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Abstract: Due to the increase of lung cancer globally, and particularly in Korea, survival analysis for
this type of cancer has gained prominence in recent years. For this task, mathematical and traditional
machine learning approaches are commonly used by medical doctors. While the deep learning
approach has had proven success in computer vision tasks, natural language processing and other AI
techniques are also adopted for this task. Due to the privacy issues and management process, data in
medicine are difficult to collect, which leads to a paucity of samples. The small number of samples
makes it difficult to use deep learning and renders this approach unusable. In this investigation, we
propose a network architecture that combines a variational autoencoder (VAE) with the typical DNN
architecture to solve the survival analysis task. With a training size of n = 4107, MVAESA achieves
a C-index of 0.722 while CoxCC, CoxPH, and CoxTime achieved scores of 0.713, 0.703, and 0.710,
respectively. With a small training size of n = 379, MVAESA achieves a C-index of 0.707, compared
with 0.689, 0.688 and 0.690 for CoxCC, CoxPH, and CoxTime, respectively. The results show that the
combination of a VAE with a target task makes the network more stable and that the network could
be trained using a small-sized sample.

Keywords: survival analysis; lung cancer; variational autoencoder; multiple tasks; prognosis

1. Introduction

Lung cancer is the leading cause of cancer death worldwide [1,2]. There are two main
histopathological types of lung cancer, non-small cell lung cancer (NSCLC) and small
cell lung cancer (SCLC), with their incidence rates representing about 85% and 15% of
lung cancer cases, respectively [3,4]. Lung cancer has a poor prognosis despite the recent
development of various novel treatments: the 5 year survival rate for NSCLC is about
22% and that for SCLC is 6% [5]. The accurate prediction of a patient’s outcome, such
as overall survival following a cancer diagnosis, is essential to guide treatment decision-
making. Traditional survival analysis (SA) using the Cox proportional hazards model
is based on the assumption that a patient’s risk is a linear combination of covariates.
This assumption of linear–proportional hazards is difficult to satisfy with real-world data.
Recently, the use of neural network-based survival prediction has been investigated to solve
this limitation of SA and to improve the performance of prediction models. In previous
studies, deep learning (DL) using various prognostic information was shown to have
equal or superior performance compared to traditional SA in predicting survival [6–8].
Prognostic information from genomic or medical imaging data is helpful, but these data
are not available for all patients. However, clinical factors including age, gender, histology,
stage, and smoking are routinely obtained during diagnostic evaluation in lung cancer
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patients. This study focused on the use of clinical information in the analysis of NSCLC
patients’ survival time.

For the NSCLC survival analysis in our study, we observed that the number of samples
in NSCLC was small due to challenges in collecting patient information. DL is data-hungry
as it relies on data to learn latent information automatically while also providing a good
feature. Therefore, a small sample makes the model prone to overfitting. In the field of
medicine, it is challenging to collect patient information; therefore, this leads to the problem
of a small sample size.

In this work, we propose a network architecture that combines a variational autoen-
coder (VAE) with a hazard function estimator and individual survival time predictor to
enable multiple tasks to be learned simultaneously. This combination solves the problem
of the small sample size in the practice of medicine and improves the performance of
SA tasks.

2. Materials and Methods
2.1. Subjects

This study was approved by the Independent Institutional Review Board (IRB) of
Chonnam National University Hwasun Hospital. Both methods and data collection were
carried out in compliance with the applicable rules and regulations. The dataset, named
CNUHHC, was collected in Chonnam National University Hwasun Hospital. Clinical vari-
ables which were obtained at diagnosis of NSCLC from 2004 to 2017 were collected from
electric medical records by five reviewers. Patients were treated according to the multidis-
ciplinary team’s treatment decisions: surgery, radiotherapy, concurrent chemoradiotherapy,
and medical treatments including chemotherapy, targeted therapy, and immunotherapy.
In the present study, we aimed to predict a patient’s outcome at diagnosis to guide the
decision-making regarding their initial treatment. The staging included pathologic ex-
amination from specimens obtained by transbronchial or transthoracic biopsies, torso
FDG PET/CT, contrast-enhanced chest CT, and brain MRI. The clinical T/N/M stage was
assigned according to the seventh edition of the American Joint Committee on Cancer
(AJCC) cancer staging manual by a multidisciplinary tumor board for lung cancer consist-
ing of pulmonary oncologists, thoracic surgeons, neurosurgeons, radiation oncologists,
pathologists, radiologists, and nuclear medicine physicians. CNUHHC includes the clinical
information of 5206 patients. There are four categories and seven continuous fields in our
clinical data in addition to the survival time that needs to be predicted.

Table 1 shows some statistical information regarding the selected dataset. The mean
age was 66.8 (95% CI 66.6 to 67.0). There were 1241 females (23.8%) and 3965 males (76.2%).
For NSCLC, the number of males was triple that of females. The number of patients in the
early stages was smaller than in the late stages, with only one-third of patients diagnosed
as stage I and II. In raw clinical data, we used three labels: dead, alive, and follow-up
loss. Patients that live and patients lost to follow-up are considered as censoring data
(right censoring) in traditional medical survival analysis such as the Cox proportional
hazard regression model. In this work, 39.4% of the total data comprised censoring data
in which we did not exactly know a patient’s outcome. With a 95% confidence interval,
the population’s mean survival time was between 916 and 970 days, based on 5206 samples.

Table 2 shows the description of all fields in the dataset. There were two fields in
the continuous form, including age in the basic group and amount in the smoking group.
Two other fields were in a binary categorical form, including gender and status (smoking).
T/N/M stages were also given as numbers 1, 2, 3, 4, but these were regarded as categorical
variables (with a start mark). Even though the T/N/M stages were ordered, the spacing
between the values may not have been the same across the variables’ levels; this was a kind
of ordinal variable. Other fields were in a categorical form, including morphology code
(MCODE), MCODE description, histology, and overall stage. There were 28 different values
of MCODE and 27 for its description in the CNUHHC dataset. There were four values
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of histology: adenocarcinoma, large cell, squamous cell carcinoma, and not otherwise
specified (NOS). The overall stage was one of nine different values.

Table 1. Patient characteristics (n = 5206) (CI: confidence interval).

Characteristic Value

Patient characteristics (n = 5206)
Age (years), mean (95% CI) 66.8 (66.6–67.0)
Gender (female/male), n(%) 1241 (23.8%)/3965 (76.2%)

Stage
Stage I 970
Stage II 479
Stage III 1705
Stage IV 2052

Censoring information
Censoring 1263
Non-censoring 3943

Outcome
Survival time (days), mean (95% CI) 942.9 (916–970)

Table 2. Data fields description.

Characteristic Value

Basic
Gender cat. male/female
Age cont. . . .
MCODE cat. 28 values
MCODE description cat. 28 values
Histology cat. 4 values

Stage/T/N/M
Overall Stage cat. 7 values
T cat∗. 4 values
N cat∗. 4 values
M cat∗. 2 values

Smoking
Status cat. yes/no
Amount cont. value

2.2. Proposed Method
2.2.1. Multi-Task Network Architecture with Variational Autoencoder

Figure 1 shows the proposed network architecture, named multiple task variational
autoencoder survival analysis (MVAESA). As with some other VAE network architectures,
two parts are included in MVAESA: an encoder and decoder. The objective of the encoder
is to translate the input to the latent space that represents the input with some semantic.
The decoder part is used to ground the output on the particular task from the latent space.
Our approach combines a variational autoencoder and task-specific approach. Most of the
internal data passing through our network are in vector form, and thus a fully connected
neuron network—DNN—is used. The left part is an encoder, which receives a real number
vector as an input and generates two vectors: µ and σ. Two vectors are the mean and
variance of the encoding of the input in the latent space.
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Figure 1. VAE multiple task network architecture with one encoder and three decoders; z1 z2 and z3

are independent samples from the distribution of N (µ, σ2). h(x) hazard function of the input xorg.

There are three decoders on the right of Figure 1, which are responsible for recon-
struction, hazard estimation, and survival time prediction from the top to the bottom of
the figure. The reconstruction module aims to rebuild the original input from the latent
vector. This module is basically taken from the vanilla VAE network architecture. The
second decoder is used for the discrete hazard estimator. Finally, the individual survival
time prediction module generates the estimated survival time for the patient. Each decoder
module’s input is separated by sampling from µ and σ with a Gaussian distribution by
using thereparameterization trick [9]. Details of each block are given as follows.

2.2.2. Input Processing and Encoder Block

In most studies related to clinical datasets, the authors use only numeric fields. Most
approaches are based on the linear approach, machine learning, and deep learning only
working with numeric data. In practice, there are many fields in which the data are in a
categorical form; thus, input processing is needed to convert non-numeric fields to numeric
fields before passing them to the deep network. Some studies utilize a one-hot vector
to perform encoding, but embedding shows success in many applications [10,11]. The
embedding approach was introduced by Mikolov et al. [12]. We formulate the original
input clinical information of the patient, including continuous and category fields, as xorg
in Equation (1).

xorg = xcont
⊕

xcat (1)

where

• xorg: the original input includes both continuous and categorical data fields;
• xcont: numeric fields;
• xcat: categorical fields;
•

⊕
concatenation operator.

For all fields in the categorical form, we choose the dimension to perform embedding
to the continuous space. The embedding operator converts a discrete domain value to
a continuous vector xi ∈ xcat → vi ∈ Rki , where ki is the space dimension chosen for xi.
Because each categorical variable has different properties, the embedding space may have
a different ki; e.g., ki = 2 or k j = 7. Then, we concatenate all continuous and embedded
vectors to create the input for the encoder block as shown in Equation (2). The xinput was
also used as the base to be reconstructed during the training process of our VAE.

xinput = xcont
⊕

∑
xt∈xcat

⊕
emb(xt) (2)

where
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• xinput: the input vector to pass through the deep network;
• emb: a function that implement as embedding layers in the network;
•

⊕
: the concatenation operator;

• ∑
⊕

: the concatenation operator for all elements.

Several fully connected (FC) layers are used for the encoder block with some ReLU
function. Due to the low dimension of the input xinput and the small size, we keep the
number of hidden nodes for all FC layers less than or equal to 128 to avoid the overfitting
problem. At the end of the encoder process, there are two vectors—µ, σ—which act as
typical encoders of a VAE network (µ, σ ∈ RL). L is the latent space dimension, for which a
value of 128 is chosen. Those values represent the input in the latent space, which follows
the Gaussian distributionN (µ, σ2). For later use in the decoder blocks, the sampling action
is needed to make a vector from the distribution v ∼ N (µ, σ2) and v ∈ RL. In our approach,
each decoder uses separated sampling values. In Figure 1, z1, z2, and z3 represent three
sampled values after three different sampling processes.

2.2.3. Decoder Blocks

Typical VAE networks have only one decoder block, where the sampling vector
from the latent space is passed through the DNN to reconstruct the original input. In
our approach, we combine this kind of block with some other decoder blocks to employ
multiple task learning strategies.

The objective of the reconstruction decoder is to make the vector as similar as possible
to the input. As mentioned above, our approach tries to deal with both continuous and
discrete covariates. The concatenate value is then used after embedding step xinput as the
reconstruction objective instead of xorg.

The second decoder block aims to estimate the hazard function of the patient. This
function returns the rate of probability of death over time. While some studies try to work
with this function in the continuous domain [13], few researchers have converted it to
the discrete domain [14,15]. Our approach proceeds from the continuous to the discrete
domain. From an outcome ranging from Tmin to Tmax, we divide this into T equality
segments; e.g., T = 20 for [Tmin, Tmax] = [0, 10] with a unit of years, and thus each segment
will be 0.5 years. The decoder was designed to represent the objective, including several FC
layers, and the output layer has T nodes. As shown in Figure 1, T nodes then pass through
the sigmoid function to obtain the hazard function h(x) of the input (xorg).

The third decoder was designed to predict the survival time of the patient. The
output layer includes a single node, which is a non-negative number that represents the
survival time.

2.2.4. Loss Function

Our network was designed for multiple task strategies, including the variational
autoencoder part and survival analysis part, and the loss function should be designed so
that the network learns both tasks together. Some studies have shown that learning multiple
tasks simultaneously gives the network better coverage as it learns general information
instead of particular task features [16–18].

The loss function is the combination of LVAE and LSA, which is given in Equation (3).

L = LVAE + LSA (3)

As typical VAE loss functions, LVAE is the combination of two partitions, including
Kullback–Leibler (KL) divergence and the reconstruction. KL divergence aims to make the
latent space, represented by µ and σ, controllable. Then, the normal distribution N (0, 1)
is chosen. KL divergence is shown in Equation (5). Reconstruction loss is given by the
mean squared error and gives the difference between the output and the network input.
After the embedding step, the input vector xinput is used to reference this loss function.
In the traditional VAE architecture, the reconstruction module attempts to recover the
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original input from the latent vector. However, this approach only works with numeric
inputs. We extend the network structure in Figure 1 and adapt it with the categorical
inputs; then, the loss function should be modified. As shown in Figure 1 and Equation (2),
the xinput is the vector made from xorg combining xcont and the embedding of categorical
fields. In consequence, the loss function uses this vector (xinput) instead of xorg. While
each continuous field is seen as a float number, the category field is a vector in which the
number of dimensions is usually more than one. The loss function for this part has to be
modified to make sure that all fields make equal contributions to the loss function. We
used the weighted approach as in Equation (4).

wxi =

1 xi is from continuous field
1
ki

xi is result of embedding step of category field i to embedded space Rki
(4)

where:

• wxi corresponding weight for element xi of xinput

• if field i embedded to space Rki , then there is ki continue elements of wx with same
value 1

ki

The KL divergence score is given by Equation (5).

DKL = 0.5 ∗∑ (eσ + µ2 − 1.0− σ) (5)

LVAE is calculated from two sub-loss functions as Equation (6).

LVAE = DKL + Lrecon (6)

The survival analysis decoders form the main part of our network architecture. This
step involves two tasks: the hazard function estimator and individual survival time pre-
diction. LSA includes the loss for the hazard function estimator and loss for individual
survival time prediction. For the hazard function estimator, the negative log-likelihood of
the discrete-time hazard loss function given by Havard Kvamme and Ornulf Borgan in [15]
is used. If we have data for n independent individuals, the loss is given as Equation (7).

LNLL = − 1
n

n

∑
1
(di ∗ log[ f (ti|xi] + (1− di) ∗ log[S(ti|xi)]) (7)

where

• xi: the input for patient i;
• di: event indicator for patient i;
• ti: observed time for patient i;
• f (ti|xi): density function at time ti of the input xi;
• S(ti|xi): survival function at time ti of the input xi.

f (ti|xi) and S(ti|xi) are calculated from the estimated hazard function h(.) of the
model, as shown in Equation (8).

f (ti) = h(ti) ∗ S(ti−1)

S(ti) = [1− h(ti)] ∗ S(ti−1)
(8)

Finally, a custom version of the mean squared error (CMSE) is used as the loss function
for the regression problem of individual survival time prediction. Censoring data is a
problem in most SA tasks. In our case, all censoring is in the form of right censoring. We
make an update to the mean squared error (MSE) loss function to support this kind of
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problem. For right-censoring patients, the loss values are counted only if the predicted
value is less than the ground truth value. Then, the CMSE is given as in Equation (9).

CMSE(pred, gt, event) =


MSE(pred, gt) event = 1
MSE(pred, gt) event = 0, pred < gt
0 event = 0, pred > gt

(9)

where

• pred: predicted value;
• gt: ground truth value;
• event: whether an event occurs or not (1/0);
• MSE: mean squared error function.

2.3. Experimental Setup

The experimental setup used to verify the performance of our approach was compared
with the baseline network architecture of DNN. Besides, the sample in the training set was
also considered. While CNUHHC includes more than 5000 patients, it was collected for
about 14 years, which is difficult in medical practice. We conducted two experiments with
two parts of data for training, keeping the testing data separated for comparison. Typically,
k-fold cross-validation is used to test datasets in which the number of samples is small;
however, we wanted to verify the effect on our approach of a small dataset by comparing
it not only other with approaches but also with itself when the training size changed.
Consequently, a single independent validation data point was used for a fair comparison.
By following the test–retest protocol, we randomly divided our data into two separated
parts. About 20% of data was used for testing purposes and 80% formed the training set.
The first part was the entire training set, called the large-sized set, with 4107 samples; the
small-sized part had only 379 samples randomly selected from the large-sized set. There
were 1099 patients in the test set (independent validation), which were kept separate from
the training process. The embedding sizes were set as 14, 14, 2, and 5. There were seven
fields in the form of numerical values. Therefore, the input size passed to the network was
given by

input_size = nnumeric− f ield + nembedding−size = 7 + 35 = 42

The latent space dimension was set to 128, which means µ, σ ∈ R128.
In the reconstruction part, the number of output nodes was set as equal to the network

input after embedding: 42. We set T = 20, and each segment length was half of the year.
The number of nodes for the hazard function estimator was 20.

We used popular metrics to evaluate our system and compare it with some previous
studies. The concordance index (C-index) is one of the most important metrics for SA
tasks. The C-index was introduced by Antolini et al. [19]. This is an extension of the
area under the receiver operating characteristic curve (AUC) in which right-censored
data are also taken into account. This metric is given a value in the range [0,1], where
1 shows perfect results and 0 shows that the prediction is in the reverse order to the
ground truth. A C-index of 0.5 indicates that the model outputs are random. Three
popular survival analysis methods were selected to compare with our approach: CoxTime,
CoxCC [20], and CoxPH [13]. CoxTime and CoxCC were introduced by Kvamme et al.,
who used neural networks to expand the Cox proportional hazards model for time-to-event
prediction. CoxPH, also know as DeepSurv, is a deep learning approach that extends the
Cox proportional hazards model.

2.4. Pre-Processing

The pre-processing step included some smaller steps. First, the data needed to be
cleaned. Some categorical fields were in the form of text, which needed to be normalized
and converted to an integer number. For survival analysis, censoring data always occurs,
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and this has an essential role in the analysis model. We had 1263 censoring patients, which
were of two types: alive and not followed-up. All right-censoring patients were converted
to the non-event type. The next step was data transformation. Some binary categorical
fields could easily be converted to a binary number; that is, 0 or 1.

3. Results

Table 3 shows the comparison of our network architecture with the baseline network
(DNN) with the same structure. With a large size of training data, our approach obtained a
C-index of 0.772, while CoxCC, CoxPH, and CoxTime methods obtained scores of 0.713,
0.703, and 0.710, respectively. When the training size only included 379 samples, our
approach achieved a C-index 0.707 while the baseline methods obtained 0.689, 0.688, and
0.690, respectively. For all methods, the performance dropped a little when the training size
became smaller; as shown, all C-index values with a small amount of training data were
lower than with the large dataset. The C-index dropped from 0.713 to 0.689 for CoxCC,
0.703 to 0.688 for CoxPH, and 0.710 to 0.690 for CoxTime. In the same situation, MVAESA
exhibited a drop from 0.722 to 0.707. Overall, in MVAESA, the C-index dropped less than
all other approaches.

Table 3. Comparison of model performances (C-index) between methods for survival analysis with
different training sizes from the independent validation set (test set) (n = 1099).

Approach Small Size (n = 379) Large Size (n = 4107)

CoxCC [20] 0.689 0.713
CoxPH (DeepSurv) [13] 0.688 0.703
CoxTime [20] 0.690 0.710
MVAESA (Our method) 0.707 0.722

Figure 2a,b show survival curves for four patients in the validation set with patient
IDs 37, 29, 0, and 9. Their values were inferred from the discrete hazard that was estimated
the decoder. Figure 2c shows the survival curves for the validation by stage groups, which
is given for reference. The overall stages and survival times each of four patients were
I (222), II (3321), III (1965), and IV (142), in this order. In comparison, Figure 2a,b shows
better separation between early and late stage groups. However, the patient with ID 37 in
stage I showed a better survival curve, but the survival time was only 222 days, compared
to patient 0 in stage III with a survival time of 1965 days.
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(c) Ground truth survival curves by stage group

Figure 2. Survival curves for four patients in the validation set with patient IDs of 37, 29, 0, and 9.
(a,b) Individual survival curves from estimator; (c) Survival curves according to the overall stages in
validation set (with a time unit of days).

4. Discussion

The results show that our approach outperforms other approaches in the common
metric in the SA tasks (C-index) for both cases of training sizes. With the entire training set,
the relative improved shown by our approach was 1.26%; in particular, the difference was
about twice as large (2.46%) in the case of a small-sized dataset. All approaches showed
lower accuracy when the number of samples in training was limited, implying that the
size of training data matters with DL. For all methods, the C-index dropped while the
size of the training data decreased from n = 4107 to n = 379. However, the lower drop
in performance shown by our approach implies that this network architecture is more
stable with decreasing training data. Data collection in the medical sector is not easy due
to privacy concerns and the management process. It is more likely to obtain a few samples
instead of hundreds or thousands for certain diseases; in those instances, our solution
would be beneficial.

Katzman et al. introduced CoxPH, which is also referred to as DeepSurv—a deep
neural network that predicts a patient’s hazard rates based on their covariates [13]. The
network combines some Fully-Connected (FC) layers with some dropout layers and finally
outputs the predicted value. Kvamme et al. built time-to-event prediction using neural
networks that expands on the Cox proportional hazards model, with methods named
CoxTime and CoxCC [20]. DeepHit was proposed by Lee et al. to solve the problem of
survival analysis with competing events [14]. DeepHit can learn some low-level, com-
mon features with the shared sub-network before passing them through each branch for
cause-specific prediction. Havard Kvamme and Ornulf Borgan investigated continuous
and discrete-time survival prediction [15]. In lung cancer survival analysis, Wang et al.
introduced unsupervised deep learning to learn and extract features before using the Cox
proportional hazards model for analysis [21]. While previous studies focus on modeling
and extending the traditional approaches for SA tasks using neural networks, none of them
take the small size of training data into account, as has been shown in our work.

Besides clinical information, some data such as imaging [22] and gene expression
profiles [23] may be included to improve the prediction accuracy. DL has been used
to analyze the survival rates of a variety of cancers, including brain cancer [24], breast
cancer [25], oral cancer [8], and so on.

There are several limitations to this study. Firstly, while our approach is likely general,
this study only focuses on NSCLC with a single dataset. Besides the patient’s current status,
the treatment process also plays an essential role in a patient’s outcome. Some studies use
data with this information to improve the performance [26]; however, our dataset does not
include this information. Those limitations should be addressed in future.
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5. Conclusions

This study aims to solve the NSCLC survival analysis problem using clinical informa-
tion. Data in medicine are difficult to obtain due to privacy concerns and the management
process, resulting in a paucity of samples. To deal with this kind of difficulty, we combined
multiple tasks with a VAE and developed a network called MVAESA. The experimental
results show that the network architecture obtained a significant improvement when the
number of samples was small, as is typical in practice. With a small size of the training
set, we achieved a C-index of 0.707 compared to the values of 0.689, 0.688, and 0.690 for
CoxCC, CoxPH, and CoxTime, respectively. Our approach also uses a mixture of numeric
and categorical data, which was lacking in a recent study about survival analysis.
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