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Abstract: In a non-Gaussian environment, the accuracy of a Kalman filter might be reduced. In
this paper, a two- dimensional Monte Carlo Filter is proposed to overcome the challenge of the
non-Gaussian environment for filtering. The two-dimensional Monte Carlo (TMC) method is first
proposed to improve the efficacy of the sampling. Then, the TMC filter (TMCF) algorithm is proposed
to solve the non-Gaussian filter problem based on the TMC. In the TMCF, particles are deployed in
the confidence interval uniformly in terms of the sampling interval, and their weights are calculated
based on Bayesian inference. Then, the posterior distribution is described more accurately with less
particles and their weights. Different from the PF, the TMCF completes the transfer of the distribution
using a series of calculations of weights and uses particles to occupy the state space in the confidence
interval. Numerical simulations demonstrated that, the accuracy of the TMCF approximates the
Kalman filter (KF) (the error is about 10−6) in a two-dimensional linear/ Gaussian environment. In a
two-dimensional linear/non-Gaussian system, the accuracy of the TMCF is improved by 0.01, and
the computation time reduced to 0.067 s from 0.20 s, compared with the particle filter.

Keywords: nonlinear filter; non-gaussian environment; particle filter; sequence monte carlo

1. Introduction

Bayesian inference is one of the most popular theories in data fusion [1–5]. For a linear
Gaussian dynamic system, the Bayesian filter can be achieved in terms of the well-known
updating equations of the Kalman Filter (KF) perfectly [6]. However, the analytical solution
of the Bayesian filter is impossible to be obtained in a non-Gaussian scenario [7]. This
problem has attracted considerable attention for a few decades because of the wide appli-
cation in signal processing [8,9], automatic control systems [10,11], biological information
engineering [12], economic data analysis [13], and other subjects [14]. Approximation is one
of the most effective approaches for solving the nonlinear/non-Gaussian filter problem.

The linearization of the state model is an important strategy for solving the nonlinear/non-
Gaussian filtering problem. The extended Kalman filter (EKF) was introduced to approxi-
mate the nonlinear model using the first-order term of the Taylor expansion of the state and
observation equations in [15]. In [16], the unscented Kalman filter (UKF) was proposed
to reduce the truncation error by introducing the unscented transformation (UT) [17].
The cubature Kalman filter based on the third-degree spherical–radial cubature rule was
proposed in [18]. The third-degree cubature rule is a special form of the UT and has better
numerical stability in the application of filtering [19]. The Gauss–Hermite filter and central
difference filter (CDF) were proposed by Kazufumi Ito and Kaiqi Xiong in [20] and made
the Gaussian assumption for the noise model.

Sequential Monte Carlo (SMC) provides another important strategy for the nonlinear/non-
Gaussian filtering problem and can approximate any probability density function (PDF)
conveniently using weighted particles. Particle Filter (PF) [21,22] is an algorithm de-
rived from the recursive Bayesian filter based on the SMC approach that is used to solve

Electronics 2021, 10, 1385. https://doi.org/10.3390/electronics10121385 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3559-0939
https://orcid.org/0000-0002-9188-175X
https://doi.org/10.3390/electronics10121385
https://doi.org/10.3390/electronics10121385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121385
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121385?type=check_update&version=2


Electronics 2021, 10, 1385 2 of 17

data/information fusion in a nonlinear/non-Gaussian environment [23]. The SMC ap-
proach was introduced in filtering to tackle a nonlinear dynamic system that is analytically
intractable. The core idea of PF is to describe the transformation of the state distribu-
tion through the propagation of particles in a nonlinear dynamic system, and represent
the posterior probability using weighted particles. As a flexible approach for avoiding
solving complex integral problems, PF is widely used in the data/information fusion of
nonlinear systems, such as fault detection [24], cooperative navigation and localization,
visual tracking, and melody extraction. In [25] and [26], EKF and UKF were introduced,
respectively, to optimize the proposal distribution for the PF framework. The feedback PF
was designed based on an ensemble of controlled stochastic systems [27]. Additionally,
because of the advantage of the resampling technique in solving the degeneracy problem,
various resampling schemes were proposed in [28–30].

Both strategies are based on Bayesian theory, and approximation is also their main
approach for solving the nonlinear filtering problem [31]. However, the perspectives of
these two strategies are different, which results in different characteristics. For the first
strategy, the Kalman filter (KF) is considered as the representative of Bayesian inference.
Obtaining an analytical solution that is close to the real posterior distribution is the trick
that the first strategy attempts to solve [32]. Researchers have attempted to approximate
complex nonlinear non-Gaussian problems to linear Gaussian problems that can be di-
rectly solved using the KF [33]. This approximation inevitably leads to a truncation error.
Therefore, many improved algorithms based on the first strategy have been proposed,
mainly to reduce the effect of the truncation error on nonlinear filtering [34]. However, it
is difficult to accurately obtain the posterior distribution of a nonlinear system [35]. The
first strategy is always accompanied by linearization errors. Reducing the influence of
the Gaussian assumption of non-Gaussian noise on filtering performance is also a major
problem to be considered in the first strategy [36]. For the second strategy, the SMC method
is used to solve the difficult problem of integration in Bayesian filtering [37]. Theoretically,
this strategy (PF and its improved algorithms) is not constrained by the model of non-
linearity and non-Gaussian environment [38]. However, PF has been plagued by sample
degeneracy and impoverishment since it was proposed. Many scholars have proposed
several improvement methods to mitigate the two problems [39–41]. Increasing the particle
number is an original approach to solve the problems, but it is not very effective because
the particle number needs to increase exponentially to alleviate the two problems, which
inevitably affects the efficiency of the filter [42]. The two main approaches for solving
the two problems are improving the proposal distribution and resampling [43,44]. The
improvement of the proposal distribution might greatly alleviate the impoverishment
problem to improve the performance of the filter [45]. Hence, related improved algorithms
have been widely used in engineering practice, such as EPF and UPF [46]. Resampling, as
an important means to alleviate the sample degeneracy of PF has been widely studied by
many scholars [47,48]. However, the model used to improve the proposal distribution must
be based on some known noise model (such as the Gaussian model in EPF and Gaussian
mixture model in UPF), which cannot fully solve the impoverishment problem [49]. The
resampling step might alleviate the sample degeneracy, accompanied by the introduction
of the resampling error [31]. The main problem of the second strategy is that the particle
utilization efficiency is not high, which affects the effect and efficiency of the filtering [40].

Among the existing algorithms, the PF is the most flexible. The main procedure of PF
can be roughly summed up as: (1) obtain particles according to a proposed distribution;
(2) calculate the prior weights and the likelihood weights according to the process noise
model and measurement noise model respectively and mix them; and (3) divide the mixed
weights by the corresponding density of the proposed distribution and normalization.
After that, the posterior distribution is reflected from these weighted particles. From this
procedure, we can observe that the process of select particles is random, but the weights are
calculated precisely according to the noise model. This phenomenon might cause random
disturbances which could affect the filtering accuracy.
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To overcome the aforementioned problem, the two-dimensional Monte Carlo (TMC)
method is proposed to improve the efficiency of the sampled particles. Then, the TMC
filter (TMCF) algorithm is proposed to solve the non-Gaussian filter problem based on
the principle of the TMC method. The main contributions arising from this study are
as follows:

(1) The TMC method, as a deterministic sampling method, is proposed to improve
the efficacy of particles. Particles are sampled in the confidence interval uniformly
according to the sampling interval. Then, the posterior weight of each particle is
calculated based on Bayesian inference. Subsequently, any probability distribution
can be described by a small number of weighted particles.

(2) A discrete solution to the problem of how to describe a known probability distribution
transmitted in a linear or nonlinear state model is proposed. First, a small number
of original weighted particles are obtained according to TMC method. Then, the
confidence interval of the next time step for a fixed confidence is calculated according
to the state model. Some new particles are then set in this confidence interval uni-
formly in terms of the sampling interval. After that, the weights of these new particles
are obtained using a series of calculations based on Bayesian inference. Then, the
transferred probability distribution is described by these new weighted particles.

(3) The TMCF algorithm is proposed based on the above two points. The proposed
algorithm can be divided into four parts: initialization, particle deployment, weight
mixing, and state estimation. The TMC method is used in the initialization step to
generate the efficacy weighted particles. Particle deployment solves the problem of
state space transfer for a certain degree of confidence and deploys particles in the
confidence interval. The weight mixing step achieves the fusion of several arbitrary
continuous probability densities in a discrete domain. Some invalid weighted particles
are omitted in the particle choice step and the state is estimated using the remaining
weighted particles.

(4) The performance of TMCF was verified using a numerical simulation. The results
demonstrated that the proposed algorithm with the approach of fewer particles and
less computation estimated accuracy better than the PF in linear and Gaussian systems
and performed better than the KF and PF in linear and Gaussian mixture noise model.

The outline of this paper is as follows. In Section 2, the problem statement and
Bayesian filter are presented. The TMC method is introduced in Section 3. In Section 4, the
TMCF algorithm is introduced in detail. The numerical simulation is described in Section 5,
and the validity of the proposed framework is demonstrated. In Section 6, the conclusion
of this study is presented.

2. Problem Statement and Bayesian Filter
2.1. Problem Statement

For filtering algorithms introduced in this paper, the state space model is defined
as: [37]

xt = f(xt−1) + ut−1 (1)

zt = h(xt) + vt (2)

where xt ∈ <nx and yt ∈ <ny denote the state variable and observation at time step
t, respectively; nx and ny denote the dimensions of the state vectors and observation,
respectively; ut ∈ <nx and vt ∈ <ny denote the system noise and observation noise,
respectively; and the mappings f : <nx ×<nu 7→ <nx and h : (<nx ×<nu)×<nv 7→ <ny

describe the state transition equation and observation equation, respectively; zt denotes
the observation at time step t.

In this paper, ut and vt are independent of each other, and the probability distributions
of ut and vt are pu(x) and pv(x), respectively. Meanwhile, the probability distribution of
the initial state is known. The goal is to obtain the approximate Bayesian estimation in the
filtering process in a nonlinear and non-Gaussian environment.
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2.2. Bayesian Estimation

Recursive Bayesian filtering provides an effective guide for the real-time fusion of the
state equation and observation. The procedure of the Bayesian filter framework can be
divided into prediction and update steps as follows:

p(xt|z1:t−1 ) =
∫

p(xt|xt−1 )p(xt−1|z1:t−1 )dxt−1

p(xt|z1:t ) =
p(zt|xt )p(xt|z1:t−1 )

p(zt|z1:t−1 )

where p(xt|xt−1 ) denotes the state transition PDF, p(xt−1|z1:t−1 ) denotes the posterior PDF
at time step t− 1, p(xt|z1:t−1 ) denotes the prior PDF at time step t, p(xt|z1:t ) denotes the
likelihood PDF and

p(zt|z1:t−1 ) =
∫

p(zt|xt )p(xt|z1:t−1 )dxt (3)

For a linear and Gaussian environment, this procedure can be accurately operated by
the celebrated KF as the integral problem of Equation (1), and the likelihood probability
p(zk|xk ) can be solved conveniently. For a nonlinear and non-Gaussian environment, it is
impossible to solve Equation (1) directly.

3. Two-Dimensional Monte Carlo Method

The Monte Carlo approach provides a convenient track inference of the posterior PDF
in a non-Gaussian environment. PF is a branch of the family of filter algorithms and is
based on the Monte Carlo approach. It is used to process the nonlinear and non-Gaussian
system filter problem. Several improved particle filter algorithms exist. The core of the
PF approach is to sample particles according to the difference in the proposal distribution.
Particles are used to describe the transition of the PDF in the system model. The integration
of the observation depends on the likelihood weight. The concept of weight provides
the possibility for the application of Monte Carlo to the filtering problem, which plays an
important role. In the following, the TMC method is introduced to make full use of the
weight and the noise model to enhance particle efficiency.

Suppose p(x, y) is the PDF of a two-dimensional noise model. Its marginal PDF can
be expressed as:

p(x) =
∫ +∞

−∞
p(x, y)dy (4)

p(y) =
∫ +∞

−∞
p(x, y)dx (5)

where p(x) and p(y) denote the marginal PDF of x and y, respectively.
The confidence interval c for confidence 1− α can be defined as:

cx = [ux1 , ux2 ] (6)

cy =
[
uy1 , uy2

]
(7)

c =

[
cx
cy

]
(8)

where: ∫ ux1

−∞
p(x)dx =

α

2
(9)

∫ +∞

ux2

p(x)dx =
α

2
(10)

∫ uy1

−∞
p(y)dy =

α

2
(11)
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∫ +∞

uy2

p(y)dy =
α

2
(12)

Particles X can be set according to sampling interval dT for c, as shown in Figure 1. Additionally,

dT ≡
[
dtx, dty

]T (13)

X ≡
{ [

x1
y1

] [
x2
y3

]
· · ·

[
xn
yn

] }
(14)

where n denotes the particle number.
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Figure 1. Sketch map of setting particles.

The weight of these particles w is calculated as:

w ≡ [w1, w2, · · · wn]
T (15)

where:

wi =
p(xi, yi)

n
∑

i=1
p(xi, yi)

(16)

Then, {X, w} is used to describe p(x, y) with the accuracy of dT in the confidence
interval c for confidence 1− α discretely. The sketch map of the particles and their weights
is shown in Figure 2.
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Theorem 1. When α→ 0 and dT→ 0 , then n→ ∞ and

lim
n→∞

n

∑
i=1

xiwi =
∫ +∞

−∞

∫ +∞

−∞
xp(x, y)dxdy (17)

lim
n→∞

n

∑
i=1

yiwi =
∫ +∞

−∞

∫ +∞

−∞
yp(x, y)dxdy (18)

Proof. Suppose the probability space of p(x, y) is divided into n small squares in terms of
dT, where dT ≡

[
dtx, dty

]T . When dT→ 0 , n→ ∞ and

lim
n→+∞

n

∑
i=1

p(xi, yi)dtxdty =
∫ +∞

−∞

∫ +∞

−∞
p(x, y)dxdy = 1

�

As dtx and dty are independent of i,

n

∑
i=1

p(xi, yi) =
1

dtxdty
(19)

Hence, ∫ +∞
−∞

∫ +∞
−∞ xp(x, y)dxdy = lim

n→+∞

n
∑

i=1
xi p(xi, yi)dtxdty

= lim
n→+∞

( n
∑

i=1
xi p(xi, yi)

)
1

n
∑

j=1
p(xj ,yj)


= lim

n→+∞

 n
∑

i=1
xi

p(xi ,yi)
n
∑

j=1
p(xj ,yj)


= lim

n→+∞

n
∑

i=1
xiwi

Thus, lim
n→∞

n
∑

i=1
xiwi =

∫ +∞
−∞

∫ +∞
−∞ xp(x, y)dxdy.

Similarly,

lim
n→∞

n
∑

i=1
yiwi =

∫ +∞
−∞

∫ +∞
−∞ yp(x, y)dxdy.

A simple sample is used to further demonstrate that TMC improves particle efficiency.
Consider a one-dimensional gamma distribution:

X ∼ Γ
(

2,
1
3

)
The MC and TMC methods are used to generate particles from the gamma distribu-

tion. Figure 3 shows the sampling results from the two sampling methods. For the MC
method, the selection of particles is random. Increasing the particle number allows for
a better description of the gamma distribution, and this is the only way to mitigate the
indeterminacy. For the TMC method, the position of particles is determined when the
confidence and sampling interval are provided. The task of describing the probability
distribution is transferred to the weights corresponding to the particles. The estimation
results for the expectation errors of the Monte Carlo method for the gamma distribution
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are shown in Figure 4. Considering the indeterminacy of MC, it is run 10,000 times and the
RMSE is used to reflect the size of the error:

RMSEm =

√√√√monte

∑
j=1

(
m

∑
i=1

xi/m− 6

)2

/monte (20)

where m denotes particle number and monte denotes the Monte Carlo number. The RMSE
decreases as the particle number increases. Figure 4 shows that the RMSE is about 0.21
when the particle number is 400. For TMC, the relationship between the magnitude of
confidence and the mean error is shown in Figures 5 and 6. The absolute expectation error
decreases rapidly as the confidence increases. Meanwhile, the particle number increases
slowly as confidence increases over a fixed sampling interval. The absolute expectation
error can be reduced to 0.015 using only 75 particles for the confidence of 0.999, whereas
the sampling interval is 0.4.
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The results demonstrate that particles generated by TMC can describe the noise
distribution more efficiently than particles generated by MC.

4. Proposed Filter Algorithm

Each of the efficient particles from TMC is a possible state estimation. The weight
of each particle is the probability that the particle becomes the state estimation. The
continuous probability distribution is discretized in terms of these particles and their
weights. The TMCF is further designed as shown in Figure 7. The entire filter system can
be divided into four parts: initialization, particle deployment, weight mixing and state
estimation. In this section, the four parts are explained in detail and the TMCF algorithm
is proposed.
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4.1. Initialization

The target of initialization is to set several efficient particles to describe the initial
probability distribution discretely to facilitate the subsequent filtering process. After the
confidence 1− α and the sampling interval dT0 are set, initial particles X0 and their weights
w0 can be obtained in the confidence interval c0 using the TMC method according to the
known initial probability p0(x). Additionally, the confidence interval cε for the system
noise probability pu(x) of 1− α can be obtained according to Equation (8), and then the
amplification of interval ε is defined as:

ε = [column(cε)1 − E(pu(x)), column(cε)2 − E(pu(x))] (21)

where column(cε)i denotes the ith column of matrix/vector cε and E(pu(x)) denotes the
expectation of pu(x).

The real state xreal,0 now exists in the confidence interval c0 for the probability 1− α.
p0(x) is described by {X0, w0} for the accuracy of dT0. The probability of each particle’s
existence is described by its weight.
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4.2. Particle Deployment

The target of this step is to analyze the transition of the confidence interval from time
step t − 1 to time step t, and then deploy particles. At time step t − 1, the confidence
interval ct−1 can be written as:

ct−1 = [min(Xt−1), max(Xt−1)] (22)

in terms of the principle of the TMC method. where min(Xt−1) denotes the minimum value
of each row of matrix/vector Xt−1 and max(Xt−1) denotes the maximum value of each
row of Xt−1. When the particles Xt−1 are transferred through the system model without
system noise, the transferred particles can be expressed as:

^
Xt = f(Xt−1) (23)

Each particle in
^
Xt then is considered to be a possible state estimation without system

noise at time step t, and the probability of each particle
^
Xt(i) is the weight of Xt−1(i).

Considering system noise, the confidence interval of each particle
^
Xt(i) for confidence

1− α is

ct(i) =
[
^
Xt(i) + column(ε)1,

^
Xt(i) + column(ε)2

]
(24)

where ct(i) denotes the confidence interval for confidence 1− α corresponding to
^
Xt(i).

Then, the complete confidence interval for 1− α can be obtained by calculating the union
of all confidence intervals:

ct = ct(1) ∪ ct(1) · · · ∪ ct(nt−1) (25)

where nt−1 denotes the number of particles in set Xt−1.
For simplicity, the complete confidence interval also can be estimated roughly by:

^
ct =

¯
c t + ε (26)

where
¯
c t =

[
min

(
^
Xt

)
, max(

^
Xt)

]
.

As
^
ct ⊂ ct. Hence, confidence corresponding to the confidence interval

^
ct is greater

than or equal to 1− α. However, the amplification of the confidence interval might increase
the number of deployed particles. Sometimes this phenomenon, particularly in the case of
high dimensions, leads to too many particles, which might result in the failure of filtering.

Then, particles
¯
Xt can be deployed according to the confidence interval ct or

^
ct and

dTt at time step t. Generally, dTt is set to a constant vector:

dTt = dT0 (t = 1, 2, 3 · · ·) (27)

When the confidence interval is unstable (increases or decreases over time), a specific
strategy corresponding to the specific system needs to be designed to change the size of
the sampling interval.

In this step, the deployed particles
¯
Xt are distributed in this confidence interval

uniformly, which is preparation for the subsequent step.
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4.3. Weight Mix

In the weight mix step, the relationship between Xt−1 and
¯
Xt is analyzed to solve the

prior weight corresponding to
¯
Xt, the likelihood weight is calculated and the posterior

weight is obtained.
As the distribution of the system noise is continuous, each particle in set Xt−1 might

arrive at any particle in set
¯
Xt, in theory. The probability of each particle in set Xt−1 arriving

at each particle in set
¯
Xt can be expressed as:

_
wt(i, j) =

pu

(
¯
Xt(j)−

^
Xt(i)

)
mt
∑

j=1
p
(

¯
Xt(j)−

^
Xt(i)

)
(i = 1, 2, · · · nt−1; j = 1, 2, · · ·mt)

(28)

where
_
wt(i, j) denotes the probability of the ith particle in Xt−1 being transferred to the jth

particle in
¯
Xt. mt denotes the number of particles in set

¯
Xt. As shown in Figure 8, the prior

weight is calculated as:

w̃t(j) =
nt

∑
i=1

wt−1(i)×
_
wt(i, j) (29)
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The likelihood weight is written as:

ŵt(j) = pv

(
h
(

¯
Xt(j)

)
− zt

)
(30)

Additionally, the posterior weight is mixed by:

wt(j) =
~
wt(j)

^
wt(j)

nt
∑

i=1

~
wt(j)

^
wt(j)

(31)

Then, the posterior distribution of the state at time step t is described by
{

¯
Xt,

¯
wt

}
discretely.
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4.4. Particle Choice and State Estimation{
¯
Xt,

¯
wt

}
describes the posterior distribution after the fusion of the prior distribution

and the likelihood distribution. All the distribution information is concentrated in the

weight
¯
wt, and the role of the particles

¯
Xt is to only occupy the distribution space. Generally,

many very low weighted particles emerge after fusion. Additionally, these particles with
very low weights have very little effect on the accurate description of the distribution, so
they can simply be omitted. nt particles are chosen in the order of largest to smallest so
that the sum of the weights of the nt particles is 1− α:Xt,

¯
¯
wt


nt

1−α⇐
{

¯
Xt,

¯
wt

}
mt

(32)

Then, the weight is normalized:

wt(i) =

¯
¯
wt(i)

nt
∑

i=1

¯
¯
wt(i)

(33)

The state estimation can be obtained by

xt =
nt

∑
i=1

Xt(i)wt(i) (34)

In conclusion, the TMCF algorithm is summarized in Algorithm 1.

Algorithm 1

1 Initialization:
2 Setting 1− α and dT0
3 Generate {X0, w0} and ε according to TMC method and Equation (21)
4 //Over all time steps:
5 for t← 1 to T do
6 Setting dTt = dT0, or other strategy is used to select dTt
7 Confidence interval choice according to Equation (25) or (26)
8 Particle deployment according to dTt
9 Weight fusion according to Equations (28)–(31)
10 Particles and their weights choice according to Equations (32) and (33)
11 State estimation according to Equation (34)
12 End

5. Numerical Simulation

In this section, a two-dimensional linear system is used to assess the performance of
the TMCF [43]:[

x1(t)
x2(t)

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

][
x1(t− 1)
x2(t− 1)

]
+

[
q1(t− 1)
q2(t− 1)

]
(35)

z(t) =
[

1 1
][ x1(t)

x2(t)

]
+ r(t) (36)

where xi(t) and z(t) denote the state and observation at time step t, respectively; qi(t− 1)
denotes the system noise sequence at time step t− 1; and r(t) denotes the observation
noise sequence at time step t. In the two experiments, θ = π/18 and the initial state is
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[1, 1]T . The initial probability satisfies p0(x) ∼ N(0, 0.1). It is well known that the KF
is the optimal filter for a linear Gaussian system based on the Bayesian filter principle.
Hence, the performance of the TMCF is first assessed in a linear and Gaussian system. The
estimation results of the KF are used as a reference to evaluate the approximation degree
of the TMCF algorithm and Bayesian filtering in the linear and Gaussian system. Because
the TMCF algorithm is a filter based on the Monte Carlo principle, the performances
of the TMCF algorithm and PF algorithm are compared in this experiment. Second, a
heavy-tailed distribution (non-Gaussian environment) is considered in this linear system.
The performance of the TMCF is compared with that of the KF and PF in this linear and
non-Gaussian system. Four sets of parameters are selected for the TMCF algorithm, which
are shown in Table 1. Two forms of mean square errors (MSE) are used to evaluate the
performance of the algorithms:

MSE1 =
T

∑
i=1

(x̂i − xi,real)
2/T (37)

MSE2 =
T

∑
i=1

(x̂i − xi,KF)
2/T (38)

Table 1. Parameters of the TMCF.

Parameter dT 1−α

1 1.2 0.999
2 0.8 0.999
3 1.2 0.9999
4 0.8 0.9999

In this section, MATLAB is used to build the simulation environment. The perfor-
mance (including the filtering precision, the number of samples, filter time) of the TMCF,
KF and PF are verified and compared by this simulation environment. All the data are
generated by the simulated program. The configurations of the simulation computer can
be seen in Table 2.

Table 2. Configuration environment.

CPU Basic Frequency
(GHz) RAM (GB) Windows

Version
MATLAB
Version

Intel(R) Core i5 1.70 16.0 Windows 10 R2018a

5.1. Gaussian Distribution System

In this experiment, the Gaussian model is selected for both system noise and observed
noise: q1(t) ∼ N(0, 1), q2(t) ∼ N(0, 1) and r(t) ∼ N(0, 1).

PFs with 3000 and 5000 particles are used as the comparison algorithms of the TMCF.
Figures 9 and 10 show that the deviation between each filtering result of the different
algorithms and the KF results for x1 and x2, respectively. The results show that it is
difficult for the PF to approximate the performance of the KF in the linear and Gaussian
system. Compared with the KF, although the number of particles is 3000, the results of
the PF deviate by about 0.15 from that of the KF in each filtering process. Meanwhile,
as the number of particles increases dramatically, this deviation declines very slowly.
The deviation is about 0.1 when the number of particles is 5000. This is caused by the
indeterminacy of the Monte Carlo method. The indeterminacy is greatly reduced when the
TMC method is used to generate particles. Using the TMC method, the results of the TMCF
are very close to those of the KF. The difference between the TMCF and KF is less than
0.01 for all four parameters selected. The deviation decreases as the confidence increases
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and the sampling interval decreases. Particularly, the deviation is less than 0.001 when
the confidence is 0.9999 and the sampling interval is 0.8. Figure 11 shows that only about
40 particles need to be transferred in each filtering process for parameter 1, and the number
of set particles is about 250. The number of particles required increases as the sampling
interval decreases and the confidence increases. For parameter 4, the number of transferred
particles is about 130 and the number of set particles is only about 800. Figure 12 shows the
time consumed in each filtering process by the different algorithms on a computer using
the same configuration. The computation time of the TMCF is much less than that of PF.
Table 3 shows the filtering results of 5000 time steps processed by Equations (37) and (38).
The MSE2 is about 0.01 for PF with 5000 particles, and the computation time is about 0.1
s for each filtering process. The MSE2 reaches 10−6 for the TMCF with parameter 4, and
the computation time is only about 0.0035 s. The results demonstrate that the TMCF can
approximate the KF algorithm better with fewer particles and less computation in linear
and Gaussian systems compared with PF. Different from the KF, the TMCF does not use
the propagation characteristics of the conditional means and covariances of Gaussian noise
in linear systems. Therefore, this method is also applicable to non-Gaussian noise.
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Figure 9. Difference between the state estimation results of the different algorithms and those of KF
for x1.
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Figure 11. Number of particles required for the TMCF algorithm with different parameters.
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Figure 12. Computation time for the TMCF algorithm with different parameters.

Table 3. Performance of the different filter algorithms with different parameters in the linear/Gaussian system.

Algorithm
Parameters x1 x2 Computation

Time (s)dT 1−α ¯
nt/

¯
mt MSE1 MSE2 MSE1 MSE2

KF - - - 3.421829 0 2.798550 0 3.069 × 10−5

PF
- - 3000 3.456089 0.027105 2.822853 0.021010 0.0608210

- - 5000 3.430909 0.015142 2.807029 0.012138 0.1387177

TMCF

1.2 0.999 42 248 3.423760 4.306 × 10−4 2.799829 3.155 × 10−4 6.282 × 10−5

0.8 0.999 95 560 3.422683 4.238 × 10−4 2.798926 3.081 × 10−4 2.101 × 10−3

1.2 0.9999 57 343 3.421978 9.444 × 10−6 2.798610 7.098 × 10−6 9.293 × 10−4

0.8 0.9999 130 782 3.421878 8.874 × 10−6 2.798539 6.484 × 10−6 3.511 × 10−3

5.2. Gaussian Mixture Distribution System

In this experiment, the Gaussian mixture model is selected for both system noise
and observed noise: q1(t) ∼ 0.6N(0, 1) + 0.4N(0, 4),q2(t) ∼ 0.6N(0, 1) + 0.4N(0, 4) and
r(t) ∼ 0.6N(0, 1) + 0.4N(0, 4).
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The noise model is shown in Figure 13. Similar to Table 3 for the previous experiment,
Table 4 shows the filtering results of 5000-time steps processed by Equation (37). The MSE1
of the PF with 3000 particles is greater than that of the KF. The performance of the TMCF
with parameter 1 is better than that of PF with 5000 particles and KF. Meanwhile, the
number of transferred particles is only 110 and the number of set particles is only 650. The
computation time is 0.006 s, that is, much less than that of the PF. With the decrease of the
sampling interval and the increase of confidence, the accuracy of filter is improved, and the
computation time is increased. For the parameters 4 of TMCF, the accuracy of the TMCF
is improved by 0.01, and the computation time reduced to 0.067 s from 0.20 s, comparing
with the particle filter (5000 particles).

Electronics 2021, 10, x FOR PEER REVIEW 16 of 18 
 

 

TMCF with parameter 1 is better than that of PF with 5000 particles and KF. Meanwhile, 
the number of transferred particles is only 110 and the number of set particles is only 650. 
The computation time is 0.006 s, that is, much less than that of the PF. With the decrease 
of the sampling interval and the increase of confidence, the accuracy of filter is improved, 
and the computation time is increased. For the parameters 4 of TMCF, the accuracy of the 
TMCF is improved by 0.01, and the computation time reduced to 0.067 s from 0.20 s, com-
paring with the particle filter (5000 particles). 

 
Figure 13. Probability model of Gaussian mixture noise. 

Table 4. Performance of the different filter algorithms with different parameters in the linear/mixture Gaussian system.  

 
Parameters MSE1 

Computation Time (s) 
dT  1 α−  /t tn m  1x  2x  

KF - - - 7.619301525 6.3982152 2.224 × 10−5 

PF 
- - 3000 7.718597333 6.4887486 0.098728173 
- - 5000 7.589158022 6.3695680 0.204914013 

TMCF 

1.2 0.999 110 650 7.581596248 6.3654145 0.006746154 
0.8 0.999 250 1479 7.582551190 6.3659966 0.028529454 
1.2 0.9999 157 961 7.577101831 6.3616057 0.012136754 
0.8 0.9999 358 2184 7.576998566 6.3615759 0.067335938 

6. Conclusions 
The TMCF algorithm was proposed to overcome the challenge of the non-Gaussian 

filtering in this paper. First, the TMC method was proposed to sample particles in the 
confidence interval according to the sampling interval. The performance of the TMC 
method has been simulated and the property of the TMC method has been proved. Sec-
ond, the TMCF algorithm was proposed by introducing the TMC method into the PF al-
gorithm. Different from the PF, the TMCF algorithm completes the transfer of the distri-
bution using a series of calculations of weights and particles were used to occupy the state 
space in the confidence interval. Third, Numerical simulations demonstrated that the MSE 
of the TMCF was about 10−6 compared with that of the Kalman filter (KF) in a two-dimen-
sional linear/Gaussian system. In a two-dimensional linear/non-Gaussian system, the 
MSE of the TMCF for parameter 4 was 0.04 and 0.01 less than that of the KF and PF with 
5000 particles, respectively. The single filter times of the TMCF and PF with 5000 particles 
were 0.006 s and 0.2 s, respectively.  

In this paper, we have designed an improved PF algorithm, we called TMCF algo-
rithm. In the non- Gaussian filter environment, it can not only improve the accuracy of 
filter, but also reduce the computation time. In the future development of new disciplines 
such as artificial intelligence, multi-sensor data fusion, and multi-target tracking, there are 

Pr
ob

ab
ilit

y 
de

ns
ity

Figure 13. Probability model of Gaussian mixture noise.

Table 4. Performance of the different filter algorithms with different parameters in the linear/mixture Gaussian system.

Parameters MSE1 Computation
Time (s)dT 1−α ¯

nt/
¯
mt x1 x2

KF - - - 7.619301525 6.3982152 2.224 × 10−5

PF
- - 3000 7.718597333 6.4887486 0.098728173

- - 5000 7.589158022 6.3695680 0.204914013

TMCF

1.2 0.999 110 650 7.581596248 6.3654145 0.006746154

0.8 0.999 250 1479 7.582551190 6.3659966 0.028529454

1.2 0.9999 157 961 7.577101831 6.3616057 0.012136754

0.8 0.9999 358 2184 7.576998566 6.3615759 0.067335938

6. Conclusions

The TMCF algorithm was proposed to overcome the challenge of the non-Gaussian
filtering in this paper. First, the TMC method was proposed to sample particles in the
confidence interval according to the sampling interval. The performance of the TMC
method has been simulated and the property of the TMC method has been proved. Second,
the TMCF algorithm was proposed by introducing the TMC method into the PF algorithm.
Different from the PF, the TMCF algorithm completes the transfer of the distribution using
a series of calculations of weights and particles were used to occupy the state space in
the confidence interval. Third, Numerical simulations demonstrated that the MSE of the
TMCF was about 10−6 compared with that of the Kalman filter (KF) in a two-dimensional
linear/Gaussian system. In a two-dimensional linear/non-Gaussian system, the MSE of the
TMCF for parameter 4 was 0.04 and 0.01 less than that of the KF and PF with 5000 particles,
respectively. The single filter times of the TMCF and PF with 5000 particles were 0.006 s
and 0.2 s, respectively.
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In this paper, we have designed an improved PF algorithm, we called TMCF algorithm.
In the non- Gaussian filter environment, it can not only improve the accuracy of filter, but
also reduce the computation time. In the future development of new disciplines such
as artificial intelligence, multi-sensor data fusion, and multi-target tracking, there are
more and more types of data and more and more complex sources of data. the quality
of nonlinear non-Gaussian filtering method becomes more and more important in data
fusion. Our work lays a theoretical foundation for nonlinear/non-Gaussian filter and can
be used to improve the filtering precision under the condition of reducing computation
time in some non-Gaussian filter environments. In the future, we will try to apply the
algorithm to the integrated navigation system to improve the positioning accuracy of
satellite navigation.
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