
electronics

Article

Embbedded System-on-Chip 3D Localization and
Mapping—eSoC-SLAM

Eduardo A. Gerlein 1,* , Gabriel Díaz-Guevara 1 , Henry Carrillo 2 , Carlos Parra 1 and Enrique Gonzalez 3

����������
�������

Citation: Gerlein, E.A.; Diaz, G.;

Carrillo, H.; Parra, C.; Gonzalez, E

Embedded System-on-Chip 3D

Localization and Mapping-eSoC-LAM.

Electronics 2021, 10, 1378. https://

doi.org/10.3390/electronics10121378

Academic Editor: Alexander Barkalov

Received: 15 April 2021

Accepted: 21 May 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
gabriel.diaz@javeriana.edu.co (G.D.-G.); carlos.parra@javeriana.edu.co (C.P.)

2 Genius Sports, Medellin 050022, Colombia; henry.carrillo@geniussports.com
3 Department of Systems Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;

egonzal@javeriana.edu.co
* Correspondence: egerlein@javeriana.edu.co

Abstract: This paper discusses a novel embedded system-on-chip 3D localization and mapping
(eSoC-LAM) implementation, that followed a co-design approach with the primary aim of being
deployed in a small system on a programmable chip (SoPC), the Intel’s (a.k.a Altera) Cyclone V
5CSEMA5F31C6N, available in the Terasic’s board DE1-SoC. This computer board incorporates an
800 MHz Dual-core ARM Cortex-A9 and a Cyclone V FPGA with 85k programmable logic elements
and 4450 Kbits of embedded memory running at 50 MHz. We report experiments of the eSoC-LAM
implementation using a Robosense’s 3D LiDAR RS-16 sensor in a Robotis’ TurtleBot2 differential
robot, both controlled by a Terasic’s board DE1-SoC. This paper presents a comprehensive description
of the designed architecture, design constraints, resource optimization, HPS-FPGA exchange of
information, and co-design results. The eSoC-LAM implementation reached an average speed-up of
6.5× when compared with a version of the algorithm running in a the hard processor system of the
Cyclone V device, and a performance of nearly 32 fps, while keeping high map accuracy.

Keywords: system-on-chip; SoC; SoPC; FPGA; SLAM; robot localization; robot mapping; hardware
architecture; embedded robotics

1. Introduction

The exploration of unknown or non-modeled areas, represent a complex task for a
robot, nevertheless, the possibility of having robotic platforms able to explore such envi-
ronments have become a primary requirement in the development of mobile robots [1,2].
Terrain exploration has been addressed from many perspectives, reaching even complex
platforms for planet exploration [3] that exhibit a great deal of applied engineering at both,
hardware and software levels. Service robots, designed for more intra-terrestrial tasks,
might not count with the computing power nor the budget that such complex robots display.
Service robots are autonomous or semi-autonomous systems designed to perform useful
tasks for the well-being of people and equipment, excluding manufacturing operations [1].
In general, service robots interact within environments designed by humans, and, there-
fore, they require a high degree of autonomy to achieve the task what they have been
programmed for. A form of interaction resides precisely in the robots’ capacity to create
a map of the environment by somehow modelling its surroundings, while at the same
time keep a precise track of its position within the model of the world that was generated.
This information serves as the basis for more complex tasks that involve mapping and
localization of the automata.

Mapping environments with robots entails challenges across several aspects related to
the task, such as the method of capturing information from the surroundings and a suitable
model to represent the ambience and the robot’s localization [4]. In this case, the main goal
is that the robot can operate under diverse circumstances and environments, generating its

Electronics 2021, 10, 1378. https://doi.org/10.3390/electronics10121378 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6000-6808
https://orcid.org/0000-0003-4508-1054
https://orcid.org/0000-0002-1088-8942
https://orcid.org/0000-0001-7209-6150
https://orcid.org/0000-0001-8011-1760
https://doi.org/10.3390/electronics10121378
https://doi.org/10.3390/electronics10121378
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10121378
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10121378?type=check_update&version=1


Electronics 2021, 10, 1378 2 of 26

own interpretation of the setting where the robot will operate, avoiding the modeling of
a particular location at the design and programming stages [3,5]. Several methods have
been proposed to address a solution for the mapping and localization problems, and, in
particular, there is a wide set of algorithms know as simultaneous localization and mapping
(SLAM) [6], that, as the name indicates, attempts to generate a map of the environment
while, at the same time, addresses the robot’s localization. The problem of SLAM has been
studied since late XX century, and currently have reached a certain level of maturity in
its concepts and underlying theory. Nevertheless, the scientific community recognizes
that there is a scarcity of studies that deepen in practical implementations [4]. This, in
part, since the computing power required to execute the most popular SLAM algorithms
surpasses the limited capacities that can be currently embedded in robotic platforms, is
usually constrained by size, weight, and power consumption.

Constructing a coherent map of the world, estimating the current position and gener-
ating an historic pose log, is the result of an optimization process of the graph, which in
turn, is achieved using several approaches including Kalman filter-based solutions, particle
filters, and inference optimization for graph estimation [5].

Contrary to other localization techniques that require to intervene the environment
with markers or beacons, SLAM algorithms allow the robot to “understand” the structure
of the surroundings and its position within, using, solely, a set of embarked sensors. The
main paradigm for solving the SLAM problem is known as Graph SLAM [3,5], it infers the
model of the world and the historic log of positions or poses of the robot, by interpreting
the problem as a probabilistic graph model, where the nodes of the graph correspond to
the odometry and environment readings at certain points in the robots path. This graph
composed of poses and readings can be viewed as a problem of stochastic nature [7].
Non-linearities appear as a result of physical phenomena such as actuator hysteresis or
wheel skid that can alter the odometry readings while the robot moves around. On the
other hand, sensors also pose a certain degree of uncertainty due to noise in the reading.
Both combined, introduce the stochastic component in SLAM. Constructing a coherent
map of the world, estimating the current position and generate an historic pose log, is
the result of an optimization process of the graph that can be implemented using several
approaches including Kalman filter-based solutions, particle filters, and optimization based
on graph inference [5]. Less demanding methods in terms of computing power have been
proposed that attempts to filter the historical register for the poses of the robot, while
focusing on obtaining an accurate estimate of the current position of the robot, as well
as the map of the environment, known as online SLAM, but they still suffer from the
optimization problem. As can be inferred by the reader, the computing power required to
deploy such algorithms have precluded the implementation of SLAM solutions in small
service robots, or in platforms that impose restrictions on power consumption and the
weight of components, such as air drones.

According to [3], it is key in the development of more capable robots, “to design SLAM
methods whose computational and memory complexity remains bounded”. This paper responds
to that call. We propose a novel embedded system-on-chip simultaneous localization and
mapping (eSoC-SLAM) implementation, that followed a co-design approach with the
primary aim of being deployed in a small system on a programmable chip (SoPC), the
Intel’s (a.k.a Altera) Cyclone V 5CSEMA5F31C6N, present in the Terasic’s board DE1-SoC,
which incorporates an 800 MHz Dual-core ARM Cortex-A9 as a hard processor system
(HPS), and a Cyclone V Field Programmable Gate Array (FPGA) with 85k programmable
logic elements, and 4450 Kbits of embedded memory running at 50 MHz. The HPS controls
the movement of a Robotis’ TurtleBot 2 [8] and manages the odometry and environment
information. Odometry information is received from embarked motor encoders and an
inertial measurement unit (IMU). On the other hand, the robot’s environmental sensing
capabilities are addressed using the Robosense’s light detection and ranging (LiDAR) RS-16
sensor [9]. All of the above is achieved by running Ubuntu 16.04 and robotic operating
system (ROS) kinetic [10] in the HPS. Our solution leaves the stochastic problem to a



Electronics 2021, 10, 1378 3 of 26

robust odometry system present in the TurtleBot. On the other hand, updating the map
is addressed from a geometric perspective, implementing a map building system in the
FPGA portion of the device. The implementation of the system at hardware level implied
the adaptation of certain characteristics inherent to the algorithm, such as the type of
arithmetic (integer vs. floating point) and parallelization degree, among others. The
eSoC-SLAM algorithm reached an average latency of 31 ms per sensor reading, which
implies a throughput of nearly 32 fps, higher than most of the reports in the literature using
comparable SoC devices. At the same time, the hybrid architecture reached a speed-up of
2× in comparison to a software version running in an AMD RYZEN 5 3500U @ 3.2 GHZ
processor with 12 GB of RAM, and an acceleration of 6.5× in comparison to a software
version running on the ARM-Cortex A9 present in the Cyclone V device, while keeping
map consistency. We also benchmarked eSoC-SLAM with hdl_graph_slam algorithm [11]
native of ROS, observing an average speed-up of 113.6×.

SLAM is still a topic under intense scrutiny in the robotics community, with new
algorithms emerging every few years. The use of reconfigurable hardware, such as FPGA
devices, allow a rapid update of entire systems, reducing the impact and cost of following
the state-of-the-art trend. Furthermore, The complexity of SLAM algorithms present great
challenges to those attempting to implement entire end-to-end systems utilizing solely an
FPGA. In that sense, system-on-chip (SoC) platforms are suitable option as host platform,
since algorithms can be migrated across hardware and software in order to take advantage
of validated software applications, such as sensor drivers while off-loading the most
complex tasks to hardware.

Our contributions are summarized as follows:

• A novel SLAM hybrid architecture, that followed a co-design approach with the pri-
mary aim of being deployed in embedded platforms, as well as in a small SoPC device;

• A comprehensive discussion is presented in the paper regarding design constraints,
resource optimization, issues and solutions in HPS-FPGA exchange of large amount
of information and hardware design of algorithms;

• A validation of the system, not only in simulated conditions, but also using a real-life
scenario in the field of experimental robotics;

• An open-source release of our designs, algorithms, hardware, and data.

The remaining of the paper is organized as follows: Section 2 presents a discussion
regarding related works and antecedents reported in the scientific literature; Section 3
presents an overview of the important concepts and general description of the SLAM
algorithms and how it relates to eSoC-LAM; Section 4 presents the detailed description of
the eSoC-LAM algorithm developed and describes the implementation of the proposed
architecture for the localization and mapping algorithm on a hybrid SoC platform (ARM +
FPGA); in Section 5, the reader will find an analysis of the results of eSoC-LAM at functional
and implementation levels; and, finally, Section 6 presents the conclusions of the research
and insight recommendations for future work.

2. Related Work

The SLAM systems reported in the literature have been implemented in computing
platforms from medium processing capacities, such as desktop-like computers, or much
larger machines, such as mainframes and high-performance clusters. Reports of imple-
mentations in embedded systems are scarce, and even less end-to-end implementations
deployed on fully reconfigurable hardware. Due to the current constrains in power and
performance of embedded platforms, embedded platforms are not able to undertake the
most computationally intensive parts of the state-of-the-art SLAM algorithms [12]. The
Google Tango project [13] implemented a SLAM algorithm on a SoC architecture for aug-
mented reality applications, however, the acquisition of scene depth measurements was
achieved by active structured light sensors, which did not work properly outdoors. Google
finally closed the project at the end of 2017.



Electronics 2021, 10, 1378 4 of 26

Most of the hybrid SoC implementations reported offload the SLAM’s front-end to the
FPGA portion. For instance, in [14] and later in [12], the authors discuss how to accelerate
the semi-dense visual LSD-SLAM algorithm using a hybrid SoC architecture (ARM +
FPGA). The front-end modules are offloaded to the FPGA, i.e., from the original LSD-SLAM,
the tracking frame function is taken over by the FPGA acting as a coprocessor to a dual-core
ARM Cortex-A9, achieving 22 fps on a 320 × 240, which, in turn, represents an acceleration
between 10–21× in comparison to the software version running in the HPS. A similar
approach is presented in [15], in which the ORB hardware feature extractor, used in visual
SLAM, is designed, implemented, and evaluated in an ARM Krait, and the performance
and power consumption are compared between with the an implementation in an Intel
Core i5. As a result, it is observed that the implementation of the ORB feature extractor
in hardware presents a better trade-off between performance and power consumption
compared to implementation on processors.

An interesting approach was observed in [16] where the authors present a complete set
of parametrized versions of the KinectFusion algorithm to analyze the impact of memory
optimizations and approximate computing in both, the hardware realization and the
acceleration capabilities when deploying the systems in a SoC platform. Although, not
focusing directly in algorithmic regards or detailed implementation aspects, the authors
presents insightful lessons about hardware trade-offs for dense SLAM, such as the type
of arithmetic used, data width, etc., by re-writing the original code and using high-level
synthesis (HLS) directives. HLS was also used in [16], where the authors present two
end-to-end LSD-SLAM versions, one deployed in a SoC platform, and one implemented
in pure hardware for FPGA. The authors outline the potential hardware optimizations
for the sub-algorithms (tracking, depth fusion, and ray casting) by optimizing the HLS
directives at design stages. The authors also report a performance of 2 fps a complete end-
to-end system on the hybrid SoC, which is not as high as other implementations in similar
platforms. The hybrid and pure hardware implementations, were developed using HLS in
OpenCL, which still leaves room for optimizations at low hardware level. Both approaches
speak in favor of full end-to-end SLAM realizations over SoC using HLS, which avoids the
complexities of hardware design, and allow a faster deployment in real-life applications.

Hardware and software co-design have also been proposed to implement the visual
SLAM algorithm in real time, such as in [17], where a FPGA is used to pre-process data
from the visual sensors extracting key points, which significantly reduces the execution
time of the SLAM algorithms and allows the use of this algorithm in platforms with limited
resources. Similarly, in [18] the visual SLAM algorithm is implemented in a SoC architecture
(ARM + FPGA) in which the computationally intensive tasks are offloaded to the FPGA
and the remaining tasks run in the ARM processor. Another visual-inertial odometry (VIO)
algorithm is presented in [19] where the map is obtained using data from a camera and
an embarked IMU. The FPGA was used for computationally intensive tasks, however, it
implied restricting the memory dedicated to the algorithm and, therefore, limiting the
data extracted from the video feed. A successful implementation is discussed in [20],
where the π-SoC architecture is proposed. The architecture optimizes the input-output
interface, the memory hierarchy, and the hardware accelerator, being able to optimize
performance and power consumption in visual SLAM applications and not only speed up
some algorithm processes.

Other related works are focused on the integration of a hybrid SoC architecture with
ROS. In [21] a system called COMPTA uses an industrial robot in order to follow the
movement of people. To achieve this objective, a camera is connected to a computer
and through ssh connection it communicates with a SoC system which in turn, oversees
extracting features from the image. ROS compliant is presented in [22], as a communication
protocol between ROS topics and the logic components of the FPGA, aiming to enhance
the design productivity, as well as the operation speed. Authors claim an acceleration of
1.85× when compared with the original software-based components. Finally, in [23] a full
FPGA-based ROS model is presented where communication with ROS is framed under



Electronics 2021, 10, 1378 5 of 26

the TCP/IP protocol and the applications are implemented purely in hardware, observing
as expected, great acceleration when compared with the implementations in software or
using a combination between processor and FPGA.

3. Background: Simultaneous Localization and Mapping (SLAM)

Mapping and localization algorithms emerged from the need of building robots
capable of operate in a variety of environments and scenarios, without a hard coded model
of the world provided by the designer at designing time. Mapping is understood as the
capability of generating a representation of the world in which the robot operates. On
the other hand, localization corresponds to the estimation of the state of the robot, i.e.,
orientation and position related to its environment. SLAM is a process where a mobile
robot builds a map of the environment, while at the same time estimates its location within
it. In SLAM, both, the trajectory of the robot and the location of the points of interest are
estimated online without the need to know the a priori position of the robot [24]. SLAM is
considered a complex problem because it integrates the estimation of the location within
an unknown map that must be updated as the robot moves. Both variables, the robot’s
position and the map, are unknown and correlated. In addition to the above, the movement
of the robot increases the uncertainty of the system, due to actuators hysteresis or wheel
skid that can add errors the odometry readings; and, additionally, the environmental
sensors also pose a certain degree of uncertainty due to noise in the reading.

The current state of the robot is described by its position and orientation, although
other estimation parameters can be used, e.g., speed, bias of the sensors, calibration pa-
rameters, etc. On the other hand, the map is the representation of aspects of interest in the
environment—e.g., location of key points, obstacles, free and occupied space [25]. A metric
representation (or map metrics) is a symbolic structure that encodes the geometry of the
environment. Metric representation in SLAM impacts several research areas, including long-
term navigation, physical interaction with the environment, and human–robot interaction.

SLAM assumes that the robot does not have access to the map nor the historic log
of positions within the environment. Moreover, the robot does have access to a set of
observations about the environment z1:t = {z1, z2, z3, z4, . . . , zt} and to the sequence of
commands given to the actuators u1:t = {u1, u2, u3, u4, . . . , ut}. SLAM estimates the map
and the trajectory made by the robot from the aforementioned set of measurements. From
a probabilistic point of view, SLAM can be viewed from two different perspectives. The
first one is known as online SLAM, which involves estimating the current state of the robot,
i.e., the instantaneous position altogether with the simultaneous estimation of the map.
Equation (1) describes the online SLAM problem as the estimation of the current pose xt
and the map, from the historic sequence of observations z1:t and commands u1:t. The term
online refers to the fact that, in this case the algorithm only intends to estimate the variables
that persist at time t. Most of the online SLAM algorithms are incremental and discard past
control measures and actions once they have been processed [24].

p(xt, m|z1:t, u1:t) (1)

The second approach is known as full SLAM. As opposed to online SLAM, full SLAM
aims to estimate the complete trajectory of the robot x1:t = {x1, x2, x3, x4, . . . , xt}, (where xi
is the pose of the robot at time i), together with the map, from the history of the sequences
of observations z1:t and commands u1:t, according to Equation (2) [5].

p(xt:1, m|z1:t, u1:t) (2)

Although seemingly subtle, estimating the robot’s current position vs. estimating the
full pose history has important implications in the algorithms used to solve one or the
other problem. In particular, online SLAM can be understood as the successive integration
of full SLAM, as seen in Equation (3). The problem lies in the fact that the integrals are



Electronics 2021, 10, 1378 6 of 26

executed one at a time, which has repercussions in complex dependency structures and
cumulative errors [24].

p(xt, m|z1:t, u1:t) =
∫
· · ·

∫
p(xt:1, m|z1:t, u1:t) dx1 dx2 dx3 . . . dxt−1 (3)

An important feature of SLAM is the nature of the estimation problem, which has
both continuous and discrete components. Continuous estimation refers to the location of
objects on a continuous map and the robot’s own pose. Objects can be viewed as landmarks
if a feature-based representation is used, or they can be point clouds detected by range
sensors. The discrete nature of the estimation has to do with the correspondence of a
detected object with the objects previously observed by the execution of the algorithm,
since it must be determined whether the object has been previously detected or not [3].

Although in both versions of SLAM-online and full the main problem is to calculate
an a posteriori estimate, in full SLAM this calculation is not feasible given the following
aspects: (a) the high dimensionality of the data, and (b) the large number of matching
variables mentioned above. Most of the newer algorithms construct maps with thousands
of features, including probability distributions with a high number of dimensions, while
the localization itself infers an estimate in a three-dimensional space. As seen, SLAM
algorithms require a high dose of computing power.

Execution of SLAM is divided into 2 main tasks: front end and back end, which are
mainly associated with the graph-based SLAM algorithm. The front end block builds a
pose graph of the robot from the measurements of the sensors [26], where each node
corresponds to a position of the robot, and each edge or arc is the path travelled from one
node to another. The second task, the back end, determines the most probable configuration
of the movements given the edges of the graph, that is, it performs the graph optimization
and map estimation [5].

Another aspect worth considering is the representation of 3D maps that are able to
incorporate the geometry of the word. Being able to generating a metric representation of
the world have been addressed from different disciplines from robotics, computer vision,
computer-aided design (CAD), and computer graphics [27,28]. One of the most popular
techniques, and also used in this paper, is the spatial-partitioning dense representation, where
3D objects are defined as a collection of contiguous primitives that do not intersect. The
most popular representation is called the spatial-occupancy enumeration, which decomposes
3D space into identical cubes called voxels, organized in a 3D grid. This map metric is used
to represent fully volumetric data, implicitly storing samples of a continuous function. In
this method, the dense maps are converted into a mesh called a voxel grid [29], as observed
in Figure 1.

Despite the fact that the SLAM problem has been widely addressed by roboticists
since the end of the 20th century reaching considerable theoretical maturity, practical
applications, especially on platforms with reduced computing capacity, are scarce. In
general, with hybrid approaches only, some parts of the the algorithm are implemented
in reconfigurable hardware, such as image filtering for visual SLAM, however, complete
applications are not reported with this type of platforms. In the present paper, we discuss
the implementation of an online version of SLAM. The implemented algorithm leaves
the stochastic elements to the front end, in charge of the odometry model and the sensor
model, in such a way that the map updating task becomes a geometric problem, which
allows achieving not only a great acceleration when compared to a state-of-the-art SLAM
Algorithm, hdl_graph_slam [11], but also allows its deployment in both an embedded
system and reconfigurable hardware.



Electronics 2021, 10, 1378 7 of 26

Figure 1. Map generated by Graph-based SLAM.

4. Implementation of eSoC-SLAM

The eSoC-LAM system was implemented on a SoC-FPGA device and, therefore, the
computational requirements of a SLAM algorithm designed to run on a high-performance
PC are not suitable to be taken to embedded or hardware platforms. The eSoC-LAM
algorithm was designed following an aggressive optimization process aiming to simplify
the most demanding functions from the computational point of view, which in turn were to
be implemented in embedded reconfigurable hardware. In addition, during the the design
stages of the algorithm in C++, library calls and software optimizations were avoided in
order to obtain a clean implementation that can be migrated seamlessly to reconfigurable
hardware. The implementation was tested using the Turtlebot2 robot, manufactured by
Robotics, of which the odometry model provided by the manufacturer was used, and a
Robosense LidarRS-16 sensor as a rangefinder. The eSoC-LAM executes a filtering process
to the point cloud and builds the 3D map incrementally, integrating the new measurements
obtained from the LiDAR.

It should be reiterated that the eSoC-LAM algorithm developed leaves the odometry
problem, pose graph optimization, and, above all, the loop closure procedure, for a future
implementation. Similarly to the process described in [30], a current and corrected position
is obtained from the movement model that implement any of the optimization subsystems
used by the localization and mapping algorithm, under the premise that obtaining a
position and orientation of the robot with a reasonable level of certainty, then a map can be
updated with the current reading from the sensor. According to Equation (1), the SLAM
problem is defined as obtaining the joint probability of a pose and a map given the history
of the sensor observation sequences and the commands. The application developed in the
present manuscript transfers the optimization problem of this probability to the motion
model, which, once solved, allows a seamless integration of the new measurements to the
map from a geometric perspective. The above is a hard design choice, but a necessary one
given the trade-off made between computational complexity and practical implementation.

Figure 2 shows the architecture of the eSoC-LAM algorithm, depicting the task dis-
tribution between software functions carried out within the HPS and hardware modules
off-loaded to the FPGA, resulting from the co-design process. As observed in Figure 2,
eSoC-LAM receives the point cloud data, obtained from the LiDAR RS-16, and the position
and rotation angle provided by the Turtlebot2 as input parameters. The system outputs
the 3D map of the environment where the robot is located. The 3D map corresponds to an
online reconstruction of the environment, which requires an incremental fusion of several
overlapping depth maps obtained from the LiDAR, in an unified, continuously updated,
3D representation.



Electronics 2021, 10, 1378 8 of 26

Figure 2. eSoC-LAM Architecture: Block diagram.

The software implemented in ROS manages the communication with the LiDAR and
the robot through ROS topics, as well as the publication of the 3D map resulting from
applying the localization and mapping sequentially. In the point cloud processing module
the point cloud sent by the LiDAR points is restricted in vision range, then grouped and
organized using a volumetric approach, in order to reduce the size of the sample to be
later integrated into the map [29,31]. The voxel filter is responsible for creating a 3D grid,
where space is divided into small three-dimensional boxes, which, in turn, group the
points obtained by the LiDAR sensor. Those points that fall inside the boxes of the voxel
are approximated to the centroid of the box, allowing to reduce the full sample of points
to those centroids of the voxels that effectively gather points inside. On the other hand,
the Odometry module uses kinematic equations that describe the motion of a differential
mobile robot to obtain the rotation and translation matrix at any given instant. Finally,
with the data from the LiDAR sensor grouped and ordered, and the pose information from
the odometry model, the localization and mapping module integrates the voxel points into
the current map using a linear transformation. In the following subsections we discuss
each of the modules at functional level, and at architectural level for those implemented
in hardware.

4.1. Hardware–Software Interface

The DE1-SoC board includes an Intel’s (a.k.a Altera) Cyclone V 5CSEMA5F31C6N,
which incorporates an 800 MHz Dual-core ARM Cortex-A9 as hard HPS, and a Cyclone V
FPGA running at 50 MHz. Communication between the HPS and the FPGA occurs through
bus-based interfaces that allow data to be sent between the two portions of the device.
The HPS connects to this bus through a master AXI interface to communicate with the
peripherals connected to the processor, including the HPS-to-FPGA bridge. The addressing
follows a memory-mapped model, where the hard-core peripherals and the FPGA portion
share the memory space that the processor is able to address. The HPS-to-FPGA bridge is a
high performance bus with a configurable data width of 32, 64, or 128 bits, that allows the
HPS to master transactions to custom hardware slaves deployed in the FPGA fabric. At
architectural level, the HPS-to-FPGA bridge can be seen as a shelf of bidirectional registers,
that are accessed by both, the HPS and the FPGA.

Operating systems such as Linux, are built under an interrupt-based model where
error-prone processes do not possess the ability nor the permissions to interfere with the



Electronics 2021, 10, 1378 9 of 26

proper functioning of the processor. The Linux operating system defines two modes to
implement protection mechanisms between the processes, known as user mode and kernel
mode. User code cannot be executed in kernel mode. When a user process needs to perform
an action that is only allowed in kernel mode, such as handling an interrupt or copying
data from the registers of a peripheral to the main memory, a system call is made to request
that the operating system execute the potentially dangerous operation. This essentially
means that the user code cannot access the hardware directly, as there is a great risk that
the code will have an error and, in turn, cause the system to crash. The main advantage of
the Cyclone V SoC is the ability to make the HPS and FPGA easily communicate with each
other. This is simple to achieve in a standard bare-metal application, as there is no protection
mechanism in place. However, this is not possible while the HPS is running Linux, as the
user code does not have permissions to access the hardware directly. One technique used
in embedded Linux environments is to take advantage of the virtual memory system to
access any memory-mapped peripherals.

The HPS is able of reading or writing the registers in the HPS-to-FPGA bridge, by
referring to each one of the them individually by its correspondent address in the mem-
ory space. Linux represents everything as a file, including all the devices connected to
the processor. In particular, the file “/dev/mem” represents the contents of the physical
memory of the system. To access the textit/dev/mem file, the command “open("/dev/mem",
O_RDWR|O_SYNC) in C++ does the trick. Since /dev/mem gives access to the physical
memory, the user application must be run under root privileges. Once the file /dev/mem is
open, the command mmap() allows to access specific areas of the physical memory, such
as the HPS-to-FPGA bridge, which has a fixed address in the HPS memory space. Each
individual register in the bridge, can be accessed by a void pointer to the base address of
the bridge plus a correspondent offset. A large amount of data are need to be passed from
the HPS to the FPGA, i.e., point cloud data from the LiDAR, and back to the HPS, e.g., the
generated 3D map. The command memcpy() in C++, is able to copy the values of certain
number of bytes from a source location to a memory block pointed to by destination. Even
though, memcpy() facilitates passing large batches of data, the copying process still poses as
a bottleneck, since copying memory blocks is performed in a sequential fashion.

On the other hand, the FPGA is able to access the individual registers in the HPS-to-
FPGA bridge by connecting to the system bus using a wrapper circuit that interfaces the
bus protocol into the commands and data structures expected by the hardware. In this case,
the hardware in the FPGA is connected to the bus via Avalon slave interface. The compiler
incorporates the required AXI-Avalon bridge logic.

4.2. Software Modules—HPS

The entire SoC system was subdivided into the tasks performed by the localization
and mapping algorithm, leaving to the HPS only the odometry and robot movement
control, the handling of the LiDAR sensor taking advantage of the libraries provided by
the manufacturers of both platforms, and the communication with the master ROS running
on a desktop computer. All the software was implemented in C++ on ROS Kinetic, which
was installed in the HPS under Ubuntu 16.04 as operating system.

4.2.1. Scope Limiter Module

According to the LiDAR’s datasheet [9], the RS-16 model has a maximum sensing
range of 150 m, which is excessive for an indoors application. The scope limiter module
restricts the range of vision of the LiDAR sensor to a few meters around the robot. A sensor
with a narrower point of view generates a reduced point cloud, which is desirable since the
hardware in the FPGA is able to process a point cloud composed of 16,384 (214) instances
due to the limited availability in on-chip memory of the Cyclone V device. It is important
to notice, that scope limiter module can be avoided in the case of using off-chip memory in
which case, the hardware would be able to process the 32k+ instances generated by the
LiDAR each reading. The use of off-chip memory has been contemplated as a future work.



Electronics 2021, 10, 1378 10 of 26

4.2.2. Odometry Module

The odometry module integrates the ROS libraries in charge of managing sensors and
actuators in the robot, encoded in ROS topics. In this case, the pose and orientation data
are published by the Turtlebot2 in two different topics. As inputs, the odometry module
receives from the robot the translation and orientation information. The odometry module
will deliver as outputs, the pose (x, y) of the robot, the ϕ angle and a valid signal that acts
as an activation flag to execute localization and mapping.

The relative position (x, y), is updated by the pose module using the ROS topic /odom,
which reads data from the on-board motion sensors and encoders to estimate the change in
the robot’s position over time with respect to the position (0, 0) corresponding to the robot’s
position at power-on, as seen in Figure 3. On the other hand, the orientation corresponds
to the rotation of the robot with respect to the z-axis read by the rotation module from the
embarked IMU in the Turtlebot2, using the ROS topic /mobile_base/sensors/imu_data. The
information is processed from a quaternion-based encoding to the the ϕ angle observed in
Figure 3.

Despite the fact that both, the LiDAR and the robot’s sensors can deliver data continu-
ously, the localization and mapping execution is not executed for every incoming reading.
On the contrary, the integration of new points to the map is carried out only when the
robot moves or rotates a certain threshold value, to maximize the significant amount of
new information in each execution of SLAM. Performing localization and mapping too
often implies unnecessary use of computational resources, in addition to the possibility that
there is no new information to be integrated into the map. The thresholds were determined
heuristically, and correspond to a displacement of 0.1 m in either x- and y-axis or a rotation
angle ϕ = 1◦.

The Validate_position module is in charge of continuously validating the thresholds
and comparing the new position of the robot with the previous poses stored during the
construction of the map, to determine if the new point of view has already been visited by
the robot and, therefore, the points obtained by LiDAR do not add new information to the
map. The block receives as input parameters the current position of the robot (x, y) and
the robot’s orientation angle ϕ, to be stored in an array which keeps track of the robot’s
poses, using an origin-adjusted coordinate reference system (i.e., position at power-up).

A linear transformation [32] is used further in the algorithm to update the coordinates
of the points in the map to the current point of view. The eSoC-LAM algorithm builds
and maintains a map centered on its own inertial coordinate system, and, therefore, the
points discovered on the 3D map must be transformed to the current point of view of the
robot. The transformation results from the relative position between the last registered
pose and the current position (see Section 4.3.4). However, the positions and angle received
from the previous blocks are aligned to the initial frame of reference. In that order of ideas,
the module calculates the difference between the current state of the robot-coordinates
and angle- and the last position where the localization and mapping was executed. The
aforementioned relative movement information is sent to the Map_handler module in the
FPGA represented in the values of the differences diff_X, diff_Y and the rotation information
encoded in the values sin_theta and cos_theta, which in turn allow to calculate the rotation
matrix used to transform the coordinates of the current map. In this case, the angle θ
corresponds to the difference of the absolute reading of the angle ϕ.



Electronics 2021, 10, 1378 11 of 26

Figure 3. Odometry Module: Relative pose (x, y) and ϕ angle of the robot since power-on.

4.3. Hardware Modules—FPGA

The hardware modules in the eSoC-SLAM algorithm were written in VHLD and
deployed in the FPGA portion of the Cyclone V SoC device that is included in the DE1-SOC
board. Those blocks depicted in Figure 2 that were deployed in the FPGA portion of the
device are detailed in Figure 4, which represents the general architecture of the hardware
portion. For visualization purposes, some control and status signals have been omitted
and the signals that add-up the respective read and write ports for the memories have been
grouped together.

Figure 4. Hardware Architecture of the eSoC-LAM algorithm.



Electronics 2021, 10, 1378 12 of 26

As it can be seen in Figure 4, the point cloud is written directly by the processor in an
on-chip memory. The input_data memory consist in a single-port RAM intellectual property
(IP) core with 16,384 (214) words of 96-bits, to store the three coordinates x, y, z of each
point received in single-precision floating point (FP32) codification. Worth to mention
that the data path observed in Figure 2 propagates and processes points alongside the
hardware stages of the algorithm, therefore, all the storage facilities where single port
RAMs configured with the same word size of 96-bits to store the three coordinates in 32-bits
and parametrizable capacity. Given the limited on-chip memory available in the FPGA,
the number of instances in the point cloud and the maximum number of points that can
be stored in the 3D map cannot exceed 16,384 (214). Using an FPGA that includes more
logic elements and memory blocks or using external memories, would enable the system
to process the entire point cloud which size oscillates around 32k+ points (approximately
215). Moreover, the size of the point cloud is also received from the HPS and stored in the
register pointcloud_size.

The first process is carried out by the Quadrant Scatter module which is in charge
of (a) scaling and converting to binary integer each point, (b) separating the point cloud
received from the LiDAR into quadrants, and, (c) writing the four memories denoted as
mem_quadrant_i with the points belonging to each quadrant. Next, the Voxel_filter module
applies a voxel-based filter to each of the quadrant point clouds in a parallel fashion, storing
the results in the memories noted as voxel_quadrant_i. Finally, the Map_handler module
uses the odometry information received from the processor to update the 3D map with
the new information present in the four voxel_quadrant_i memories. The map obtained
after executing the localization and mapping is stored in the map_memory module. The
3D map is read by the HPS via the HPS-to-FPGA bridge using the procedure discussed
in Section 4.1, after asserting the data_ready) signal/register which indicates to the HPS
that the processing of a LiDAR reading has finished. The map is then exported to the ROS
master located at a remote PC through the HPS, for further analysis and visualization
purposes in the RVIZ tool.

4.3.1. Interfaces and General Architecture of Hardware Modules

The implemented system presents a point-to-point interconnection architecture, where
successive stages in the algorithm are cascaded using a hand-shake protocol. A consistent
interface was selected throughout the design, based on the model presented in [33], which
allows data and events to be communicated between modules. The interface model
implements the industrial communications standard called open core protocol [34] (OCP).
The implemented OCP interface is scalable, as it can be integrated into future applications
with much larger systems with bus-based or network-on-chip communications, and result
easy to interface with other industrial standards such as AXI, Avalon, among others.

Figure 5 presents the generic interface for all modules implemented in hardware. The
interactions between modules are triggered by events, described as informative events that
involve the passing of raw information, i.e., processed results or information from and
to the environment; and flag events, involving one-bit signals such as flags, control bits,
requests, or acknowledge in handshake protocols. The ports used to handle bit events
are: (a) clk—used in digital circuits to synchronize execution; (b) strobe—is a listening port
which is set during a clock cycle to indicate the start of operation; (c) data_ready—it is a
signal that indicates that the operation of a module has finished, its duration is also one
clock cycle and (d) sync_clr—optional synchronous reset signal, that indicates the restart
of the module generally to the idle state in the finite state machines (FSM) that govern the
inner operation of the module. On the other hand, the informative events will be given by
the data and result ports which will carry output data. These ports will be registered both
at the input, being enabled by the strobe signal, and at the output, whose enable signal
is internal.

All modules are designed as a finite state machine with data path (FSMD), where an
FSM controls the flow and operation of the data path, as a response to the strobe signal.



Electronics 2021, 10, 1378 13 of 26

A strong register balancing was carried out at design stages to achieve higher theoretical
operation rate. This implies the design of efficient combinational logic in those data paths
that operate in integer arithmetic and strict timed synchronization in those sequential data
paths doing floating point processing.

Figure 5. Generic module architecture in hardware—OCP interface + FSMD.

4.3.2. Quadrant Scatter Module

The quadrant scatter module separates the instances of the point cloud by quadrants
with the purpose of gaining acceleration by parallelization. Thus, the subsequent voxel
filter can run in parallel concurrently for each quadrant. The point cloud is organized by
quadrants with respect to the x- and y-axes. The z-axis is not considered as a condition
parameter for quadrant grouping, however, within the vision limitation, points in z-axis
below −0.38 m are discarded for they belong to the floor.

Figure 6 presents the internal architecture of the quadrant scatter module. Instances in
the point cloud are received from the processor in meters encoded in FP32. An analysis
performed at design time stages, identified that the processing related to the quadrant
separation and the application of the voxel filter only require simple arithmetic operations
(subtraction, absolute value, and comparisons), which implies that it is more beneficial
in terms of speed, if such operations were performed in integer arithmetic. Each of the
above operations take between 3 and 7 clock cycles for floating point circuits, while the
latency of operations in integer arithmetic are bounded by the gate delay of the selected
FPGA technology, i.e., between 3 and 6 ns. In addition, resolutions below 1 mm were
determined to be not necessary for the designed application. At this stage of the algorithm,
the coordinates of the points are scaled by a factor of 1000 so that the point is obtained
millimeters, and, finally, a conversion to integer binary encoding is performed.



Electronics 2021, 10, 1378 14 of 26

Figure 6. Internal architecture of the quadrant scatter module.

The scale_convert2int module in Figure 6 instantiates IP arithmetic cores for floating
point multiplication and floating point to integer conversion, taking 12 clock cycles to
operate (6 clock cycles to multiply plus 6 cycles to convert to integer). The Figure 6
shows three instances of the scale_convert2int module, which correspond to the respective
operations for each of the x-, y-, and z-coordinates, performed in parallel for each new
point received.The entire result is subsequently registered when the data_ready signal of
the converters is activated. The points already coded in integer binary, pass through the
combinational circuit noted as quadrant_selector to determine to which quadrant the point
belongs, by asserting the corresponding flag signals q1, q2, q3, and q4 as the case may be.
Last, the scatter_control_fsm module is in charge of controlling the data flow through the
different stages and keeping track of the writing pointers for each quadrant.

4.3.3. Voxel Filter Module

Once the different instances of the point cloud have been organized by quadrants, the
next step consist in filtering the points using a technique inspired by the voxel grid method
discussed in [35]. The visible space is divided into small 3D boxes of fixed size, called
voxels, which in turn, group the points obtained by the LiDAR sensor that are contained
within the volume of the box. Those points that are inside the voxels are approximated to
the centroid of the box. The voxel grid technique is most often used when the poses of the
robot are known, a situation that in this application will depend on an optimized odometry
model obtained from the Turtlebot2. It is important to define the size of the grid, since it
impacts directly in the processing time of the algorithm and memory resource utilization.

Figure 7 shows an example of the operation of the voxel filter module presented in two
dimensions to facilitate its explanation below. Figure 7a shows a green instance, called
the anchor point, which corresponds to current point in evaluation. The anchor is taken as
the reference point to find and group the neighboring points around it. In Figure 7, the
points are spatially organized, however, it is important to remember that they are stored



Electronics 2021, 10, 1378 15 of 26

in a linear array with no particular order. The algorithm compares the distance per axis
between the anchor point and all other points in the quadrant memory. Figure 7b shows the
anchor point in relation to the distances xquad and zquad, which represents a new voxel
cell in the grid. The gray points correspond to the nearest neighbors, whose coordinates
are accumulated in each iteration. At the end of comparing the anchor point with the rest of
the points in the cloud, the value of the accumulated sum of the x, y, and z coordinates of
all the neighboring points will be stored and, at the end of the iteration, the accumulated
value in each coordinate is divided by the total of neighboring points to determine the
spatial centroid of the voxel, as observed in Figure 7c. The points determined as neighbors
are included in the cumulative sum by coordinate, while the points that are not considered
immediate neighbors (red points in Figure 7), are taken into account in a new execution of
the algorithm. The iterations are repeated, choosing a new anchor point each time, observed
in green in Figure 7d, until all the points in the quadrant are exhausted. The algorithm
returns the centroids of the resulting voxels.

Figure 7. Example of operation of the Voxel filter in 2D: (a) Anchor point, (b) Anchor point neighbours,
(c) neighbours approximated to mean coordinates, (d) new anchor point for next iteration.

The voxel filter is executed for each quadrant, by the voxel quadrant module, which is
instantiated four times so that it runs concurrently for each quadrant. Figure 8 presents the
internal architecture of the voxel quadrant module, in charge of applying the filter over each
quadrant memory. The module receives the strobe bit directly from the signal data_ready
issued by the quadrant scatter module, indicating that the latter finished the operation and
the points are separated by quadrants in the four corresponding memories. The operation
performs a convolution of the quadrant on itself, so that each point of the quadrant is
compared with all the other points in the same quadrant, to determine which of the points
are close, thus can be grouped within a voxel cell. The neighbouring condition was defined
heuristically in 10 cm.

The values of the coordinate of the neighbor points are accumulated and averaged
at the end of the iteration to find the centroid of the neighborhood, which correspond to
a new voxel. The abs_diff modules are in charge of determining the relative distances on
each coordinate between the two points that are being analyzed in any given iteration. In
turn, the neigbour_detector module implements combinational logic to determine if two
points belong to the same voxel resulting in setting or clearing the neighbor_flag_s flag
according to the case. The int_adder adds up the coordinate value with cumulative sum of
previous neighbour points. In turn, the alt_int_divisor modules calculate the centroid for
each new each new voxel at the last iteration for any given anchor point, by dividing the
cumulative sum with the total number of points framed in the current voxel. Last, the Voxel



Electronics 2021, 10, 1378 16 of 26

fsm module implements a finite state machine to control the general operation of each of
the voxel quadrant sub-systems.

Figure 8. Internal architecture of the voxel quadrant module.

4.3.4. Map Handler Module

The map handler module is in charge of integrating the new points to the current 3D
map, taking into account the new position of the robot. The module receives as inputs: the
voxel point cloud coming from the point cloud processing block, and the position (x, y), the
angle ϕ and the activation flag coming from the odometry block in the HPS. The module
outputs the 3D map. Figure 9 shows the internal architecture the module, which includes
four internal sub-modules corresponding to Map_init: Map_transform, Map_update, and
Map_handler_fsm.

Figure 9. Map_handler internal architecture.



Electronics 2021, 10, 1378 17 of 26

Map_init Module

During the first iteration of the eSoC-LAM algorithm the 3D map is empty. The
Init_map module allows to initialize the map with the current points of the LiDAR read at
the origin of the robot. The Init_map block receives the four voxel point clouds filtered by the
point cloud processing block and the size of each one of the point cloudsas input parameters.

Since the previous modules, quadrant scatter and voxel filter, were implemented using
integer arithmetic, the representation of the results in the voxel memories is also integer
binary encoding, nevertheless, ROS expects the map points in meters in FP32. Therefore,
the Map init module reads each point stored in the voxel memories, performs an integer to
floating point conversion, followed by a division by the factor of 1000 to obtain meters as
a unit. The three coordinates are operated in parallel, and once it has been converted to
FP23 and scaled, the point is stored on the map. Similarly to other modules, map init is
implemented using a FSM approach to control fetching the points from the voxel memories,
the data-flow through the conversion and scaling circuits, and the storing of the new point
in the map memory.

Map_transform Module

This block is responsible for carrying out the transformation of coordinates for each
point of the map once a new point of view is reached, i.e., the movement threshold is
validated by the software running on the HPS. Each point is subjected to a coordinate
transformation that responds to the last movement executed by the robot, in order to obtain
a map whose origin is the LiDAR’s coordinate frame, describing the world from the robot’s
point of view. The Map_transform module operates concurrently with the quadrant scatter
and voxel filter modules. Once results are obtained from the voxel filter, the transformed
map is ready to be compared with the current points by the Map update module.

Figure 3 shows a rotation of the robot’s x-axis, XR, with respect to the origin’s x-axis,
i.e., the frame of reference. Taking the problem to a R3 space, it is possible to construct
the rotational matrix with respect to the z-axis for differential mobile robots [32], which
is observed in Equation (4), where ϕ corresponds to the current orientation of the robot’s
with respect to the z-axis of the global coordinate axis.

RZ(ϕ) =

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 (4)

The matrix noted as Rz(ϕ) represents the movement within the global reference frame
W{x, y, z} in terms of the local reference frame of the robot WR{xR, yR, zR}, as observed in
Equation (5). For this particular case, the reference coordinate system W{x, y, z} determines
the coordinates of the world at the immediately previous point of view. On the other hand,
the reference frame WR{xR, yR, zR} corresponds to the current point of view of the robot.xR

yR
zR

 = Rz(ϕ)

 x
y
z

 (5)

Contrary to Equation (5), in order to map the environment from the robot’s own inertial
coordinate system the eSoC-LAM algorithm must perform the inverse transformation,
(WR → W) = R−1

z (ϕ) ·WR. Conveniently, Rz(ϕ) is an orthogonal matrix (Rz(ϕ)−1 =
Rz(ϕ)T), which derives Equation (6), where [xM, yM, zM] corresponds to the coordinates
of a current point stored in the map that must be transformed to the robot’s new point
of view. Since updating the map occurs if the robot surpasses the movement thresholds,
the value of xM needs to be adjusted to the difference between the current point in the
map and the effective ∆ of movement in x- and y-axis and the relative rotation between
the two last readings for the angle ϕ. The software running in the HPS sends, the values
of the relative movement in each axis as parameters to the FPGA, labeled as diff_X and



Electronics 2021, 10, 1378 18 of 26

diff_Y, and the rotation information in the values sin_theta and cos_theta, respectively (see
Figure 2). The underlying hardware that constitutes the Map_transform module instantiates
FP32 IP arithmetic circuits to generate a hardware realization of Equation (7), along with
a FSM to control the fetch of the map points, the coordinate transformation process and
storing back the transformed point. xR

yR
zR

 = Rz(ϕ)T

xM
yM
zM

 (6)

xR = xM cos ϕ− yM sin ϕ
yR = yM cos ϕ + xM sin ϕ

(7)

Map_update Module

The purpose of this block is to integrate the new points received from the point cloud
processing module into the current map. The Map_Update module compares each point
stored in the voxel memories, with all the points currently stored in the map to deter-
mine if the new points have been previously marked on the 3D map. To compare the
points observed in the current pose of the robot with the points on the map, two options
where considered: to calculate the Euclidean distance and to compare each coordinate
independently-plus or -minus a tolerance threshold. A simple comparison between co-
ordinates was selected as it implied less processing time. A threshold of ±3.5 cm in each
coordinate has been defined to determine if the new point corresponds to the same voxel in
the 3D space. If the point is recognized as part of the current voxel, the coordinates of the
voxel will be updated with the new point, under the premise that that the robot has a better
point of view at its current position. At the end of the iteration, if the new point has not
been marked in the map, it will be stored in the last available position in the memory as a
new voxel.

The Map_Update block is enabled once both, the transformation of the current map and
the execution of the voxel filter are finished. Since the filtered points come in binary integer
encoding from the previous modules, the operation of the module initially includes fetching
each one of the points from the voxel memories to performing a transformation to FP32 and
scaling it to obtain units of meters in each coordinate. Then, the algorithm compares the
voxel point with each point stored on the map to determine its neighborhood condition.

The Map_update module is built using a hierarchical state machine approach, as shown
in Figure 10, where the main FSM, map_update_fsm, controls which of the voxel memories
has to be read. In turn, the Quadrant_to_map module will be in charge of reading each point
in the voxel memory and comparing it with each of the points stored in the current map.
An FP32 comparator circuit in is in charge of determining the neighborhood condition for
each point, while an internal FSM governs the stages of reading the points from the voxel
and map memories, comparison of each point, and storage of the point in the map as the
case may be: replacing the values of the most recent point if it is found within the map or
adding the new point to the map if it has not been matched after exhausting the current
stored points.



Electronics 2021, 10, 1378 19 of 26

Figure 10. Map_update internal architecture.

5. Results

This section presents the results obtained from deploying the eSoC-LAM algorithm
in a Cyclone V SoC platform, implemented and synthesized in VHDL using Quartus
Prime 17.1, on a DE1-SoC board. Two experimental approaches where followed to validate
the results. A first set of experiments were conducted in simulation using Gazebo, a 3D
multi-robot simulator included in ROS, which offers the possibility of simulate robots,
objects, sensors, and different environments, both indoors and outdoors [36]. It should be
noted that the simulations carried out seek to reproduce the robot trajectories previously
stored in ROS bags, which allow to store a series of movements in order to guarantee the
repeatability of the experiments. It is worthwhile to mention that, although a simulated
environment was used in this first sets of experiments, the simulated data were exported
and processed by the Hybrid SoC platform, and the generated map was imported back to
the host PC. A second set of experiments were conducted using the Turtlebot2 controlled
by the DE1-SoC platform, mapping an indoor environment. This analysis focuses on the
complete functionality of eSoC-LAM, its capability of generating consistent maps and on
the observed acceleration with respect to the software version of the algorithm running
in the HPS of the device, and an additional benchmark with the hdl_graph_slam algorithm
running in a high-performance computer that includes an AMD RYZEN 5 3500U@3.2 GHZ
processor with 12 GB of RAM.

5.1. Hardware Implementation Results

Table 1 presents the resource utilization of the hardware modules deployed in the
FPGA portion (see Figure 4) after full compilation in Quartus II version 17.0. As observed,
the deployment of the architecture in the the Cyclone V SoC device, implied the use of the
majority of the FPGA resources, a total of 69% of logical elements were occupied, as well
as 80% of the blocks available as on-chip memory. IP memory cores configured as dual
port RAM were instantiated to generate the arrays observed in Figure 4. The memory used
to store the point cloud received from the LiDAR via HPS, was set to store 16,384 (214)
instances of three FP32 numbers. On the other hand, the quadrant memories are able to store
2048 (211) integer points, the voxel memories store 256 (28), and, finally, the map memory can
hold up to 16,384 (214) map points in FP32 encoding. Although larger memories, specially
in the initial point cloud and the map lead to better mapping results, the device does
not allow to grow the memories further than the aforementioned sizes without overflow
the FPGA capacity. An empirical approach was used in design stages to determine a



Electronics 2021, 10, 1378 20 of 26

feasible relation between the sizes of the memories and the mapping capabilities of the
algorithm. Finally, the estimated dynamic power consumption of the SoC for this particular
implementation is 96.55 mW, while the estimated static power dissipation is 419.72 mW.

Table 1. Resource utilization of eSoc-LAM hardware modules.

Resource Total Components Percentage

Logic Utilization (in ALMs) 22,174/32,070 69%
Memory Blocks (in bits) 3,272,051/4,065,280 80%

DSP Blocks 43/87 49%

5.2. Mapping Functionality in Simulation

The simulated world used in the experiments comes integrated in the Gazebo platform,
and it can be seen in the Figure 11. The red line shows the path followed by the robot
and the blue dot denotes the starting point of the trajectory. The implementation of the
localization and mapping algorithm in the FPGA imposed great restrictions in the use
of memory, therefore, the instances in the point cloud that must be processed had to
be reduced by constraining the LiDAR’s detection range. This also allowed to verify the
algorithm’s limitations to generate a consistent map depending on the reduced vision range.
Experiments suggested that a detection range under 1.25 m did not generate a usable map.
Figure 12a presents the resulting map obtained in simulation by the hdl_graph_slam when
the the robot followed the trajectory observed in Figure 11.

Figure 11. Simulated world in Gazebo and robot’s trajectory.

To verify the eSoC-LAM algorithm, a similar experiment was conducted, were the
aforementioned simulated world and trajectory run in Gazebo in a PC, ROS topics are



Electronics 2021, 10, 1378 21 of 26

in charge of sending the sensor information to the DE1-SoC, which, in turn, run eSoC-
LAM following the co-design architecture discussed in Section 4. Figure 12b presents the
resulting map, after the execution of eSoC-LAM, with a restricted field of view of 2 m. The
points coloured in red, represent the LiDARS’s limited detection range, generated at the
scope limiter module.

Figure 12. Final map obtained in simulation by (a) ROS’ hdl_graph_slam library–LiDAR’s detection
range = 5 m; (b) eSoC-LAM running in the DE1-SoC platform–LiDAR’s detection range = 2 m.

The resulting maps of hdl_graph_slam and eSoC-LAM are compared in Figure 13, were
the blue points corresponds to the map generated by hdl_graph_slam and the white points
build the map generated by eSoC-LAM. As seen, the general topology of the mapped world
is consistent between both versions of the map. The map estimation error was derived
from the procedure discussed in [25], resulting in an error of 3.6%. The map accuracy was
determined by comparing the spatial information of the world with the generated 3D map.
It is worthwhile to mention that, in the simulation neither the robot’s odometry nor the
LiDAR present uncertainty or noise.



Electronics 2021, 10, 1378 22 of 26

Figure 13. Comparison of resulting maps in simulation, obtained by hdl_graph_slam (blue points) and
eSoC-SLAM (white points).

5.3. Mapping Functionality in Indoors Operation

The final set of experiments consisted on running eSoC-LAM in the DE1-SoC as shown
in Figure 14. Data are obtained directly from the LiDAR connected to the De1-SoC, as
well as from the Robot’s odometry and IMU, using the correspondent ROS topics. The
keyboard topic is used for remote operation of the robot from the PC running ROS Master.
At the same time, a new ROS topic called 3D map is created to publish the generated map.
The ROS master is in charge of reading the published map to be displayed in RVIZ and to
store it for further analysis. The robot was operated in an apartment as an indoors case
study, and the procedure can be observed at the following link: https://.be/vBJ8NSNYme4
(accessed on 24 May 2021), as described in the Supplementary Materials in Section 6.

Figure 14. Interconnection between the Turtlebot 2, LiDAR RS-16, Cyclone V SoC System and ROS.

Figure 15 presents the incremental construction of the map as the robot navigates
through the environment. The red points correspond to the limited range of vision gen-
erated by the scope limiter module. The bottom image in Figure 15 depicts the full map
generated by the eSoC-LAM algorithm in a hybrid architecture. The map presents high

https://.be/vBJ8NSNYme4


Electronics 2021, 10, 1378 23 of 26

sensitivity to the rotations of the robot, which in turn limited the speed at which the turns
were executed.

Figure 15. Incremental generation of a 3D map in an indoors application, running eSoC-LAM in a
DE1-SoC platform.

5.4. Timing Aspects

The latency of the system was determined from the moment that a new LiDAR reading
is received until the FPGA sets the data_ready bit. Thus, the measured latency would not
only contemplates the time used by the hardware modules, but also takes into account the
timing imposed by the software routines and the time used in passing the point cloud from
the HPS to the FPGA.

The eSoC-SLAM algorithm presents variable latency depending on certain operation
conditions. The first iteration of the algorithm occurs faster than subsequent executions
since the map is empty and no comparison procedures need to be executed. The first
execution of eSoC-SLAM took an average time of 10 ms. A different circumstance occurs
hen the robot executes a turn without displacement, which only implicates the coordinate
transformation of the map to the robot’s current point of view. A pure turn took between 2
and 7 ms, which depends on the size of the current map. The final scenario corresponds
to the integration of new readings to the current map, which also depends on the current
size of the map. For this last case, a variation between 10 and 100 ms was measured, with
an average latency of 31 ms, which implies near 32 fps. Currently, the robot is limited to
a maximum speed of 2 m/s, which implies a new reading from the sensor every 50 ms
as the movement threshold was set to 10 cm, which gives almost 20 ns of slack before a
new reading arrives. Remember, that the FPGA is running at 50 MHz, nevertheless, the
operation frequency can be further increased to achieve even faster results. The compilation
report in Quartus Prime states a theoretical maximum operating frequency for the hardware
modules of 717 MHz, which was achieved thanks to a exhaustive register balancing during
hardware design.

Finally, Table 2 presents the acceleration results obtained by the eSoC-LAM algorithm.
A full software version of eSoC-SLAM was constructed at design stages in order to verify
the mapping functionality of the algorithm. The software version of the algorithm was
deployed in both, the HPS present in the Cyclone V device (800 MHz ARM Cortex A9,
Ubuntu 16.04) and in a high performance PC with an AMD RYZEN 5 3500U @ 3.2 GHZ
processor. The hybrid SoC architecture achieved a speed-up of 6.5× in comparison to the
software version running on the HPS. Even though, running a full software version of
eSoC-SLAM in the HPS takes most of the resources of the system, the ARM can achieve



Electronics 2021, 10, 1378 24 of 26

almost 5 fps, which corresponds to an average processing time of 203 ms per sensor reading,
in comparison to an average of 31 ms for the hybrid architecture, while at the same time, the
HPS is incapable of executing hdl_graph_slam. The hybrid SoC architecture resulted even
faster by a factor of 2.4× compared to the execution time of eSoC-SLAM in the high-end
PC. On the other hand, compared to the execution of hdl_graph_slam in the PC, the hybrid
SoC implementation presented an average speed-up of 113.6×.

This successful implementation of a mapping algorithm in a hybrid SoC architecture
demonstrates the feasibility of implementing complex algorithms present in robotics, which
nowadays are constrained to be deployed in high performance PC platforms, achieving
not only considerable acceleration, but also, a reduction in the size of the hardware that
controls a robot.

Table 2. Average Acceleration Factor of eSoC-LAM running in a Cyclone V SoC device at 50 Mhz.

HybridSoC vs. HPS HybridSoC vs. PC HybridSoC vs. hdl_graph_slam PC

6.5× 2.39× 113.6×

6. Discussion

The design of a localization and mapping algorithm is described in this document,
aimed to deployment on embedded computing platforms and hybrid SoC platforms. The
designed architecture and co-design results, developed in the present investigation was
comprehensively described and validated by comparing the resulting mapping capabilities
with the ROS library, hdl_graph_slam. Consistent results in mapping the environment and
location of the robot were obtained, compared with the Graph SLAM algorithm included in
ROS’s own libraries, obtaining a mapping error of error of 3.6% in a simulated environment.

Contrary to approximations reported in the literature, the result of the present in-
vestigation managed to implement a complete back-end of the online SLAM algorithm in
reconfigurable hardware, leaving to the processor only tasks related with the movement
of the robot, and the readings of the robot’s sensors and the LiDAR. In addition to the
mapping capabilities, the hybrid SoC architecture achieved reached an average speed-up
of 2× in comparison to a software version running in an AMD RYZEN 5 3500U @ 3.2 GHZ
processor with 12 GB of RAM, and an acceleration of 6.5× in comparison to a software
version running on the ARM-Cortex A9 present in the Cyclone V device. Compared to
the execution of hdl_graph_slam, the Hybrid SoC implementation presented an average
speed-up of 113.6×.

Although the results of this research are promising, it is possible to continue the
development of applications in robotics using SoC platforms. The SLAM model can
be extended to use depth information [37], loop-closure [38] procedures, and a visual
odometry, in order avoid depending on robust odometry models and costly optimizations
and only focus on high-performance sensors. This can additionally lead SLAM to aerial
robots, where the kinematics substantially change when new movements coming into play.

Additionally, the FPGA included in the Cyclone V SoC device has limited memory
resources. For the present investigation, most of the on-chip memory resources of the
FPGA were used, which limited both the size of the point cloud received from LiDAR
and the maximum size of the map that the algorithm can generate at a time. A complete
implementation must include the SDRAM memories present in the DE1-SoC board that
would allow a practically unlimited resource use (64 MB+) for this application. Further
optimizations in the hardware design are contemplated as future work to extend the system
storage capabilities and enhance latency.

Finally, it is important to consider artificial intelligence as a tool that can bring SLAM
applications to small platforms. The application of AI in robotics issues can be widely
observed in the literature, however, mapping and localization approaches are still in the
early stages of research.



Electronics 2021, 10, 1378 25 of 26

Supplementary Materials: The following video of the robot operation is available online at https:
//youtu.be/vBJ8NSNYme4 (accessed on 24 May 2021).

Author Contributions: Conceptualization, E.A.G. and H.C.; methodology, E.A.G.; software, and
validation, G.D.-G.; original draft preparation, E.A.G.; review and editing, H.C. and C.P.; funding
acquisition, E.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Codes developed for the eSoC-LAM are available online at https:
//github.com/eagerlein (accessed on 24 May 2021), under Academic Free License v3.0.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
SoC System on chip
ROS Robotic operating system
FPGA Field programmable gate array
LiDAR Light detection and ranging
CAD Computer-aided design

References
1. Bartneck, C.; Forlizzi, J. A design-centred framework for social human-robot interaction. In Proceedings of the 13th IEEE

International Workshop on Robot and Human Interactive Communication, Okayama, Japan, 20–22 September 2004; pp. 591–594.
[CrossRef]

2. Gerlein, E.A.; Gonzalez, E. BSA-CM: A multi-robot coverage algorithm. In Proceedings of the 2009 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, IAT 2009—Proceedings, Milano, Italy, 15–18 September 2009; pp. 383–386.
[CrossRef]

3. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

4. Frese, U. Interview: Is SLAM Solved? KI Künstliche Intell. 2010, 24, 255–257. [CrossRef]
5. Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010,

2, 31–43. [CrossRef]
6. Thrun, S. Simultaneous Localization and Mapping. In Robotics and Cognitive Approaches to Spatial Mapping; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 13–41. [CrossRef]
7. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In European Conference on Computer Vision;

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8690, pp. 834–849. [CrossRef]
8. Open Source Robotics Foundation (OSRF). TurtleBot2. 2021. Online Technical Information. Available online: https://www.

turtlebot.com/turtlebot2/ (accessed on 24 May 2021).
9. Robosense. RS-LIDAR-16 USERS MANUAL Ver 4. 2018. Available online: https://lidence.com/wp-content/uploads/2019/07/

RS-Lidar-16Users-Guide_v4.0.pdf (accessed on 24 May 2021).
10. ROS.org. Powering the World’s Robots. 2021. Available online: https://www.ros.org/ (accessed on 24 May 2021).
11. Koide, K.; Miura, J.; Menegatti, E. A portable three-dimensional LIDAR-based system for long-term and wide-area people

behavior measurement. Int. J. Adv. Robot. Syst. 2019, 16, 172988141984153. [CrossRef]
12. Boikos, K.; Bouganis, C.S. A high-performance system-on-chip architecture for direct tracking for SLAM. In Proceedings of the

2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017.
[CrossRef]

13. Froehlich, M.; Azhar, S.; Vanture, M. An Investigation of Google Tango® Tablet for Low Cost 3D Scanning. In Proceedings of the
ISARC 2017—Proceedings of the 34th International Symposium on Automation and Robotics in Construction, Taipei, Taiwan,
28 June–1 July 2017; pp. 864–871. [CrossRef]

14. Boikos, K.; Bouganis, C.S. Semi-dense SLAM on an FPGA SoC. In Proceedings of the 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016. [CrossRef]

15. Fang, W.; Zhang, Y.; Yu, B.; Liu, S. FPGA-based ORB feature extraction for real-time visual SLAM. In Proceedings of the 2017
International Conference on Field Programmable Technology (ICFPT), Melbourne, Australia, 11–13 December 2017. [CrossRef]

16. Gautier, Q.; Althoff, A.; Kastner, R. FPGA architectures for real-time dense SLAM. In Proceedings of the International Conference
on Application-Specific Systems, Architectures and Processors, New York, NY, USA, 15–17 July 2019. [CrossRef]

https://youtu.be/vBJ8NSNYme4
https://youtu.be/vBJ8NSNYme4
https://github.com/eagerlein
https://github.com/eagerlein
http://doi.org/10.1109/ROMAN.2004.1374827
http://dx.doi.org/10.1109/WI-IAT.2009.182
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1007/s13218-010-0047-x
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1007/978-3-540-75388-9_3
http://dx.doi.org/10.1007/978-3-319-10605-2_54
https://www.turtlebot.com/turtlebot2/
https://www.turtlebot.com/turtlebot2/
https://lidence.com/wp-content/uploads/2019/07/RS-Lidar-16Users-Guide_v4.0.pdf
https://lidence.com/wp-content/uploads/2019/07/RS-Lidar-16Users-Guide_v4.0.pdf
https://www.ros.org/
http://dx.doi.org/10.1177/1729881419841532
http://dx.doi.org/10.23919/FPL.2017.8056831
http://dx.doi.org/10.22260/ISARC2017/0121
http://dx.doi.org/10.1109/FPL.2016.7577365
http://dx.doi.org/10.1109/FPT.2017.8280159
http://dx.doi.org/10.1109/ASAP.2019.00-25


Electronics 2021, 10, 1378 26 of 26

17. Nikolic, J.; Rehder, J.; Burri, M.; Gohl, P.; Leutenegger, S.; Furgale, P.T.; Siegwart, R. A synchronized visual-inertial sensor system
with FPGA pre-processing for accurate real-time SLAM. In Proceedings of the IEEE International Conference on Robotics and
Automation, Hong Kong, China, 31 May–7 June 2014; pp. 431–437. [CrossRef]

18. Zhou, G.; Fang, L.; Tang, K.; Zhang, H.; Wang, K.; Yang, K. Guidance: A visual sensing platform for robotic applications.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA,
USA, 7–12 June 2015; pp. 9–14. [CrossRef]

19. Zhang, Z.; Suleiman, A.; Carlone, L.; Sze, V.; Karaman, S. Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware
Co-design Approach. In Proceedings of the Robotics: Science and Systems XIII, Robotics: Science and Systems Foundation,
Cambridge, MA, USA, 12–16 July 2017; Volume 13. [CrossRef]

20. Tang, J.; Yu, B.; Liu, S.; Zhang, Z.; Fang, W.; Zhang, Y. π-SoC: Heterogeneous SoC Architecture for Visual Inertial SLAM
Applications. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October
2018; pp. 8302–8307. [CrossRef]

21. Ishida, Y.; Morie, T.; Tamukoh, H. A hardware intelligent processing accelerator for domestic service robots. Adv. Robot. 2020,
34, 947–957. [CrossRef]

22. Yamashina, K.; Kimura, H.; Ohkawa, T.; Ootsu, K.; Yokota, T. cReComp: Automated Design Tool for ROS-Compliant FPGA
Component. In Proceedings of the 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-
Chip (MCSOC), Lyon, France, 21–23 September 2016. [CrossRef]

23. Podlubne, A.; Gohringer, D. FPGA-ROS: Methodology to Augment the Robot Operating System with FPGA Designs. In Pro-
ceedings of the 2019 International Conference on Reconfigurable Computing and FPGAs, ReConFig 2019, Cancun, Mexico, 9–11
December 2019. [CrossRef]

24. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110.
[CrossRef]

25. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

26. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot.
Res. 2006, 25, 403–429. [CrossRef]

27. Foley, J.D.; Van, F.D.; Dam, A.V.; Feiner, S.K.; Hughes, J.F.; Angel, E.; Hughes, J.F. Computer Graphics: Principles and Practice,
3rd ed.; Addison-Wesley Professional: Boston, MA, USA, 1995.

28. Requicha, A.G. Representations for Rigid Solids: Theory, Methods, and Systems. ACM Comput. Surv. 1980, 12, 437–464.
[CrossRef]

29. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph.
2013, 32, 1–11. [CrossRef]

30. Steux, B.; El Hamzaoui, O. tinySLAM: A SLAM algorithm in less than 200 lines C-language program. In Proceedings of the
11th International Conference on Control, Automation, Robotics and Vision, ICARCV 2010, Singapore, 7–10 December 2010;
pp. 1975–1979. [CrossRef]

31. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte Carlo localization for mobile robots. In Proceedings of the 1999 IEEE
International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, USA, 10–15 May 1999. [CrossRef]

32. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots, 2nd ed.; The MIT Press: Cambridge,
MA, USA, 2011; p. 472.

33. Gerlein, E.A.; Mcginnity, T.M.; Belatreche, A.; Coleman, S. Network on Chip Architecture for Multi-Agent Systems in FPGA.
ACM Trans. Reconfigurable Technol. Syst. 2017, 10, 1–22. [CrossRef]

34. The OCP Working Group. Open Core Protocol Specification 3.0; Online Technical Report; Accellera Systems Initiative Inc.: Napa,
CA, USA, 2013. Available online: https://www.accellera.org/downloads/standards/ocp (accessed on 24 May 2021).

35. Wang, Y.; Cheng, L.; Chen, Y.; Wu, Y.; Li, M. Building Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and
Horizontal Hollow Analysis. Remote Sens. 2016, 8, 419. [CrossRef]

36. Goebel, P. ROS by Example: Packages and Programs for Advanced Robot Behaviors, Volume 2. Available online: http:
//file.ncnynl.com/ros/ros_by_example_v2_indigo.pdf (accessed on 24 May 2021).

37. Devy, M.; Boizard, J.L.; Galeano, D.B.; Lindado, H.C.; Irki, Z.; Naoulou, A.; Lacroix, P.; Fillatreau, P.; Fourniols, J.-Y.; Parra, C.; et al.
Stereovision Algorithm to be Executed at 100 Hz on a FPGA-Based Architecture. In Advances in Theory and Applications of Stereo
Vision; InTech Education and Publishing: Rijeka, Croatia, 2011; pp. 327–352.

38. Carrillo, H.; Latif, Y.; Neira, J.; Castellanos, J.A. Place categorization using sparse and redundant representations. In Proceedings
of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014.

http://dx.doi.org/10.1109/ICRA.2014.6906892
http://dx.doi.org/10.1109/CVPRW.2015.7301360
http://dx.doi.org/10.15607/RSS.2017.XIII.028
http://dx.doi.org/10.1109/IROS.2018.8594181
http://dx.doi.org/10.1080/01691864.2020.1769726
http://dx.doi.org/10.1109/MCSoC.2016.47
http://dx.doi.org/10.1109/ReConFig48160.2019.8994719
http://dx.doi.org/10.1109/MRA.2006.1638022
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1177/0278364906065387
http://dx.doi.org/10.1145/356827.356833
http://dx.doi.org/10.1145/2508363.2508374
http://dx.doi.org/10.1109/ICARCV.2010.5707402
http://dx.doi.org/10.1109/ROBOT.1999.772544
http://dx.doi.org/10.1145/3121112
https://www.accellera.org/downloads/standards/ocp
http://dx.doi.org/10.3390/rs8050419
http://file.ncnynl.com/ros/ros_by_example_v2_indigo.pdf
http://file.ncnynl.com/ros/ros_by_example_v2_indigo.pdf

	Introduction
	Related Work
	Background: Simultaneous Localization and Mapping (SLAM)
	Implementation of eSoC-SLAM
	Hardware–Software Interface
	Software Modules—HPS
	Scope Limiter Module
	Odometry Module

	Hardware Modules—FPGA
	Interfaces and General Architecture of Hardware Modules
	Quadrant Scatter Module
	Voxel Filter Module
	Map Handler Module


	Results
	Hardware Implementation Results
	Mapping Functionality in Simulation
	Mapping Functionality in Indoors Operation
	Timing Aspects

	Discussion
	References

