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Abstract: With the development of the economy and society, the demand for social security and
stability increases. However, traditional security systems rely too much on human resources and are
affected by uncontrollable community security factors. An intelligent security monitoring system can
overcome the limitations of traditional systems and save human resources, contributing to public
security. To build this system, a RISC-V SoC is first designed in this paper and implemented on
the Nexys-Video Artix-7 FPGA. Then, the Linux operating system is transplanted and successfully
run. Meanwhile, the driver of related hardware devices is designed independently. After that, three
OpenCV-based object detection models including YOLO (You Only Look Once), Haar (Haar-like
features), and LBP (Local Binary Pattern) are compared, and the LBP model is chosen to design
applications. Finally, the processing speed of 1.25 s per frame is realized to detect and track moving
objects. To sum up, we build an intelligent security monitoring system with real-time detection,
tracking, and identification functions through hardware and software collaborative design. This
paper also proposes a video downsampling technique. Based on this technique, the BRAM resource
usage on the hardware side is reduced by 50% and the amount of pixel data that needs to be processed
on the software side is reduced by 75%. A video downsampling technology is also proposed in this
paper to achieve better video display effects under limited hardware resources. It provides conditions
for future function expansion and improves the models’ processing speed. Additionally, it reduces
the run time of the application and improves the system performance.

Keywords: FPGA; embedded system; object tracking; object detection; OpenCV

1. Introduction

With the advent of the era of artificial intelligence, the applications of intelligent secu-
rity systems [1-3] become more and more diverse. As one of the branches, the intelligent
security monitoring system [4,5] plays an increasingly important role in social security. The
traditional security monitoring system is mainly based on a computer and needs human
assistance to realize video monitoring, inspection, recording, and analysis, thus requir-
ing a large workforce and increased material costs. The intelligent security monitoring
system studied in this paper is based on an embedded platform and can be deployed on
mobile terminals. Based on the traditional security monitoring system, computer vision
technology [6-8] is employed to perceive external information. Especially, the object de-
tection model [9] is exploited to record and analyze the video information, overcoming
the limitation of the traditional security monitoring system with limited human resources.
RISC-V is the fifth-generation simplified instruction set architecture developed by the
University of California, Berkeley [10-12]. As a simple, free, and open architecture, it
allows anyone to design, manufacture, and sell RISC-V chips or software. RISC-V SoC
realizes IP (Intellectual Property) sharing in the real sense and promotes the establishment
and development of hardware open-source technology platforms and shared open-source
ecosystems. Currently, many relevant research results based on RISC-V SoC have emerged.
Farshchi et al. [13] integrated NVDLA into a RISC-V SoC on the Amazon Cloud FPGA using
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Firesim (Precise Cycle FPGA Accelerator). Flamand et al. [14] proposed a multi-GOPS RISC-
V SoC-based fully programmable edge computing engine to implement advanced sensor
algorithms based on machine learning. Zhong et al. [15] presented a RISC-V SoC based
on Visible Light Communication (VLC) for mobile payment applications. Bailey et al. [16]
demonstrated a signal analysis SoC consisting of a general-purpose RISC-V core with vec-
tor extensions and a fixed-function signal-processing accelerator. Enrique et al. [17] used
open-source software to develop AlloT applications on RISC-V SoC. The advantages of the
RISC-V architecture in security and power consumption promote the application of RISC-V
in the Internet of Things (IoT), mobile terminal, edge computing, and other fields. However,
the application of RISC-V instruction set architecture is missing in intelligent security, and
the combination of hardware and software is still lacking in related studies. In order to use
the advantages of RISC-V in power consumption and security and to enrich the ecological
construction of RISC-V, this paper proposes an intelligent security monitoring system based
on RISC-V SoC to broaden the application of RISC-V in the embedded domain. This paper
constructs an intelligent security monitoring system based on RISC-V SoC, and the system
consists of hardware parts and software parts. The hardware part includes RISC-V SoC and
peripherals, and the software part includes the Linux operating system and application
programs. Under the condition of limited hardware resources, this paper first optimizes the
hardware control logic design of the RISC-V SoC according to the functional requirements
of the system and then compiles, transplants, and runs the Linux operating system to
control the necessary peripherals. In the design of application programs, the LBP model is
used for data processing, and then, the PID (Proportional-Integral-Differential) algorithm
is used to control the servo according to the processing results. Finally, the moving object
within the monitoring area can be detected and tracked, and the recorded video is uploaded
through the network port. The server performs provides data storage and sharing, and
subsequent face recognition and identity recognition can be realized by comparing the face
data in the database.

2. Overall System Design
2.1. System Composition

According to the functional requirements of the system, the detection and tracking of
moving objects need to be implemented on a RISC-V SoC with peripheral controllers such
as the camera, HDMI, and servo. Additioanlly, the Linux operating system and running
drivers as well as applications in SoC need to be transplanted. The application performance
mainly depends on the selected model. The overall structure of the system is illustrated in
Figure 1.
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Figure 1. Overall system organization.

2.2. Introduction of the Platform and Design Tools

The hardware platform used in this system is the Nexys-Video Artix-7 FPGA em-
bedded development platform manufactured by Digilent company. Among Digilent’s
development board series, the Nexys-Video is an efficient tool specially designed for au-
dio/video applications. It is equipped with a high-bandwidth external memory, three
high-speed digital video ports, and a 24-bit audio codec design and has standard commu-
nications, users, and expansion peripherals. Specifically, the communication peripherals
include ethernet, USB-UART, and high-speed USB interfaces. The on-board user peripher-
als include switches, buttons, led, and OLED displays. The expansion peripherals include
one FMC connector and four Pmod ports to allow additional peripherals to be added. The
integrated design tool used in this system is the Vivado design suite. The project was
established to complete the addition of IP and HDL (Hardware Description Language)
design. The hardware circuit that meets the functional requirements of the system is real-
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ized through the interconnection between IPs and RTL (Resistor Transistor Logic) modules.
After the functional simulation, synthesis, implementation, and bitstream generation, the
generated bitstream is programmed to the FPGA of the development board, and the system
hardware platform is constructed.

3. System Hardware Design and Implementation

The key component of the hardware implementation of the system mainly lies in
RISC-V SoC and its peripherals. As shown in Figure 2, the FPGA of the Nexys Video
Artix-7 development platform is used to implement the RISC-V SoC and, together with
the hardware resources on the development board, to form a logic circuit that can realize
specific functions.

Nexys video

Artix-7 FPGA

Rocket Tile A < »(m | Ethernet a
2xCoresy (| | 0 | .
5 AXI e » S0
Smart Servo _
! Connect [¢ ;@233-—__‘
DDR3 . [teasee| Camera (@)
» BRAM B&C
A - HDMI

Figure 2. System hardware structure.

RISC-V SoC is mainly composed of a processor core, DDR3, and input and output
modules. These modules are interconnected and communicated using the AXI bus. Mean-
while, each submodule in the modules is connected through the crossbar AXI smart connect
so that the processor can realize the read and write operations of the peripheral data in a
one-master—multiple-slave manner. In SoC, the AXI bus is responsible for the communica-
tion between modules, such as sending and receiving addresses and data. After the master
and slave devices are connected, any read or write operation has an address that specifies
the operation object. The final design needs to be validated to ensure that the design is
correct. The interconnection between the modules is shown in Figure 3.
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Figure 3. Module interconnection.

The module interconnection diagram clearly shows the connection between the mod-
ules. The following describes the design and implementation of each module in detail.
There have been many open-source RISC-V processor core designs, such as the Boom
developed by the University of Berkeley, the Ariane developed by the University of Zurich,
and the Shakti series developed by the Indian Institute of Technology. Some of the designs
are successful in streamer [18-21], which indicates that RISC-V has a broad application
prospect. In our system, the processor core is a 64-bit RISC-V Rocket softcore designed by
the University of Berkeley [22]. The core exploits the classic five-stage pipeline, sequential
execution, single launch, and it supports various branch predictions. As a classic and con-
figurable processor core of RISC-V series, the Rocket core can fully support the operating
system’s transplantation and operation. The paper configures the processor to have dual
cores as needed. As part of the on-board resources, the DDR3 can be regarded as the SoC
memory for storing some of the data and instructions required by the processor core. The
DDR3 MIG (Memory Interface Generator) designed in SoC is a converter between the
DDR3 interface and the user logic control interface. The parameters of the MIG need to
be configured according to actual conditions, including system clock and reference clock,
data width, pin assignments, etc. The processor core performs read and write operations
of DDR3 through the DDR3 MIG. The input and output modules mainly include the
AXI smart connect, UART serial port module, ethernet module, SD card controller, servo
module, OV5640 camera module, and HDMI display module. The AXI smart connect
can add peripherals with the AXI interface as needed, which makes the hardware design
scalable. Additionally, it helps the processor control multiple inputs and output devices
while synchronizing signals and reset signals from different clock domains to ensure that
device data read and write can meet the timing requirements. After the port signals of
the remaining modules are assigned and mapped, the corresponding peripherals can be
controlled. The servo module, OV5640 camera module, and HDMI display module are
significant for implementing the system functions. Therefore, this paper conducts an inde-
pendent HDL language design to implement hardware control logic for the above three
modules. Based on this, the RTL function test stage and the oscilloscope signal debugging
stage are refined to ensure the best system function realization with the lowest hardware
resource consumption. Compared with the design of the servo module, the control logic
that needs to be implemented for the OV5640 camera module and HDMI display module
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is relatively complicated. Thus, it is described in detail in the following part. The system
function aims to display the output pixel data of the HDMI device. The camera pixel clock
and the HDMI output clock differ in frequency, which makes it necessary to provide a
read—write buffer of a specific pixel data capacity. Although the DDR3 has outstanding
advantages as a large-capacity high-speed storage device, more control logic needs to
be adjusted and the subsequent driver programming is complicated. The BRAM (Block
Random Access Memory) IP provided by Vivado can be used as a buffer. To ensure the
correct output of the display device, the BRAM should be configured to buffer one data
frame. The camera captures a frame with a resolution of 1024 x 768, and the pixel in the
RGB565 format has a total of 16 bits of data. According to this, the BRAM size is at least
12 Mb, which accounts for more than 99% of the board-level storage resources. In this case,
the design fails in synthesis. Meanwhile, to improve the data transmission efficiency and
system performance, it is also necessary to design a BRAM dedicated to data processing
for the system, which is the same as the BRAM required for output display. In this case,
the demand for storage resources is much larger than the actual storage capacity of the
development board. To solve this problem, a video downsampling technology is adopted
by the design, and two identical BRAM IPs are successfully designed. Realizing the typical
display and transmission of image data through this technology, the BRAM occupies 49%
of the board-level resources after synthesis. It can be seen that this technology occupies
fewer hardware resources while meeting the requirements of system design, providing
an important foundation for further expansion of the system’s functions. After the HDL
design of the camera and HDMI display modules are completed, the IP packaging tool
is exploited to uniformly package the design of these modules to facilitate subsequent IP
reuse and transplantation. Key technology: video downsampling technology is adopted
to reduce the size of the video frame buffer (BRAM) because the board-level storage ca-
pacity is only 13 Mb. The principle of this technology is that the adjacent pixels have
similar values and the value can be restored through prediction even though some pixel
values are discarded. The technology samples an effective pixel for every n pixels and
writes it into BRAM (n = 1,3,...,2n + 1) during continuously generating pixel data by
the camera. Among them, n is an odd number that facilitates subsequent data processing
and prevents image display problems. The BRAM capacity processed by this method
becomes the original 1/ (1 + 1) of the original, thus effectively reducing the consumption
of storage resources. Though the BRAM capacity is reduced, the system still needs to
output a whole frame with a resolution of 1024 x 768, and it needs to exploit the average
prediction method to restore the standard HDMI display output. Specifically, the HDMI
display device reads the originally stored pixels from the BRAM. Taking the data of every
n + 1 pixel as a group, the first datum of each group is the valid datum sampled and stored
in the BRAM. The remaining n pixels need to be averaged to predict the output. This
paper adopts the video downsampling method with # = 3. In this case, one valid datum is
sampled from every three pixel data. Additionally, every four pixels of data are taken as a
group and two groups of data are used for specific descriptions. The processing process is
shown as follows. The output pixel data is

Poo, Pot, Po2, Pos, P1o, P11, P12, P13 - - - . (1)

For pixel data Pyy , x is the group number and y is the number in the group. The first
average processing is

Pop = Poo/2 4 P1o/2. ()

The second average processing is

Po1 = Poo/2 + Pp/2, Pos = Poa/2 + Py /2. 3)

The pixel data is in the format of RGB565 with a total of 16 bits. Ry, = Py, [15: 11],
ny = ny [10: 5], and Bxy = ny [4: O].
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It should be noted that the video downsampling technology deals with binary data,
and it is implemented with a hardware description language. As can be seen from the
above description, the intermediate processing first averages the pixel data and then sums
it up. The average operation is performed before the summation because the summation
may cause overflow for binary data with a specified bit width, which loses the high-bit
weight and distorts the pixel data after the average value. Therefore, to avoid the overflow
problem, the pixel values of the R, G, and B channels are processed in order [23]. By
adopting the above method, the capacity of a single BRAM becomes 1/4 of the original
capacity (only 1/4 frame of a pixel datum is stored). In this case, the two BRAMs required
by the system occupy a total of 6 Mb of the storage resources, and the video images can
be collected and output. Therefore, under the condition of limited hardware resources,
the use of the video downsampling technology can effectively reduce the storage resource
needed by high-resolution devices, thus improving the utilization of board-level resources
and providing a broad space for the optimization and expansion of development board
functions. Additionally, the video sampling technology helps optimize application perfor-
mance, greatly reduces the amount of data transmitted, and improves the neural network’s
efficiency for processing pixel data.

4. System Software Design and Implementation

The implementation of the system software mainly includes two aspects: the operating
system and application program. In our hardware implementation, the SD card acts as
external storage that is equivalent to a hard disk. The operating system needs to be
transplanted to the partitioned SD card, and the transplantation [24] is composed of three
parts: the transplantation of U-Boot, Linux kernel, and roofs.

4.1. Linux Operating System Transplantation

U-Boot: The U-Boot [25] is first configured and then compiled through the Makefile.
Next, the bootloader [26] is started in the SD card to initialize DDR and other peripherals.
Finally, the Linux kernel is copied from the SD card to the DDR to start the Linux kernel.
Linux-kernel: The Debian Linux 5.5.0 is selected as the Linux operating system kernel
for transplant to the development board [27]. After the source code is downloaded, a
configuration is required. Then, the operating system image file and the DTB file are
generated and transplanted to the development board after cross-compilation. The DTB
file is also called the device tree file, and it is a binary file obtained by compiling the DTS
file, which is a file that describes device information on the development board. Roofs:
Roofs refers to the root file system of Debian, and it is used after the Linux kernel is created.

4.2. Linux Device Driver Programming

Linux device driver [28] refers to the device driver of the Linux system, and it is a
hardware interface that allows computer software and hardware to interact. The operating
system can use this interface to control the hardware devices. According to the system
hardware implementation in this paper, the driver framework needs to be designed and the
drivers for critical peripherals need to be written. As mentioned above, the AXI bus is re-
sponsible for the communication between various modules of the system. Considering the
driver’s reusability, separation, and layering, the platform driver framework is adopted and
the traditional character device driver is exploited to facilitate the driver’s programming.
The platform driver framework consists of the bus model, device model, and driver model.
The driver framework mainly includes driver entry and exit functions, module loading
and unloading functions, device registration and deregistration functions, operation set,
platform driver structure, and matching table. Among them, the set of operation functions
for implementing basic operations on device files include open(), release(), read(), and
write(). Since the Linux kernel of version 5.0 or higher is used in this paper, the Linux driver
already supports the device tree, and the driver can control specific peripherals based on
the device node information. In the device tree, each device node represents a specific
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device and different devices have different properties. In addition to standard device
attributes, users can customize attributes. These device attributes can then be used as items
in the matching table to match the drivers to the devices. In this paper, two device nodes
are designed under the SoC node for the key peripherals, and the attributes of “compatible”
and “reg” are set. The former is a compatibility attribute for matching between drivers
and peripherals, and the latter describes the device address space information, which is
allocated to the device after the module is connected. The key peripherals in the system
implementation include servo, camera, and HDMI display. The design of the servo’s driver
uses the copy from the user() function and the memcpy() function to write the registers that
control left and right movements of the dual-axis servo pan/tilt, and subsequent control of
the servo is realized by the application program. The design of the HDMI's driver reads the
frame data from the BRAM through the copy provided by the user() function. Based on this,
the data frames can be processed by OpenCV program for face detection and tracking [29].

4.3. Models and Application
4.3.1. Introduction of Models

The three object detection models that are provided by OpenCV [30-32] are used
in this paper, namely the YOLO model, the Haar model, and the LBP model. YOLO:
YOLO [33] is an object recognition and localization model based on deep neural networks.
It uses a separate convolutional neural network model, and the input image is divided into
S x S grids. To achieve end-to-end object detection, each cell is responsible for detecting the
object for which the center point falls into the grid and gives the probability that the object
belongs to different categories. YOLO has the characteristics of simplicity, high speed, and
strong generalization ability. Haar: Haar is a cascaded classifier based on the Haar feature
that reflects the changes in image grayscale [34]. Haar cascading is a method based on
machine learning, and the cascading function can be trained through positive and negative
images. OpenCV provides a cascaded object detector for Haar models [35]. This detector
is featured with high computational efficiency and fast detection speed. LBP: LBP model
is a cascaded classifier that can detect objects as well as the Haar model. As an effective
texture operator, the LBP feature [36] can be combined with the histogram of LBP feature
spectrum statistics to achieve real-time image classification and recognition [37]. OpenCV
provides an LBP detector that extracts the LBP feature in the picture and uses the statistical
histogram of the LBP feature spectrum as a feature vector for classification and recognition.
LBP model has a fast training speed and good object detection capability.

4.3.2. Design of Application

Applications should be highly valued because they determines the function of the
system. The design of applications mainly includes two parts. The first part is information
interaction between the user space and the kernel space, and the second part is data
processing of the transmitted information through different models. For the first part, the
application is in the user space and the driver is in the kernel space. Since everything in
the Linux system can be regarded as a file, the corresponding file is generated after the
driver is successfully loaded. To control the hardware, the application program performs
related operations on the driver file. These operations include API functions such as open(),
close(), write(), and read(). They all correspond to related library functions. After a system
call, the related drivers in the kernel are executed, and the corresponding hardware devices
are controlled finally. In addition to opening and closing the driver’s basic operations,
the registers of the servo module need to be written to control the servo’s movement in
the horizontal and vertical directions. In contrast, the application of the HDMI module
needs to read the BRAM IP to obtain the video data. The second part of the information
processing is further divided into the following points. By calling the library file of
OpenCV, the data frame collected from the camera to the array of the application program
through the driver is stored and the three-channel image variable with a size equal to
the pixel size of the data frame is created. By traversing the rows and columns of the
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array stored in the data frame, the data of the three RGB channels are extracted. Then,
the CV::CascadeClassifier class is exploited to detect the images collected from the video
stream. Meanwhile, CV::CascadeClassifier::load is exploited to load a .XML classifier that
can either be a Haar or LBP classifier. Moreover, CV::CascadeClassifier::detectMultiScale()
is exploited to test the images of human faces obtained and the getCenterPoint() function
is exploited to obtain the position of a face’s geometric center. Different from the cascading
classifier, the YOLO model for object detection requires invoking the DNN class provided
by OpenCV and loading the model configuration file, weight file, and model category
label file. Subsequently, the moving position of the object is determined by reading the
continuous data frames and by processing the data of the object detection model. Based on
the object position, the linear feedback PID algorithm [38] is used to calculate the moving
distance of the servo in the horizontal and vertical directions. Next, the moving direction
and distance are provided to the driver. In this way, real-time tracking and monitoring
of moving objects can be achieved at the hardware level of the system. The execution
time of the object detection model is the main part of the program running time. In this
case, the choice of object detection model directly affects the system’s performance. In the
subsequent experiments, the above three models are implemented, and the optimal model
is selected by comparing the results of these models to achieve better object detection
and tracking.

5. Experiment
5.1. Process

The system integration is completed according to the previous description. Specifically,
the Vivado design kit is exploited to implement the logic design, module connection, ad-
dress allocation, and bitstream generation. Then, the data lines of the peripherals including
the UART, USB, and ethernet are connected to the host’s development board. Meanwhile,
the display screen is connected to the HDMI interface, and the servo is connected to Pmod
A; the OV5640 camera is connected to Pmod B and C. After that, the bitstream is programed
to the FPGA of the Nexys Video development board to implement the RISC-V processor
core. After the device tree file is modified and compiled, the generated U-Boot, operating
system image file, and root file system are transplanted to the SD card, and the operating
system runs successfully. Subsequently, the compiled driver and program are transferred
to the file system via ethernet. After the driver is loaded and the application is run, the
results of object detection and tracking are observed. Finally, the image of the tracked and
monitored objects is uploaded to the cloud server, and it is compared with the suspect in
the database through face recognition. Additionally, the relevant situation is reported to the
security management department in time. The final experimental operating environment
is shown in Figure 4.
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Figure 4. Experimental operating environment.

5.2. Results and Discussion

An intelligent security monitoring system aims to detect and track moving objects
within a specific area. The functions of the system designed and implemented in this paper
are inevitably restricted by the hardware resources and the selected model. To obtain better
functions of the system, the experiment presents the hardware resource utilization and the
performance comparison results of different models. The hardware resource utilization is
listed in Table 1. It can be seen that, after the use of video sampling technology, the storage
resource utilization of BRAM is 56.71%.

Table 1. Resource costs and utilization.

Resource Utilization Available Utilization %
LUT 85,371 134,600 63.43
LUTRAM 5847 46,200 12.66
FF 50732 269,200 18.85
BRAM 207 365 56.71
DSP 30 740 4.05
10 102 285 35.79
MMCM 2 10 20.00
PLL 2 10 20.00

Since object detection is based on the neural network model and is affected by the
characteristics of the model, the object detection time accounts for the main part of the
application running time. Experiments are conducted to measure the detection time of the
three models for processing a single image. The experimental results are listed in Table 2.
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Table 2. The detection time of different models.

Model Detection Time/Frame (s)
YOLO v4 tiny 403.14
Haar 5.37
LBP 1.25

The YOLO model is a well-known object detection model and is widely used in
computer vision. Thus, the latest and lightest YOLO v4 tiny model was used in the
experiment. However, the single-frame detection time of this model is 403.14 s, which is
worse than other models and fails to achieve the real-time performance required by the
system design. The analysis of the result indicates that the hardware resources make the
system performance limited by the processor’s dominant frequency. Therefore, the Haar
and LBP face detection models were used in the subsequent experiments. By converting
the detection of multiple objects to the detection of faces, the neural network is simplified,
and the learning and training times are also significantly reduced. Meanwhile, a model
for face detection without sacrificing the effective range of object detection is desired.
Especially, the smallest and largest rectangular windows suitable for object detection
are determined through experiments, further reducing the object detection time. For
the face detection model, the classic Haar model and the LBP model were compared.
According to the experimental results, the detection time of the LBP model for a single
frame is 1.25 s, while the Haar model requires 5.37 s to detect a single frame. The LBP
model performed better than the Haar model, so the LBP model was chosen to realize
real-time tracking and monitoring of moving objects. Overall, the intelligent security
monitoring system studied in this paper can meet the requirements of detection and
tracking of moving objects. However, some shortcomings need to be overcome by future
work. In terms of the hardware, the hardware design based on the embedded platform
is limited in resources, and the improvement and expansion of the functions require an
improved utilization of the hardware resources. Additionally, the hardware accelerators
can be designed specifically for the detection and tracking algorithm to further improve
the performance of the system. In terms of the software, the design of the driver and
application to realize object detection by calling the models of Haar, LBP, and Yolo were
finished independently. In the future, independent training of the models considering
the characteristics of the embedded platform can be conducted to meet the performance
requirements of deploying the algorithm on terminals and to further improve the detection
accuracy and speed.

6. Conclusions

To construct an intelligent security monitoring system, the RISC-V SoC hardware
platform was designed and built in this paper and the Linux operating system was trans-
planted. Moreover, the drivers and application programs are designed so that the processor
can control the peripheral devices. According to the comparison between the three models,
the application program based on the LBP model was chosen to realize real-time object
detection and tracking. In addition, a video downsampling technology was adopted by
this paper. In the case of limited hardware resources, this technology ensures that the video
data are output successfully and that the system performance was improved effectively
by reducing data processing for one frame. In addition, the research of this paper still has
some limitations. The design is implemented on an FPGA chip because it can quickly adapt
to the changing application requirements owing to the flexibility and programmability
of FPGA. However, for practical applications of intelligent security monitoring, design
and implementation on an FPGA requires a larger area, higher power consumption, and
lower operating frequency than that on the ASIC. Meanwhile, since RISC-V is an emerging
open-source instruction set, its ecology system is not currently perfect. The documenta-
tion for developers is scarce, the development environment is at a low level of maturity,
and debugging is diffcult. However, with increasing development of the RISC-V ecol-
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ogy system, the research in this paper can also be further improved and promoted. The
system performance can be improved from two aspects. Considering the hardware, the
development board with more hardware resources can be used. Additionally, due to the
limitation of the processor’s dominant frequency, processor cores with higher frequency
can be used. Regarding the software, the program can be further improved by optimizing
models and the specific neural network can be designed independently for learning and
training. Supporting by robust cloud storage, cloud computing, and other technologies, the
application scenarios of the intelligent security monitoring system can be extended to social
security. Based on this, the face of a criminal can be accurately detected and identified, and
the driving trajectory of the person can be tracked and recorded, thus ensuring the security
and stability of the whole society.
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