 
the YOLO V2, YOLO V3, TinyYOLO V2 and TinyYOLO V3 models are compared. YOLO 
V1 was excluded from the evaluation due to its low accuracy. YOLO models were created 
by transfer learning with the training data in Table 5 on the basic models of YOLO V2, 
YOLO V3, TinyYOLO V2, and TinyYOLO V3. The 4327 evaluation objects in 1575 straw-
berry photos consist of photos taken directly from strawberry farms and photos retrieved 
from a Google Images search. Figure 7 shows the comparison results of the average accu-
racy rates of the YOLO models for 4327 evaluation objects. In Figure 7, the average accu-
racy of YOLO V3 is approximately 3.667% higher than that of YOLO V2, 9.477% higher 
that of TinyYOLO V3 and 16.247% higher that of TinyYOLO V2. Due to the well-labeled 
training data and well-generated models, the accuracy rates of YOLO V3 and YOLO V2 
are considered to be high. As the weight of the TinyYOLO model is smaller than that of 
YOLO, the training data are not well reflected in the generated model. As a result of ana-
lyzing 75 misclassified strawberry objects with YOLO V3, the objects overlap one another 
or the pictures are out of focus. 

 
Figure 7. Result of comparison of the YOLO models for 4327 evaluation objects. 

Figure 8 shows the process of calculating the NDVI value from a strawberry picture. 
As shown in Figure 8a, after selecting a strawberry object from a strawberry photo using 

Figure 6. Average loss rate of training data for the strawberry classification model.



Electronics 2021, 10, 1400 12 of 15

The training data in Table 4 were labeled to be optimized for the YOLO algorithm. For
this reason, comparison with other methods is meaningless; therefore, in this paper, the
YOLO V2, YOLO V3, TinyYOLO V2 and TinyYOLO V3 models are compared. YOLO V1
was excluded from the evaluation due to its low accuracy. YOLO models were created by
transfer learning with the training data in Table 5 on the basic models of YOLO V2, YOLO
V3, TinyYOLO V2, and TinyYOLO V3. The 4327 evaluation objects in 1575 strawberry
photos consist of photos taken directly from strawberry farms and photos retrieved from a
Google Images search. Figure 7 shows the comparison results of the average accuracy rates
of the YOLO models for 4327 evaluation objects. In Figure 7, the average accuracy of YOLO
V3 is approximately 3.667% higher than that of YOLO V2, 9.477% higher that of TinyYOLO
V3 and 16.247% higher that of TinyYOLO V2. Due to the well-labeled training data and
well-generated models, the accuracy rates of YOLO V3 and YOLO V2 are considered to be
high. As the weight of the TinyYOLO model is smaller than that of YOLO, the training
data are not well reflected in the generated model. As a result of analyzing 75 misclassified
strawberry objects with YOLO V3, the objects overlap one another or the pictures are out
of focus.

Figure 8 shows the process of calculating the NDVI value from a strawberry picture.
As shown in Figure 8a, after selecting a strawberry object from a strawberry photo using
a strawberry classification model, the coordinates of the object are extracted. As shown
in Figure 8b, the NDVI values are calculated by using the coordinates of each object
and Equation (1). Figure 8(1,2) were classified as label 1, which is 30% mature, by the
strawberry classification model. Figure 8(3) was classified as label 4, which is 80% mature,
by the strawberry classification model. In general, the NDVI value approaches −1 as the
strawberry matures, and the NDVI value approaches 1 the more immature the strawberry is.
The NDVI values of the strawberry objects in Figure 8(1,2) are very different. It is analyzed
that the NDVI value is different because the intensity of the light source of the strawberry
photos is different. In order to calculate an accurate NDVI value, an environment with a
light source of constant intensity is required, such as a smart farm factory using LEDs.
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4.4. Visualization Server for Strawberry Monitoring and Harvest Decision

On the visualization server, the monitoring and analysis results can be visualized
with an integrated interface to use various basic data for growing strawberries. Figure 9
shows the visualization of the monitored strawberry environment data and the strawberry
classification results with relation to harvest determination. Figure 9a shows the result of
classifying strawberry photos by using the strawberry classification function of the analysis
server and the IoT-Edge’s IR cut camera. There are three strawberry objects in the photo.
One object was classified as 30% mature, but the other two objects were not classified
because they overlapped each other. Figure 9b shows the visualization of environmental
data, such as humidity, temperature, water temperature, light, ultraviolet, CO2, altitude,
pressure, pH and dissolved oxygen, stored in the database server. Visualization of the
NDVI values was excluded from the visualization server because the intensity of light
constantly changed in the natural light environment.
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5. Conclusions

In this study, we designed and implemented a system that monitors the strawberry
hydroponic cultivation environment and determines the harvest time of strawberries. The
proposed system uses an IoT-Edge module to collect strawberry hydroponic environment
data and strawberry photos. The collected environmental data and strawberry photos
are transferred to a nano-sized private AI-Cloud-based analysis station module and are
visualized and determined when harvesting. The monitoring and analysis results visual-
ized with an integrated interface provide a variety of basic data, such as varying yields,
harvest times and pest diagnosis for strawberry cultivation. The proposed system was
designed with the concept of an AI-Cloud, and the server container can be flexibly and
easily increased if the system needs to be expanded. While growing Seolhyang strawberries
in a home hydroponic cultivation system, the proposed monitoring system was tested
by monitoring 1,316,848 actual environmental data pieces related to 13 data types over
a period of 4 months. The proposed harvest decision system predicted the harvest time
using 1575 strawberry pictures acquired from the Smart Berry Farm and a Google Images
search and showed a high accuracy rate of 98.267%. As future research, we plan to study
analysis methods that analyze the monitored strawberry growing environment data. In
addition, we plan to study how the analysis results affect strawberry maturity.
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