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Abstract: Privacy-preserving deep neural networks have become essential and have attracted the
attention of many researchers due to the need to maintain the privacy and the confidentiality of
personal and sensitive data. The importance of privacy-preserving networks has increased with the
widespread use of neural networks as a service in unsecured cloud environments. Different methods
have been proposed and developed to solve the privacy-preserving problem using deep neural
networks on encrypted data. In this article, we reviewed some of the most relevant and well-known
computational and perceptual image encryption methods. These methods as well as their results have
been presented, compared, and the conditions of their use, the durability and robustness of some of
them against attacks, have been discussed. Some of the mentioned methods have demonstrated an
ability to hide information and make it difficult for adversaries to retrieve it while maintaining high
classification accuracy. Based on the obtained results, it was suggested to develop and use some of
the cited privacy-preserving methods in applications other than classification.

Keywords: privacy-preserving; deep neural networks; cryptography

1. Introduction

Recently, artificial intelligence (AI) has been significantly developed as it has allowed
solving various complex issues in different fields. It has also been possible to carry machine
learning (ML) algorithms and deep neural networks (DNN) in cloud environments. More-
over, a huge amount of data are required to achieve high performance and accuracy. Some
fields, such as biomedical, military, financial, and surveillance, benefit from AI in their
application, but at the same time, they require maintenance of data confidentiality, privacy,
and security. Therefore, it becomes necessary to develop privacy-preserving systems. The
key idea was to benefit from cryptography in AI applications, which is not a new field
of study.

AI and cryptography have met in different applications. AI and ML have been
applied in steganography to hide secret information [1–3], in cryptanalysis through the
development of new ML-based attacks that attempt to predict keys [4], or evaluate the
security of a cryptosystem and quantify the strength of a cipher [5]. They have also been
applied to create cryptosystems; the Neural Network (NN) structure containing an input
layer, hidden layers, an output layer, and updated weights has been used as a secret key [6].
ML algorithms were used as well to process and classify data in the encrypted domain in
order to preserve privacy and security; here lies the privacy-preserving domain.

With the wide diffusion of DNN and their widespread use in many fields, even
those which need personal and confidential information, and therefore those which need
to maintain confidentiality, privacy-preserving DNN is becoming an urgent challenge.
Privacy-preserving DNN development aims to enable the use of unsecured cloud servers
in security-critical applications, such as facial recognition, biometric authentication, and
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medical image analysis. Various methods have been proposed. This article reviews and
compares the most relevant and well-known privacy-preserving DNN methods proposed.
In this article, these methods will be classified into two types: computational methods
and perceptual image encryption methods. Computational methods allow NN computa-
tion to be applied to encrypted data, which requires specific modifications and imposes
certain limitations on the structure of NN and the activation functions, while perceptual
methods protect visual information by creating incomprehensible images that remain
directly applied to image processing algorithms and NN. The criteria that will be used
in the comparison are the accuracy of the classification and the availability of training
and testing the model in the encrypted domain. For perceptual methods, the robustness
against attacks, i.e., the ability to reconstruct encrypted data by adversaries, will also be
considered as an essential criterion. In addition, the time spent training and testing these
methods (if available) will also be taken into account, especially in the comparison between
computational and perceptual methods. The objectives of the study and the comparison
of these methods are to select one of them, be inspired by it, and further develop a new
method that will be used in applications other than classification, while preserving the
confidentiality and the security of the data.

The article starts with a definition of the computational methods, then it reviews some
privacy-preserving DNN methods based on them, and later it holds a comparison between
these methods. Then, in the next section, there will be a review of the most well-known
privacy-preserving DNNs based on perceptual image encryption, and there will also be a
comparison between these methods. Finally, a general conclusion and some possible tracks
for the future will be proposed.

2. Computational Methods

Computational methods enable computation over encrypted data without knowledge
of the encrypted information. This can be done using the Homomorphic Encryption (HE)
scheme or the Functional Encryption (FE) scheme.

In HE [7], the decryption of the calculation result with encrypted data is the same as
the calculation result with unencrypted data. HE supports addition and/or multiplication
operations on encrypted messages, so that:

Enc(x) ∗ Enc(y) = Enc(x ∗ y), (1)

where Enc denotes the encryption function, ∗ denotes the operation supported by HE, ad-
dition or multiplication, and x, y denote the sample messages. Therefore, only polynomial
functions can be supported in HE scheme.

On the other hand, FE of a function f consists of four essential algorithms [8]:

• Setup: generates the public key mpk and the master secret key msk.
• KeyDrive: outputs the function secret key sk f for the function f using msk.
• Encrypt: encrypts the sample message x using mpk.
• Decrypt: computes f (x), using mpk, sk f , and the ciphertext of x generated in Encrypt step.

The difference between HE and FE is that the computation output of HE is encrypted
since HE evaluates data without decryption, while the computation output of FE is plaintext
since FE applies the decryption step to evaluate the encrypted data [9].

Several computational-based methods have been proposed to preserve privacy in ML
applications [9,10]. In the following, some privacy-preserving DNNs based on HE and FE
will be mentioned.

2.1. CryptoNets

In 2016, CryptoNets [11] were proposed as NNs capable of classifying encrypted
data. Some necessary adjustments were applied to the NN to create the CryptoNets. Since
HE supports only polynomial functions, all functions in the NN should be polynomial.
Thus, all pooling layers have been replaced by a scaled mean pooling layer whose function
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is ∑ x, and all activation functions such as sigmoid and ReLu have been replaced by the
square function x2, except for the last sigmoid activation function which is necessary for the
training phase. The modified NN, fully compatible with HE, is trained using unencrypted
data. After training, the sigmoid activation function is removed and consecutive layers
that use linear transformations only are collapsed to increase efficiency.

CryptoNets apply prediction of data and provide as well the prediction result in the
encrypted domain. The user should first encrypt his plain data m to obtain the ciphertext c:

c = [[q/t]m + e + hs]q , (2)

where the plain data m ∈ Rn
t = Zt[x]/(xn + 1), the ciphertext c ∈ Rt

q = Zq[x]/(xt + 1),
Zt[x] and Zq[x] are the rings of polynomials modulo t and q, respectively, n, t, and q are
integers, h = tg f−1 is the public key, f = t f ′ + 1 is the secret key, and e, s, g, and f ′ ∈ Rn

q
are random polynomials. Then, the user can send the encrypted data to CryptoNets to be
classified and to receive an encrypted result r. The user should finally decrypt r using the
secret key f to obtain the unencrypted result d:

d = [[
t
q

f r]]t . (3)

The CryptoNets were performed using the Modified National Institute of Standards
and Technology (MNIST)) dataset, a dataset containing images of handwritten digits
between 0 and 9. The network was trained using 50,000 unencrypted images, and it
was tested using the remaining 10,000 images after encoding and encrypting them. The
encoding scheme is used to convert the atomic structure of the neural network—real
numbers—to the atomic structure of the HE scheme—polynomials. The network mislabeled
105 out of the 10,000 images. Thus, the obtained accuracy was equal to 99%. A single
prediction takes 250 s; however, 4096 predictions can be made simultaneously at no
additional cost. The details and the results of CryptoNets are shown in Table 1.

Table 1. Details and properties of the computational methods through the availability of the model
training (T) and testing (t) using encrypted data, the dataset used, the depth of the NN (number
of convolutional layers in the network), the accuracy of the classification, the accuracy of the orig-
inal model(without modification and using simple images), the training time, and the number of
predictions per hour that can be processed (# p/h).

T t Dataset NN
Depth

Accuracy Original
Accuracy

Training
Time

# p/h

CryptoNets [11] ◦ ? MNIST 2 99% - - 58,982

CryptoDL [12] ◦ ?
MNIST 5 99.52% 99.56% - 163,840

CIFAR-10 8 91.5% 94.5% - 2524

CryptoNN [13] ? ? MNIST 3 95.49% 95.48% 75 h -
?: available, ◦: not available, -: not defined in the article.

2.2. CryptoDL

In 2017, a solution for running DNN on encrypted data, CryptoDL, was proposed [12].
This technique consists of two basic components: convolutional neural networks (CNNs),
and HE, precisely the leveled HE. To make the CNN compatible with HE, pooling layers
have been replaced with scaled mean pooling layers, and a new method has been designed
to approximate the most common activation functions, ReLu, sigmoid, and tangh, with
low degree polynomials. The higher degree polynomial leads to better performance but
at a high computational cost; therefore, only polynomials of degree two and three have
been used.

The proposed approximation technique is based on the derivative of the activation
function instead of the activation function, using polynomials of degree three. This method
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was compared with the numerical analysis, Taylor series, standard Chebychev polynomials,
and modified Chebychev polynomials for approximating the ReLu function, and it achieved
the best approximation. The accuracy obtained by training CNN using the derivative-based
approximation was 98.52%, while the best accuracy obtained through the application of
other methods using the modified Chebichev polynomials was 88.53%. Furthermore, it
was proved that the behavior of the polynomial approximation of the ReLu function is
robust against changes in the CNN structure; a different CNN structure was trained using
this approximation technique and the accuracy obtained was close to the first structure,
98.38%. Furthermore, the different activation functions, ReLu, sigmoid and tangh, with
their polynomial replacement have been compared and the best accuracy has been obtained
using the ReLu activation function.

The CryptoDL was performed using the MNIST and the Canadian Institute for Ad-
vanced Research, 10 classes (CIFAR-10) datasets. The CIFAR-10 dataset contains color
images categorized into 10 classes. The CNN model was trained using 50,000 unencrypted
images and tested using the remaining 10,000 images after encryption. For the MNIST
dataset, the obtained accuracy was 99.52%, and the network can make 163,840 predictions
per hour. On the other hand, the accuracy obtained using a deeper network trained using
the CIFAR-10 dataset was 91.5%, and it can make 2524 predictions per hour. This slowness
is due to the complexity of the CIFAR-10 dataset compared to the MNIST dataset, and
to the depth of the network used. The details and the results of CryptoDL are shown in
Table 1.

2.3. CryptoNN

In 2019, CryptoNN [13] was proposed as a framework that supports both training
and inference phases over encrypted data. This was possible due to the secure matrix
computation based on functional encryption. A functional encryption scheme for an inner
product functionality f (x, y) FEIP was adopted, where n is the length of data vectors
x and y:

f (x, y) =
n

∑
i=1

(xiyi). (4)

Another functional encryption scheme for basic operations f∆(x, y) FEBO was pro-
posed, where ∆ can be addition, substraction, multiplication, or division:

f∆ = x∆y. (5)

FEBO has different approaches to key generation according to the arithmetic compu-
tation. Thus, according to ∆, the function derived key sk f∆

is computed at the KeyDrive
step, and the result is computed at the Decrypt step.

The CryptoNN framework consists of three entities (see Figure 1):

• The authority: generates the secret key msk, the public key mpk, and the function
secret key sk f (KeyDrive step).

• The client: preprocesses and encrypts the data—input (x) and labels (y)—using mpk
and sends them to the server (Encrypt step). The labels must first be coded using the
one-hot method, and then mapped to a random vector number r whose components
are ri.

• The server: trains and tests the NN model using the data received from the client(s).
Having the data and the first hidden layer in the feed-forward process, and the
labels and the output layer in the back-propagation process, the server gets from
the authority the sk f corresponding to the specific function and then decrypts the
result of the function (Decrypt step). The server can continue the feed-forward and
back-propagation processes normally. The output of the network is pi, which is the
probability that the data x belongs to the class i.
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Accordingly, the proposed scheme inserts two rounds of secure computation; at the
beginning of the feed-forward process known as secure feed-forward, and at the beginning
of the back-propagation process known as secure back-propagation/evaluation.

Figure 1. CryptoNN framework, reproduced from [13].

A concrete case of CryptoNN, i.e., CryptoCNN using the LetNet-5 architecture which
includes five hidden layers, was created and used. The secure feed-forward takes place
in the first hidden layer, i.e., the convolutional layer, while the secure back-propagation
takes place at the output layer. The CryptoCNN was performed using the MNIST dataset.
It was trained using a training set of 60,000 examples and was tested using a test set of
10,000 examples. The accuracy obtained was 95.49%, while the accuracy of the original
LetNet-5 was 95.48%. The training time for two epochs of the CryptoCNN was 75 h, as
compared to only 4 h for the original LetNet-5. The details and the results of CryptoNN
are shown in Table 1.

2.4. Comparison

The computational methods aim to use NN on encrypted data in order to preserve
privacy. They encrypt data using known encryption methods.

CryptoNets and CryptoDL modify the NN to be able to process encrypted data and to
be compatible with the encryption method used. These modifications affect the network’s
performance in terms of computational complexity; they lead to a significant latency in the
prediction. The computational complexity and the prediction latency are increased due to
the computation of all functions using nested additions and multiplications, and due to the
large size of the encrypted data as compared to the unencrypted data (the encrypted data
are one to three times larger in magnitude than the unencrypted data [11]), and thus, due
to the large amount of data transferred (hundreds of MB).

CryptoDL attempts to improve the performance and the latency of CryptoNets, and
to apply deeper NN on encrypted data; but also, it showed it showed certain limits. The
main differences between CryptoNets and CryptoDL are the activation functions and their
approximation techniques. The approximation of sigmoid was used as the activation func-
tion in CryptoNets, while CryptoDL compared different activation functions and finally
adopted the approximation of the ReLu function. The importance and the influence of
choosing the appropriate activation function with the appropriate approximation technique
were revealed through the significant increase in the number of predictions per hour, as
shown in Table 1.
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Although CryptoDL gave a better performance with a computational cost that is lower
than CryptoNets on the MNIST dataset, CryptoDL has limitations in the number of hidden
layers and the complexity of the dataset used, just like CryptoNets. These limitations
were revealed through a sharp decrease in the number of predictions per hour, as well
as through the noticeable difference between the obtained accuracy and the original one,
when using the CIFAR-10 dataset and a deeper NN (see Table 1).

CryptoNN processes NN computations while preserving their confidentiality and
security using an encryption scheme that is different than HE used by cryptoNets and
CryptoDL. This privacy preservation is achieved through secure matrix computation based
on FE, not through special computation requiring the modification of NN’s functions and
structure. While CryptoNets and CryptoDL allow the classification of encrypted data
using NNs that are previously trained with unencrypted data, CryptoNN allows both
training and testing on encrypted data. The problem with the CryptoNN is the need for
frequent communications with the authority to generate and obtain the corresponding keys.
As a result of this problem, along with the time-consuming cryptographic computations,
CryptoNN requires a much longer learning time than the original network (73 more hours).

All of the computational methods cited have been tested only on simple datasets,
MNIST and CIFAR-10, so their scalability is not certain yet. Hence, more complex and
realistic datasets should be used and tested. Despite the use of simple datasets and not very
deep networks in testing these methods, their complexity, and latency appeared clearly.
This highlights the difficulty of applying these methods to state-of-the-art DNN and to
solving more realistic problems.

3. Perceptual Methods

Perceptual image encryption methods protect images by generating visually-protected
images that have pixel values, not ciphertexts. The protected images can therefore be
directly applied to image processing algorithms. Many encryption methods have been
proposed, some of which can be applied to traditional ML algorithms such as support
vector machines and random forest [14,15]. The best-known perceptual methods applied
to DNN as privacy-preserving DNN will be mentioned in the following.

3.1. Tanaka’s Scheme

In 2018, Tanaka proposed a block-based encryption scheme known as Tanaka’s
scheme [16].

As shown in Figure 2, the 8-bit pixel RGB image is divided first into M×M blocks,
and then each block is split to the upper and the lower 4-bit pixel values to form 6-channel
image blocks. The intensities of the pixel values are randomly inverted and shuffled using
the secret key K = {Kinv, Kshu f f }, where Kinv and Kshu f f are respectively the secret keys for
inversion and shuffling. Finally, the 6-channel blocks are reformed into 3-channel blocks,
and the encrypted image is obtained. The key space NTanaka of Tanaka’s scheme is given
by [17], where . is a dot multiplication:

NTanaka = 96! . 296. (6)

Figure 2. Tanaka’s block-based encryption scheme. © 2019 IEEE. Reprinted, with permission,
from [18].



Electronics 2021, 10, 1367 7 of 13

To apply the encrypted images to DNN, an adaptation network should be added
prior to the utilized DNN to reduce the influence of image encryption. The adaptation
includes a convolution layer with M×M sized filter and M×M stride, several network-
in-network layers, and a sub-pixel convolution. After the adaptation, any kind of network
can be followed.

Tanaka’s scheme was performed using CIFAR-10 and CIFAR-100 datasets. The CIFAR-
100 dataset is identical to CIFAR-10, except that it has 100 classes. A pyramidal residual
network was used after the adaptation network, and the block size M was set at four. The
accuracy obtained for CIFAR-10 was 86.3% and that for CIFAR-100 was 56.8%, compared
to 88.4% for CIFAR-10 and 59.1% for CIFAR-100 using plain images. Moreover, it provides
robustness against adversarial attacks, where the images are designed to make the NN
misclassify with high confidence [18]. However, the visual information of the encrypted
images can be reconstructed using Generative Adversarial Network attack (GAN-attack)
and Inverse Transformation Network attack (ITN-attack) [17]. The details and the results
of Tanaka’s scheme are shown in Table 2.

Table 2. Details and properties of the perceptual methods through the availability of the model
training (T) and testing (t) using encrypted data, the dataset used, the classifier network used to
classify the encrypted data, the accuracy of the classification, the accuracy of the original model
(using simple images), and the robustness against various COA.

T t Dataset Classifier
Network Accuracy Original

Accuracy

Attacks

FR-
Attack

ITN-
Attack

GAN-
Attack

Tanaka’s
Scheme [16] ? ?

CIFAR-10 Pyramidal Residual
Network

86.3% 88.4% × × ×CIFAR-100 56.8% 59.1%

Pixel-based Same key [19]
? ? CIFAR-10 ResNet-18 91.76% 95.53% × × ×

Different key [20] 91.39% × X ×

TN-GAN [21] ? ?
CIFAR-10 ResNet-18 90.73% 95.65%

X × XCIFAR-100 67.36% 77.24%

TN-model [22,23] ◦ ?
CIFAR-10 ResNet-20 91.72% 91.23%

X X XCIFAR-100 70.78% 67.9%

?: available, ◦: not available, X: robust, ×: non-robust.

In 2020, a block-wise image scrambling method was proposed to increase the security
level of the visually-protected images [24]. The method was referred to as Extended
Learnable Encryption (ELE). In this method, after dividing the image into M×M blocks,
the positions of the blocks are shuffled, and then the pixels in each block are shuffled.
Finally, the blocks are concatenated and the scrambled image is obtained. Increasing the
security level of this method causes a very low classification accuracy. For the CIFAR-10
dataset, it achieved 48.39% when the LE adaptation network was used and 83.06% when
the ELE adaptation network replaces the LE one. This method has shown an important
trade-off between security and classification accuracy. However, not much testing has been
done on this method and its robustness against attacks, so it will not be compared with
other methods later.

3.2. Pixel-Based Image Encryption

In 2019, a pixel-based image encryption method that considers data augmentation in
the encrypted domain was introduced [19,20]. In this method, the data augmentation can
be performed by the user before encryption or by the server after encryption. As shown in
Figure 3, to generate an encrypted image Ie from a color image I with n pixels, the image I
must first be divided into pixels. Then, a Negative-Positive (NP) transformation must be
applied individually to each pixel of the three color channels; red IR, green IG, and blue IB,
to obtain a transformed pixel p′ using a random binary integer r(i) generated by a set of
secret keys KNP = {KR, KG, KB}, where KR, KG, and KB are respectively the keys used for
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IR, IG and IB, i is the ith pixel of I, and p is the pixel value of the original image with L bits
per pixel:

p′ =

{
p if r(i) = 0
p⊕ (2L − 1) if r(i) = 1

(7)

Finally, the three color components of each pixel are shuffled optionally by using an
integer that is randomly selected from six integers generated by a secret key Ks. Thus,
the secret encryption key becomes K = {KNP, Ks}. Two encryption key conditions for
generating encrypted training and test images exist:

• Same encryption key: all training and test images are encrypted using the same
encryption key K.

• Different encryption keys: different keys are independently assigned to training and
test images.

Thus, the key space Npix of the pixel-based encryption method is:

Npix = 23n . 6n. (8)

Moreover, an adaptation network of 1× 1 convolutional layers was proposed to make
the encrypted images compatible with the DNN. The method was performed using the
CIFAR-10 dataset and the ResNet-18 classifier network. Data augmentation techniques
such as horizontal or vertical flip and shifting were carried out. The accuracy levels
obtained were 92.03% using the same key and 91.23% using different keys when the data
augmentation was carried out after encryption, while the accuracy levels obtained were
91.76% using the same key and 91.39% using different keys when the data augmentation
was in the plain domain, as compared to 95.53% using plain images [20].

On the other hand, it was proved that Feature-Reconstruction attack (FR-attack) and
GAN-attack can reconstruct the visual information from encrypted images using the pixel-
based encryption method. The FR-attack reconstructs the edge information of plain images
from encrypted ones. However, the pixel-based image encryption method is robust against
ITN-attack when images are encrypted under different encryption keys [17,25]. The details
and the results of the pixel-based method are shown in Table 2; only the results of applying
data augmentation before encryption are displayed in the table.

Figure 3. Pixel-based image encryption. © 2019 IEEE. Reprinted, with permission, from [19].

3.3. GAN-Based Image Transformation Scheme

In 2020, an image transformation network for privacy-preserving DNN using Genera-
tive Adversarial Networks (TN-GAN) was proposed [21].

A transformation network hp(.) was used to protect training and test images. To
obtain this network, an unpaired image-to-image translation using a cycle-consistent
adversarial network (cycle-GAN) was trained and used. The cycle-GAN consists of two
GANs: two generative networks GAB and GBA and two discriminating networks FA and FB
(see Figure 4a). In this application, the cycle-GAN converts images between two domains:
the plain domain A and the visually-protected domain B. The generative network GAB of
the cycle-GAN was used as the transformation network hp(.). This network was trained
using training images X with their corresponding labels Y and a set of preliminary protected
images P, as shown in Figure 4b. The output of this network is visually-protected images
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Xp = hp(X). P is generated from a pre-trained model hθ(.) using X and Y in a preliminary
visual protection process, and hθ(.) is intended to accurately classify images without
visual information.

(a) (b)
Figure 4. (a) Cycle-GAN architecture. (b) Training process of hp(.) in the TN-GAN-based method. ©
2021 IEEE. Reprinted, with permission, from [21].

In the experiments, the VGG-13 was used as the pre-trained network hθ(.), the U-
Net was used as the transformation network hp(.), and the ResNet-18 was used as the
classifier DNN. hθ(.) was trained using the CIFAR-10 dataset, and hp(.) was trained using
the CIFAR-10 dataset with the preliminary protected images generated by hθ(.).

To evaluate the performance, the classifier DNN was trained and tested using visually-
protected images generated from the CIFAR-10 and the CIFAR-100 datasets. The obtained
accuracy for CIFAR-10 was 90.73% and it was 67.36% for CIFAR-100, as compared to
95.05% for CIFAR-10 and 77.24% for CIFAR-100 using plain images. The application of
the classifier DNN on the CIFAR-10 and CIFAR-100 datasets, with the transformation
network being trained on CIFAR-10, proves that this scheme is applicable to all datasets,
regardless of the dataset used to train the model. This method proved robustness against
FR-attack and GAN-attack, but not against ITN-attack, where the visual information was
reconstructed [17]. The details and the results of the TN-GAN method are shown in Table 2.

3.4. Model-Based Image Transformation Scheme

Still in 2020, an image transformation network trained with a model (TN-model) was
proposed [22,23]. The classification model ψ, usually in the cloud provider, is trained using
plain images X with their corresponding labels Y. X′ = {x1, x2, . . . , xm}, a subset of training
images (X′ ⊆ X), is sent to the user to train the transformation network hθ(.), which can
be open to the public (see Figure 5). The output X̂′ = {x̂1, x̂,2 . . . , x̂m} of hθ(.) is a visually-
protected image set, where x̂i = hθ(xi). Y′ = {y1, y2, . . . , ym} ⊆ Y is the corresponding
target label set of X′, and Ŷ′ = {ŷ1, ŷ2, . . . , ŷm} is the output of the classification model ψ,
where ŷi = ψ(x̂i). The transformation network hθ(.) is trained in coordination with the
classification model ψ in order to reduce its classification loss in a way as to ensure that the
visually-protected images generated by hθ(.) are correctly classified. The loss function of
the transformation network Ltrans must be minimized.

Ltrans(xi, x̂i, yi) = Lclass(x̂i, yi)− α . L f eat(xi, x̂i), (9)

where i is an integer number between 1 and m, m is the number of images in X′, the
classification loss Lclass is a cross entropy loss function calculated using ŷi = ψ(x̂i) and yi,
α ∈ R is a weight of L f eat, and L f eat is a feature reconstruction loss calculated using the
feature map of the original plain image φk(xi) and the feature map of the reconstructed
visually-protected image φk(x̂i):

L f eat(xi, x̂i) =
1

Ck × Hk ×Wk
||φk(x̂i)− φk(xi)||22. (10)
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Ck × Hk ×Wk is the size of the feature map φk(.).

Figure 5. Training process of the transformation network in the TN-model-based method. © 2020
IEEE. Reprinted, with permission, from [23].

The value of α affects the classification performance since it affects the performance of
the visual protection. In the case of α = 0, the generated images are not visually-protected,
whereas if α = 0.005 the generated images have almost no visual information and have
almost the same patterns. After training the transformation network, the visually-protected
images generated are classified using ψ.

In the experiments, CIFAR-10 and CIFAR-100 datasets were used, U-Net was used as
hθ , and ResNet-20 was used as ψ. The accuracy obtained was 91.72% for CIFAR-10 and
70.78% for CIFAR-100, compared to 91.23% for CIFAR-10 and 67.9% for CIFAR-100 using
plain images [23]. The accuracy obtained was 91.94% for CIFAR-10 when VGG-16 was used
as ψ, compared to 92.23% using plain images [22]. All these results were obtained when α
was equal to 0.005. The TN-model proved robust against an FR-attack, GAN-attack, and
ITN-attack [17]. The details and the results of the TN-model method are shown in Table 2;
only the results of applying ResNet-20 as a classifier network are displayed in the table.

3.5. Comparison

Perceptual image encryption methods are learnable image encryption methods; they
transform or encrypt an image in a way that makes it incomprehensible to humans, but re-
mains learned by machines. The resulting images are visually-protected images that do not
contain any clear information. These methods allow the use of any type of network without
any limitation of architecture or activation functions, unlike the computational methods.

Tanaka’s scheme allows both training and testing of the DNN on encrypted images. It
uses an adaptation network to reduce the influence of image encryption, whereas the analy-
sis of this network can lead to understanding the scrambling or the encryption process [24].
Thus, it is possible to reconstruct protected images and obtain hidden information. The
use of an adaptation network is therefore not a perfect solution, despite the advantages it
provides. Furthermore, Tanaka’s scheme is weak against Ciphertext-Only Attacks (COA)
as proven in [17] and as shown in Table 2, so the visually protected images can be easily
reconstructed by adversaries. Moreover, the same encryption key is used to encrypt all
images, and very low accuracy was reached when testing DNN models that are trained
using the images encrypted with different encryption keys [20].

On the other hand, the pixel-based image encryption method has a larger key space
than Tanaka’s scheme if the image is larger than 11× 11 pixels, and it authorizes the use
of different encryption keys for each image while maintaining the accuracy of the image
classification. The use of different encryption keys makes this method robust against
ITN-attack, while the visual information can be reconstructed by other COAs [17]. The
pixel-based image encryption method allows as well data augmentation in the encrypted
domain. The accuracies obtained by applying data augmentation before or after encryption
were very close.
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The pixel-based encryption method, like Tanaka’s scheme, allows both training and
testing of the DNN on encrypted images. Both methods, i.e., Tanaka’s scheme and the pixel-
based encryption method have low computational cost and apply simple transformation
functions to the initial images. Therefore, adversaries can derive the encryption process
using COA methods, especially when the same encryption key is used to encrypt all images
(see Table 2).

Unlike Tanaka’s scheme and the pixel-based encryption method, the other two per-
ceptual methods (TN-GAN and TN-model) do not use simple transformation functions
to generate visually-protected images; instead, they use transformation networks. These
networks must be trained, which increases the computational cost. The computational cost
of the TN-GAN is higher than that of the TN-model because TN-GAN needs to train a
cycle-GAN which consists of two generative and two discriminating networks to get its
transformation network, while the TN-model trains only one network.

As shown in the Table 2, the classification accuracy of the TN-GAN is affected by the
dataset used; the accuracy decreased by about 10% when using CIFAR-10 as compared to
the original accuracy (classification accuracy of the unencrypted images). However, the
classification accuracy of the TN-model was able to outperform the original accuracy in
certain cases. The superiority of the TN-model accuracy over the original accuracy is due
to the training process of the transformation network; it is trained in coordination with the
classifier to classify correctly protected images and to decrease its classification loss. Thus,
the total number of parameters is increased, and better results are obtained. However, the
TN-model does not allow the DNN to be trained on encrypted data, whereas the TN-GAN
does. TN-model and TN-GAN have proven their robustness against the FR-attack and
GAN-attack. Although the TN-GAN method was not robust against the ITN-attack, unlike
the TN-model, it is impossible for adversaries to apply this attack on TN-GAN; ITN-attack
requires the exact pairs of plain images and the corresponding encrypted ones, while the
transformation network in the TN-GAN must remain private to the user [17].

4. Conclusions

In this article, we have reviewed and compared the most well-known privacy-preserving
DNN methods that have allowed DNN to process and classify data in the encrypted do-
main. These methods have been classified into two types: computational methods and
perceptual methods.

While computational methods preserve the security and privacy of data, they may
limit the structure of NN and its activation functions, as is the case with HE-based methods.
In addition, their computational cost is very high, and this cost increases with the depth
of the NN. Therefore, their training time and the predictions take a long time, and the
number of predictions per hour is relatively small. Thus, computational methods do
not support the state-of-the-art DNN, but remain the most secure options for privacy-
preserving computation.

On the other hand, perceptual methods allow the use of different types of DNN,
without any limitation on the number of hidden layers, the structure of the DNN, or
the activation functions. Their computational cost is very low when compared with
computational methods, and they have sought a compromise in security to support other
demands such as data augmentation in the encrypted domain. The perceptual methods aim
to create visually-protected images and to make the DNN process these encrypted images
exactly as it does with plain images. The visually-protected images are directly applied
to the DNN. As a matter of fact, the process of generating these images differs from one
method to another; some methods use simple transformation functions, while others use
transformation NN. The complexity of the transformation process affects the computational
cost as well as the ability to protect data and maintain confidentiality against attacks. This
was revealed through the robustness of the GAN-model and TN-model against COAs
that use transformation NN, and their relatively high complexity. Perceptual methods
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allow encrypted data to be used and processed more flexibly and smoothly, expanding the
boundaries of AI applications in fields that use sensitive, secret, or personal data.

In both types, the computational and the perceptual ones, some methods allow the
training of DNN using encrypted data, while others do not. In order to obtain durable
privacy-preserving, the methods that support both training and testing over encrypted data
are the most preferable. All these methods have focused on the classification of encrypted
data and have managed to achieve acceptable performance.

The results obtained allow a wider reflection and development of the privacy-preserving
DNN methods. These methods should be tested on more challenging and realistic datasets
and critical problem-solving. Privacy-preserving DNN methods, especially the perceptual
ones, can be developed and used to solve problems that are more complicated than data
classification, such as object detection in the encrypted domain. Since the visually-protected
images have carried and preserved enough information and features to be properly classi-
fied in the encrypted domain using previously trained networks, these specific networks
can be trained and developed to detect objects in these protected images, as well as to
apply segmentation or even transformation of these encrypted objects. In this way, it is
possible to try to develop state-of-the-art AI algorithms on the visually-protected images
that are generated by perceptual image encryption methods, especially TN-GAN and
TN-model which have proven their ability to generate images that are robust against differ-
ent COAs, without visual information, and with good classification accuracy. However,
the TN-GAN has an advantage over the TN-model due to its ability to be trained using
visually-protected images.
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