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Abstract: Physical memory acquisition is a prerequisite when performing memory forensics, referring
to a set of techniques for acquiring and analyzing traces associated with user activity information,
malware analysis, cyber incident response, and similar areas when the traces remain in the phys-
ical RAM. However, certain types of malware have applied anti-memory forensics techniques to
evade memory analysis strategies or to make the acquisition process impossible. To disturb the
acquisition process of physical memory, an attacker hooks the kernel API, which returns a map of
the physical memory spaces, and modifies the return value of the API, specifically that typically
used by memory acquisition tools. Moreover, an attacker modifies the kernel object referenced by
the kernel API. This causes the system to crash during the memory acquisition process or causes
the memory acquisition tools to incorrectly proceed with the acquisition. Even with a modification
of one byte, called a one-byte modification attack, some tools fail to acquire memory. Therefore,
specialized countermeasure techniques are needed for these anti-memory forensics techniques. In
this paper, we propose a memory layout acquisition method which is robust to kernel API hooking
and the one-byte modification attack on NumberOfRuns, the kernel object used to construct the
memory layout in Windows. The proposed acquisition method directly accesses the memory, extracts
the byte array, and parses it in the form of a memory layout. When we access the memory, we
extract the _PHYSICAL_MEMORY_DESCRIPTOR structure, which is the basis of the memory layout
without using the existing memory layout acquisition API. Furthermore, we propose a verification
method that selects a reliable memory layout. We realize the verification method by comparing
NumberOfRuns and the memory layout acquired via the kernel API, the registry, and the proposed
method. The proposed verification method guarantees the reliability of the memory layout and helps
secure memory image acquisition through a comparative verification with existing memory layout
acquisition methods. We also conduct experiments to prove that the proposed method is resistant
to anti-memory forensics techniques, confirming that there are no significant differences in time
compared to the existing tools.

Keywords: memory forensics; anti-forensics; malware; cyber security; digital forensics; incident response

1. Introduction

Traditional forensics focuses on data in the storage media of computers, cell phones,
cameras and other devices, but in recent years, the scope of digital forensics has expanded to
include data extracted from volatile memory [1]. Memory can contain decrypted data such
as passwords, running processes themselves, and recently used commands [2,3]. Based on
the remaining data, encrypted data in the file system can be decrypted or additional user
activity records can be stored. In other words, memory forensics refers to techniques that
acquire and analyze data that can only be verified in an active state. In addition, memory
forensics is effective when used to analyze malicious code such as rootkits, as this strategy
can verify the traces of the process.
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However, memory-resident malware via disk-avoiding is distributed with anti-memory
forensics techniques installed to prevent memory forensics tools from acquiring and analyz-
ing data [4]. Anti-forensics has been defined as “any attempt to compromise the availability
or usefulness of evidence to the forensics process”, and anti-memory forensics is a tech-
nique that attempts to disrupt the memory forensics process [5,6]. Anti-memory forensics
refers to anti-forensics techniques such as a process hiding by deleting information from
the list of running processes and preventing memory dumps by detecting the execution of
memory forensics tools or monitoring the kernel application programming interface (API)
for these processes. In particular, if the memory acquisition process is disturbed, the basis
of the analysis must be invalidated. Therefore, countermeasure studies on anti-memory
forensics techniques are required [7].

In the physical memory, the basic input/output system (BIOS), read only memory
(ROM), peripheral component interconnect (PCI) resource and direct memory access
(DMA) buffer are loaded as well as the operating system, with these loaded into physical
memory spaces called the reserved area. When memory forensics tools are acquiring the
memory of a running computer, accessing reserved areas can cause a system crash or can
corrupt data. In order to prevent these outcomes, a memory layout representing map of the
physical address space must be obtained through a BIOS interrupt call (INT 15 h E820 h) [8].
However, Windows works in protected mode supported by CPU architectures such as
the Intel Architecture (IA)-32, IA-64, and ARM [9]. Thus, because Windows operates
in Protected Mode, it is not possible to request a memory layout directly through the
BIOS [10].

Thus, memory acquisition tools use the kernel API to obtain the memory layout and
perform memory acquisition based on it. However, malware can interfere with the memory
acquisition process by hooking the kernel API or providing false information through a
tiny modification of the kernel objects [11,12]. MmGetPhysicalMemoryRanges() is a kernel
API function that is used to acquire the memory layout, and we have confirmed that with
memory acquisition tools such as Winpmem [13–15] and Ftk Imager [16], if the function
is hooked and modified to always return as NULL, these tools cannot perform a memory
dump because the memory layout cannot be acquired [11].

The one-byte modification attack refers to an attack that utilizes anti-memory forensic
techniques by modifying only one byte of a kernel object. This attack interferes with the
process listing, OS version identification, and memory acquisition [12]. Some previous
versions of memory acquisition tools use the KdDebugBlock structure to acquire the kernel
base address, which can be found by scanning “KDBG” which is the OwnerTag value.
However, because the search is based on a character string, even if only 1 byte is modified, it
cannot be scanned, and this causes a problem in the entire memory acquisition process [11].

Additionally, NumberOfRuns is a value representing the number of physical ad-
dress spaces, and MmGetPhysicalMemoryRanges() acquires a memory layout based on
NumberOfRuns. If the value of NumberOfRuns is modulated to “0”, MmGetPhysicalMemo-
ryRanges() returns memory layouts with empty information [12]. In this paper, we modi-
fied the value of NumberOfRuns and utilized memory acquisition tools and as shown in
Section 4.2, we confirmed that memory acquisition is performed abnormally.

We propose a method of acquiring memory layout by directly accessing the memory
through the kernel driver in the Windows operating system and a memory layout verifica-
tion process that securely acquires the data in the physical memory. The verification process
selects reliable memory layout through the acquisition method using the proposed kernel
object and cross-validation with the two existing methods. Existing memory forensics
tools mainly use MmGetPhysicalMemoryRanges(), the kernel API function, or they extract
and parse from the ‘.Translated’ value of the registry to acquire the memory layout. The
proposed method was tested and evaluated on a Windows 10 64-bit operating system. The
contributions of this paper are as follows.

• We analyzed how existing memory acquisition tools acquire the memory layout, and
identified API hooking and one-byte modification attacks that disturb this process.
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The proposed memory layout acquisition technique can respond to existing API
hooking attacks and to one-byte modification attacks.

• We found that existing memory acquisition tools perform memory acquisition with-
out the verification of the memory layout, and we provide stability to the memory
acquisition process by cross-validating the memory layout, which is acquired in
three ways.

• The proposed technique was integrated into Winpmem, which is an open source tool,
and we confirmed that it responds to aforementioned attacks through experiments.
The proposed method took an average of 30s to acquire and verify the memory
layout, but it was confirmed that this time can be reduced to 1 s if applying an
improvement method.

We propose a memory layout verification method for reliable physical memory ac-
quisition. Section 2 of this paper describes research related to memory acquisition and
anti-memory forensics. In Section 3, three methods for acquiring data related to the memory
layout and the proposed memory layout verification method are described, and a plan for
implementing the proposed method is presented. Section 4 presents experimental results
demonstrating the effectiveness of the proposed method. Section 5 concludes the thesis by
discussing the meaning and contributions of the proposed method.

2. Related Work

In this section, we discuss research related to hardware-based memory acquisition,
software-based acquisition, and anti-memory forensics.

2.1. Hardware-Based Memory Acquisition

Hardware-based memory acquisition methods have been proposed to overcome
limitations related to or dependent on the operating system. Because acquisition takes
place when the system is stopped, it can be acquired without changing the memory.
Carrier et al. [17] suggested a hardware-based memory acquisition technique that does
not depend on the operating system, considering that acquiring memory from a damaged
computer is often dependent on unreliable code or on the operating system. Their method
works by installing the memory acquisition tool through a PCI expansion card before
an incident, acquiring the memory through a simple switch operation. It was verified
that hardware-based memory acquisition could be successfully performed through a
comparison with the memory dump file acquired by software.

However, PCI expansion cards are overpriced and stability is weak because they
can trigger the “Blue Screen of Death” (BSoD) state in the Windows system. In addition,
memory can only be acquired if the card is installed before an accident. Zhang et al. [18]
presented a Windows-based memory acquisition technique using the Firewire protocol.
They proposed a hardware-based memory acquisition technique that is compatible with
software-based memory acquisition, which is not usable when the unlocked password is
unknown and information manipulated by anti-memory forensics malware or information
acquisitions may fail. In particular, in order to prevent the BSoD state during the memory
acquisition process, the memory layout was acquired by parsing the ‘.Translated’ value in
the registry, with memory acquisition then performed based on the memory layout [19].

The registry is a system-defined database that stores the information necessary for
managing the operating system [20]. Translated, the value of the subkey HKEY_LOCAL_M-
ACHINE/HARDWARE/RESOURCEMAP/System Resources/Physical Memory, contains the
number of memory address spaces and the start address and length information of each
memory space. When .Translated is extracted and parsed, data related to the memory
layout can be acquired. Figure 1 lists the values of .Translated in hexadecimal and shows
the structure.
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Figure 1. Structure of .Translated, the value of the registry key related to memory layout.

NumberOfRuns located at 0x10 is a value representing the number of memory spaces
used by the Windows operating system. Flag information is included for each space,
representing the data type of the length of the memory space. If the flag is 0x0, the 32-bit
value itself indicates the length of the memory space. In the 0x200 case, the upper 32 bits of
the 40-bit length value are indicated and the lower 8 bits are considered to have a value of
0. In the 0x400 and 0x800 case, the upper 32 bits of 48 bits and the upper 32 bits of 64 bits
are represented, and the lower 16 bits and lower 32 bits, respectively, are considered to be
equal to 0 [21,22].

However, when parsing the value of .Translated, it is impossible to acquire the correct
size memory layout if the NumberOfRuns value of .Translated is an abnormal value due
to an attack. Moreover, the start address and length information of each space may also
be attacked.

2.2. Software-Based Memory Acquisition

MmGetPhysicalMemoryRanges() is a kernel API function mainly used by memory
acquisition tools, and it returns _PHYSICAL_MEMORY_RANGES, which is an array
of structures containing information about the memory layout. Figure 2 shows the
process by which MmGetPhysicalMemoryRanges() returns the memory layout. _PHYSI-
CAL_MEMORY_RANGES is created based on the _PHYSICAL_MEMORY_RUN struc-
ture array of the _PHYSICAL_MEMORY_DESCRIPTOR structure. The length of the
array is determined by the value of NumberOfRuns, a member variable of the _PHYS-
ICAL_MEMORY_DESCRIPTOR. The member variable of _PHYSICAL_MEMORY_RANGES
consists of the base address and NumberOfBytes and stores the start address and length of
each area. Additionally, the last member variable of _PHYSICAL_MEMORY_RANGES is
initialized as 0 to signal the end of the array. The _PHYSICAL_MEMORY_RUN array has
BasePage and PageCount as member variables, and it stores the start page and the number of
pages for each space. _PHYSICAL_MEMORY_DESCRIPTOR has NumberOfRuns, NumberOf-
Pages and Run as member variables, which store the number of memory spaces, the total
size of the pages, and the start address of the _PHYSICAL_MEMORY_RUN, respectively.

As described above, the MmGetPhysicalMemoryRanges() function refers to the number
of physical address spaces, and if the value of NumberOfRuns is abnormal due to an
attack, it is impossible to acquire the correct size of the memory layout. In addition, when
the value of the _PHYSICAL_MEMORY_RUN structure array is changed, the number of
physical address spaces is correct but the start address and length information for each
space are incorrect.
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Figure 2. Member variables of each structure and process of MmGetPhysicalMemoryRanges() function.

2.3. Anti-Memory Forensics

Until recently, various techniques that prevent memory forensics tools from deriving
meaningful results have been studied, and memory forensics techniques have developed
in the direction of complementing them.

2.3.1. API Hooking

Stüttgen et al. suggested a technique that hinders memory acquisition by hooking the
Windows API [11]. Some memory acquisition tools use the MmGetPhysicalMemoryRanges()
function to acquire physical memory space information. If the physical memory space
information is not properly transmitted, the system crashes or incorrect memory is acquired.
Therefore, Stüttgen et al. hooked the MmGetPhysicalMemoryRanges() function to always
return NULL, and it was confirmed that some memory collection tools were working
abnormally as a result.

Milković presented Dementia, an anti-memory technology that works through Win-
dows API hooking [23,24]. Dementia hooks NtWriteFile, a Windows API, and manipulates
and returns the data used in the buffer when Memoryze, a memory acquisition tool, calls
the API. The manipulated data are various data related to processes such as process, thread,
object handle, and the virtual address descriptor (VAD), among others. When memory is
acquired through data manipulation, the object to be hidden does not exist in the dump file.

2.3.2. One-Byte Modification

Haruyama et al. analyzed the anti-memory forensics technology based on one-
byte modification of kernel objects [12]. Certain special kernel objects used for mem-
ory forensics have unique identification values that can identify the kernel objects. For
_DBGKD_DEBUG_DATA_HEADER64, as an example, it has a “KDBG” tag as a unique
identification value. If only one byte of the tag is modified to a different value, it has been
confirmed that some memory analysis tools do not operate normally.

Google’s Rekall project team presented a type of anti-memory forensics technology
that works through one-byte modification [25]. Some memory collection tools use the
_PHYSICAL_MEMORY_DESCRIPTOR structure, an aspect of the kernel objects, to obtain
physical memory area information. At this time, if the member variable NumberOfRuns of
the structure was modified to 0, hence, it was determined that when using this strategy, no
physical memory area was acquired, and it was confirmed that the acquisition process of
the memory acquisition tool was stopped.

2.4. Consideration

All of these studies showed that software-based memory acquisition tools were un-
stable, and no clear solution was provided. Furthermore, most of the tools use only one
method to acquire the memory layout, and no verification method for the acquired mem-
ory layout is included. Hence, the acquired memory image is also unreliable. Latzo et al.
confirmed that the lower the execution layer of the acquisition method, the higher the
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accuracy of the acquired memory image [26]. Therefore, we propose a memory layout
acquisition method that can cope with the existing API hooking and one-byte modifica-
tion attacks. We also propose a memory layout verification method for reliable physical
memory acquisition.

3. Proposal of the Memory Layout Verification Method for Acquiring Reliable
Physical Memory

This section describes the proposed method of acquiring the memory layout, and
explains the method of selecting a reliable memory layout by cross-validating the method
using the registry, as described in Section 2.1, and the kernel API, as described in Section 2.2.

3.1. Acquisition Method of the Memory Layout via NumberOfPages

_PHYSICAL_MEMORY_DESCRIPTOR contains a number and a map of the physical
address spaces, as noted in Section 2.2. Because direct access to memory is possible,
_PHYSICAL_MEMORY_DESCRIPTOR can be extracted as a byte array. Figure 3 shows
the structure of the byte array acquired by accessing the address of _PHYSICAL_MEMOR-
Y_DESCRIPTOR.

Figure 3. Kernel object’s byte array structure representing the memory layout.

NumberOfRuns is vulnerable to the one-byte modification attack; accordingly, we use
the alternative method of calculating NumberOfRuns using the value of NumberOfPages.
Given that the value of NumberOfPages is identical to the sum of the values of the PageCount
item, NumberOfRuns is calculated according to the sum of PageCount and by counting the
number of times until the value of NumberOfPages and the sum of PageCount are equivalent.
The relationship between the values inside the byte array is as follows:

NumberO f Runs = COUNT(BasePage) (1)

NumberO f Pages =
n

∑
k=1

PageCount(n : NumberO f Runs) (2)

Algorithm 1 shows the process of calculating NumberOfRuns using these equations.
Because the value of NumberOfRuns is calculated using the value of NumberOfPages, if
the value of NumberOfPages is attacked or if even one value of PageCount for each area is
incorrect, the correct value of NumberOfRuns cannot be acquired. Moreover, if the sum of
PageCount is calculated to be as high as the row count of the byte array but smaller than the
size of NumberOfPages, a longer byte array is parsed and the same process is repeated.
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Algorithm 1: Pseudocode of Counting NumberOfRuns
Data: Srow: Number of rows in byte array
Result: NumberOfRuns

1 SumOfPage← 0
2 for i = 0, 1, . . . ,Srow − 1 do
3 SumOfPage← SumOfPage + PageCount[i]
4 if SumOfPage = NumberOfPages then
5 NumberOfRuns← i + 1
6 return NumberOfRuns
7 else if SumOfPage > NumberOfPages then
8 return false
9 else if i + 1 = Srow then

10 if SumOfPage < NumberOfPages then
11 return false
12 end
13 end
14 end

3.2. Verification Method of the Memory Layout

Figure 4 shows the overall process of the proposed method which is divided here
into three parts. The acquisition step for the data related to the memory layout acquires
physical data related to memory layout using three methods: the kernel API, the registry,
and the kernel object. The attack detection step through data extraction and verification
parses and verifies the acquired data to detect the attack. Finally, the secure memory layout
selection step selects a secure memory layout based on the detection result of an attack.
The proposed method uses a strategy that counteracts anti-memory forensics techniques
that hinder physical memory acquisition.

Figure 4. Memory layout data extraction and verification method for reliable physical memory
acquisition.

According to the three methods of acquiring the memory layout described above,
in order to acquire a memory layout, it is necessary first to identify NumberOfRuns in
which information about the number of memory spaces is stored. Using this, in order to
cross-verify the memory layout acquired from each method, we compare NumberOfRuns
and classify cases according to the results. We also compare the memory layout for each
case. NumberOfRuns obtained through the registry, kernel API, and kernel object are
expressed as NORReg, NORAPI , and NORKrnlObj, respectively. Table 1 shows classified
cases according to the comparison of NumberOfRuns. There are five cases: one with the
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same values of NumberOfRuns, three with only one different value, and one in which all
values are different.

Table 1. Classification of cases based on comparison of NumberOfRuns.

Case NORReg NORAPI NORReg Attack Target
== NORAPI == NORKrnlObj == NORKrnlObj

Case 1 True True True N/A
Case 2 False True False Registry
Case 3 False False True Kernel API
Case 4 True False False Kernel object
Case 5 False False False Two or more

The following shows the details of each case.

• Case 1 : No anti-memory forensics technique has been applied to prevent memory
layout acquisition;

• Case 2 : NORReg was attacked, and the memory layout could not be obtained by
parsing the value of .Translated;

• Case 3 : NORAPI was attacked, and the memory layout could not be obtained by the
MmGetPhysicalMemoryRanges() function;

• Case 4 : NORKrnlObj was attacked, and memory layout could not be obtained by
NumberOfPages;

• Case 5 : Two or more values of NumberOfRuns were attacked, and a reliable memory
layout could not be selected.

Table 2 shows a comparison of the memory layouts for each case and whether a
reliable memory layout can be selected. Memory layouts are compared for each case,
except when all values are different. The memory layout can be trusted only when Num-
berOfRuns and the memory layout verification process pass, and can be used when acquir-
ing physical memory.

Table 2. Case-specific memory layout comparison and results.

Case Memory Layout Comparison Target Results Remarks

Case 1 LayoutReg LayoutAPI
True Both layouts are secure
False Not all layouts are secure

Case 2 LayoutAPI LayoutKrnlObj
True Both layouts are secure
False Not all layouts are secure

Case 3 LayoutReg LayoutKrnlObj True Both layouts are secure

Case 4 LayoutReg LayoutAPI
True Both layouts are secure
False Not all layouts are secure

Case 1, Case 2, and Case 4 can be targeted for API hooking attacks because they are
compared with LayoutAPI . Therefore, if the two memory layouts are different, it means
that LayoutAPI has been altered by an API hooking attack. Case 3 means that it is always
secure against one-byte modification and API hooking attacks. Figure 5 shows a flow chart
of the verification process.
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Figure 5. Memory layout verification and reliable memory layout selection process.

3.3. Implementation of the Proposed Method

This section describes the process of acquiring physical memory data by selecting
a secure memory layout. It is selected by adding a memory layout validation part to
modify Winpmem, a Windows memory acquisition tool. It was installed in Rekall, a
memory forensics tool, but now it has been converted into a separate project maintained
by Velocidex [14,15]. Winpmem uses the method of acquiring the memory layout with
the kernel API, as described in Section 2.2. Therefore, we added a process of acquiring
data related to the memory layout using the method of the registry and directly accessing
the memory, as correspondingly mentioned in Sections 2.1 and 3.1. Furthermore, before
performing memory acquisition, we added a process of verifying NumberOfRuns and the
memory layout. However, in order to access _PHYSICAL_MEMORY_DESCRIPTOR from
the kernel driver, a process for acquiring the structure address in memory is required.

Program DataBase (PDB) files, called debugging symbols, contain information on
how the compiler connects the source code and the machine language [27,28]. Microsoft
provides a PDB file of the kernel image for each Windows version, and the address of the
kernel object can be acquired by acquiring and parsing the file from Microsoft’s Symbol
Server [29,30]. Accordingly, MmPhysicalMemoryBlock, which is a kernel object in which
the address of _PHYSICAL_MEMORY_DESCRIPTOR is stored, can be obtained from the
PDB, and the byte array of the structure can be obtained from the address. Figure 6
shows the operation process of the proposed memory acquisition tool for reliable physical
memory acquisition. The highlighted part shows the added process compared to the
existing Winpmem.
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Figure 6. Operation process of the proposed memory acquisition tool for reliable physical
memory acquisition.

When the memory acquisition process starts, the memory layout is acquired using the
kernel API, which is an existing Winpmem process. The MmGetPhysicalMemoryRanges()
function is a kernel API, meaning that the process must be performed at the kernel driver
level. Second, the process parses the value of .Translated and obtains NumberOfRuns and the
memory layout information. Third, it accesses the kernel object MmPhysicalMemoryBlock to
acquire and parse the byte array of the _PHYSICAL_MEMORY_DESCRIPTOR structure.
Likewise, this process must be performed by the kernel driver in order to use functions
that directly access memory. NumberOfRuns and the memory layouts acquired through
three methods are compared and verified, and memory acquisition is performed based on
a reliable memory layout.

4. Experiments

This section describes the experiments and results to prove the effectiveness and
performance of the proposed method. The proposed method acquires reliable physical
memory data based on the cross-validation of the memory layout. This experiment checks
whether the NumberOfRuns attack countermeasure techniques are applied to Winpmem
(Rekall, Velocidex) and FTK Imager, which are windows memory acquisition tools, and
Custom Winpmem, to which the proposed method is applied.

4.1. Experimental Setup

In this experiment, an environment for performing a memory layout modulation
attack among one-byte modification attack techniques is configured. Here, we configure
the target computer with VMWare on the host computer, and we configure the debugging
environment with WinDbg. The host computer uses the Windows 10 64-bit operating
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system, the updated version is 2004, and the target computer is the 1909 version of the
Windows 10, 64-bit operating system. The CPU of the host computer is an Advanced Micro
Deviccs (AMD) Ryzen 7, 3700X (8-core processor) and it has 40 GB of RAM. Each memory
acquisition tool performs the process of acquiring the 8, 16, and 32 GB of memory of the
target computer. The following shows the versions of the programs used in the experiment:

• Rekall Winpmem : 2.1.post4
• Velocidex Winpmem : 4.0 RC2
• Access Data FTK Imager : 4.5.0.3

Figure 7 shows the configuration of the experimental environment.

Figure 7. Configuring the memory acquisition tool experiment environment.

4.2. Experimental Results

In this experiment, each attack 2qs performed for the three methods of acquiring the
memory layout, and physical memory data were acquired using the memory acquisition
tools. Among the one-byte modification attack techniques, the memory layout information
modification attack can be realized by modifying the NumberOfRuns value of _PHYSI-
CAL_MEMORY_DESCRIPTOR [12]. As described in Section 3.1, the NumberOfRuns and
NumberOfPages values of _PHYSICAL_MEMORY_DESCRIPTOR can be accessed through
the kernel variable MmPhysicalMemoryBlock. Moreover, NumberOfRuns of .Translated can
be accessed with the Windows registry editor. The experiment was performed by access-
ing NumberOfRuns using WinDbg and the registry editor and modifying the value to “0.”
Each test was performed 10 times, and break on access (BA) was set at the NumberOfRuns
position to check if the memory acquisition tool accesses the NumberOfRuns value of
_PHYSICAL_MEMORY_DESCRIPTOR. If setting BA, the breakpoint is triggered when the
memory acquisition tool accesses that address while performing the acquisition process.

4.2.1. Attack Resistance Evaluation

Table 3 shows the experimental results of whether the tools respond to a memory
layout modification attack. As a result of the experiment, the memory acquisition tools
other than the tools modified by the proposed method did not normally perform memory
acquisition when the NumberOfRuns value of _PHYSICAL_MEMORY_DESCRIPTOR was
modified, outputting a result message indicating that the memory acquisition process was
performed normally. In the case when the size of the output image file was “0” or some
metadata were included in the output, it was confirmed that NumberOfRuns was accessed
during the memory acquisition process.
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Table 3. Version of the memory acquisition tool.

Tools Case 2 Case 3 Case 4

Custom Winpmem o o o
Rekall Winpmem x o o

Velocidex Winpmem x o o
AccessData FTK Imager x o o

4.2.2. Performance Evaluation

Table 4 shows the memory acquisition time and output file size for each memory
acquisition tool in a general situation. The tool implemented by the method proposed
in this paper takes an average of 25–30 s to acquire the PDB file and extract MmPhysi-
calMemoryBlock. Therefore, by building a csv file in advance for the GUID of the Windows
kernel and the value of MmPhysicalMemoryBlock in the key-value format, the time required
for PDB acquisition and parsing was reduced. Advanced Custom Winpmem shows the
result of testing after applying that function. The file output as a result of time memory
acquisition process could be analyzed normally in Rekall, a memory forensics tool, and
there is no problem with the memory acquisition function.

Table 4. Version of memory acquisition tool.

Tools Access NumberOfRuns
Time According to Memory Size

8 GB 16 GB 32 GB

Custom Winpmem o 50.1 s 67.0 s 97.9 s
Advanced Custom Winpmem o 20.9 s 36.4 s 71.8 s

Rekall Winpmem o 19.8 s 36.8 s 71.0 s
Velocidex Winpmem o 19.4 s 35.9 s 71.1 s

AccessData FTK Imager o 28.0 s 48.1 s 94.3 s

Figure 8 shows the result of measuring the operating times of the memory acquisition
tools according to the memory size and calculating the estimated time spent in an environ-
ment larger than 32 GB of memory size using a linear regression technique. We confirmed
that Advanced Custom Winpmem does not lag behind the performance of the existing
Winpmem (Rekall) and Winpmem (Velocidex) methods.

Figure 8. A graph drawn through the linear regression technique of the measured values.
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Figures 9–11 show the experimental results expressed as a box plot. Likewise, we
confirmed that there is no significant difference from the existing Winpmems tools.

Figure 9. Operation time for each memory acquisition tool in an 8 GB memory environment.

Figure 10. Operation time for each memory acquisition tool in a 16 GB memory environment.
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Figure 11. Operation time for each memory acquisition tool in a 32 GB memory environment.

4.3. Discussions and Limitations

The proposed method compares the value of NumberOfRuns, which is the basis of the
memory layout, and compares the memory layout for each case such that the memory ac-
quisition process can be securely and accurately performed. It was confirmed that Custom
Winpmem with the application of the method proposed in here is resistant to anti-memory
forensics techniques that interfere with memory acquisition. Moreover, we confirmed that
the proposed method can be used not only for Windows 10 64-bit, but also for Windows 10
32-bit and Windows 8 32/64-bit. However, the program operation time increases due to
the process of acquiring a PDB file suitable for the target Windows operating system from
the MS Symbol Server. The average time required to download and parse a PDB file is 30 s,
which contributes the most to the increase in the operation time. Additionally, when the
Internet environment is not provided or the speed is slow, obtaining a PDB symbol and
extracting data are not effective. Therefore, we configured a custom repository that col-
lected the GUID value of the Windows kernel and MmPhysicalMemoryBlock to shorten the
operation time. However, even if BasePage, PageCount, and .Translated values as well as
NumberOfRuns and NumberOfPages were modified, there is no problem with the Windows
operation, except for special circumstances. Therefore, because they can be targets of an
attacker, research is needed to obtain data from areas where data changes cannot easily be
attempted and to recover memory layout information based on the findings.

5. Conclusions

In this paper, we proposed a memory layout acquisition and verification method
to enable reliable memory acquisition based on a secure memory layout. The proposed
method acquires and extracts the memory layout and NumberOfRuns using the kernel
API functions, the registry, and kernel objects, classifies cases through a comparison of
NumberOfRuns, and verifies the memory layout to select a secure memory layout. In
general, memory forensics tools run on damaged systems, so the results of the analysis
may not be reliable. In terms of memory analysis, if the acquired physical memory data
themselves are unreliable, the meaning of the analysis fades. In this paper, the proposed
method was applied to Winpmem, an open source memory acquisition tool, and through
experiments, it was shown that the physical memory data acquired with the tool can be
trusted. In future research, we plan to develop memory acquisition technology by studying
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whether an attacker can acquire a memory layout from an area where data modification
cannot easily be attempted. Furthermore, in the future, we plan to develop memory
acquisition technology by studying whether investigations can acquire memory layouts
from areas where attackers cannot easily modify data. In addition, in terms of memory
analysis, we intend to study a systematic memory acquisition and analysis framework by
examining countermeasures for anti-memory forensics techniques.
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