
electronics

Article

Data-Driven Channel Pruning towards Local Binary
Convolution Inverse Bottleneck Network Based on
Squeeze-and-Excitation Optimization Weights

Duo Feng † and Fuji Ren *,†

����������
�������

Citation: Feng, D.; Ren, F.

Data-Driven Channel Pruning

towards Local Binary Convolution

Inverse Bottleneck Network Based on

Squeeze-and-Excitation Optimization

Weights. Electronics 2021, 10, 1329.

https://doi.org/10.3390/

electronics10111329

Academic Editor: Donghyeon Cho

Received: 26 March 2021

Accepted: 28 May 2021

Published: 1 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan; c501647005@tokushima-u.ac.jp
* Correspondence: ren@is.tokushima-u.ac.jp
† These authors contributed equally to this work.

Abstract: This paper proposed a model pruning method based on local binary convolution (LBC)
and squeeze-and-excitation (SE) optimization weights. We first proposed an efficient deep separation
convolution model based on the LBC kernel. By expanding the number of LBC kernels in the model,
we have trained a larger model with better results, but more parameters and slower calculation speed.
Then, we extract the SE optimization weight value of each SE module according to the data samples
and score the LBC kernel accordingly. Based on the score of each LBC kernel corresponding to the
convolution channel, we performed channel-based model pruning, which greatly reduced the number
of model parameters and accelerated the calculation speed. The model pruning method proposed in
this paper is verified in the image classification database. Experiments show that, in the model using
the LBC kernel, as the number of LBC kernels increases, the recognition accuracy will increase. At the
same time, the experiment also proved that the recognition accuracy is maintained at a similar level in
the small parameter model after channel-based model pruning by the SE optimization weight value.

Keywords: model pruning; local binary convolution; squeeze-and-excitation optimization; image
classification; depthwise convolution; mobile inverse bottleneck

1. Introduction

With the development and wide application of deep learning, the field of artificial
intelligence has undergone tremendous changes in recent years. Owing to higher require-
ments for model results, deeper and more complex deep learning network structures are
proposed [1–7]. What follows is exponential growth in model parameters and memory
requirements, which makes it difficult to implement to various hardware platforms, such as
mobile devices [8–10]. To improve the calculation speed of the model, in addition to further
improving the calculation speed of the hardware, many researchers also try to reduce the
number of parameters required by changing the model structure [8,10–13]. Moreover, some
researchers have focused on the methods of model compression to modify the trained
model and compress it to minimize the computational space and time consumption of
the model [14–17]. Model pruning is a type of model compression [18–21]. It is based
on an assumption, or the current consensus, which is the over-parameterization of deep
neural networks [22,23]. Over-parameterization means that we need a lot of parameters
in the training phase to capture the tiny information in the data, and once the training is
completed to the inference phase, we do not need so many parameters. This assumption
supports that we can simplify the model before deployment.

Through pruning at different granularities of model parameters, model pruning
methods can be divided into unstructured pruning [18,19,21,24,25] and structured prun-
ing [20,26,27]. In unstructured pruning, the weights of the network are pruned at the
neuron level. This pruning method has the highest flexibility, but it will cause the weight
matrix to be sparse, requiring additional sparse matrix operation libraries or specially

Electronics 2021, 10, 1329. https://doi.org/10.3390/electronics10111329 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4703-8319
https://orcid.org/0000-0003-4860-9184
https://doi.org/10.3390/electronics10111329
https://doi.org/10.3390/electronics10111329
https://doi.org/10.3390/electronics10111329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111329
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111329?type=check_update&version=1


Electronics 2021, 10, 1329 2 of 14

designed hardware support [28]. Compared with unstructured pruning, the structured
pruning algorithm does not require additional computing library support and is more
user-friendly in terms of implementation and deployment. Structured pruning is used to
prune the model's filter or channel granularity. By scoring the filter or channel of the model,
the parts with lower scores are removed, thereby reducing the model parameters. The
structured pruning method is more of an optimization of the model structure. In the work
of [29], it is pointed out that, after pruning, the more important thing is the preservation
of the model structure rather than its parameters. From this point of view, the structured
pruning method is also a neural architecture search (NAS) [30], but, because it only involves
layer dimensions, the search space is smaller.

In recent studies, the attention mechanism has been widely used in Convolutional
Neural Network (CNN). From the spatial attention mechanism [31–36], channel attention
mechanism [37], and part of the research used a mixed attention mechanism [38–40]. The
attention mechanism itself calculates the features extracted by the model and adds more
weight to the more important features of the result. SEnet [37] proposed the process of
dividing the channel-based attention mechanism into a squeeze, excitation, and scale,
adding more non-linear calculations to the channel-based attention mechanism, which
provided the basis for many subsequent studies. Compared with the previously mentioned
evaluation method of model pruning, the attention weight of different parts of the model
is also the evaluation of the intermediate features extracted by the model. This evaluation
is data-driven and can be expressed through intuitive scores. At the same time, most of the
attention mechanism methods rely on the training in the model, and the attention weight
corresponding to the data sample changes greatly in the process of pruning and retraining.

In this context, we thought of the LBC network [41]. LBC is an application based
on local binary pattern (LBP) [42] features in traditional machine learning and uses a
non-trainable convolution kernel with only three values of −1, 0, and 1. The convolution
kernel of LBC is binarized and has advantages over traditional convolution kernels in
terms of calculation speed and storage space. In the case of the same convolution kernel
size, the non-trainable convolution kernel parameters reduce the overall training difficulty
of the model. However, because the LBC kernel is not trainable, the model result has a
great correlation with the number of kernels. As the effect of LBC has a strong positive
correlation with the number of LBC kernels, many randomly generated LBC kernels must
be redundant. This assumption is in line with the theory of model pruning. Model pruning
based on LBC not only needs to find the model structure after pruning, but it is more
important to find the non-trainable LBC kernel parameters. In our work, we did not use the
existing structured model pruning scoring method, but used the weight of the data-driven
SE block as the evaluation of the channel. At the same time, a depthwise convolution
layer structure is introduced, so that the LBC kernel corresponds to the SE optimization
weight. Compared with the evaluation function of the existing model pruning method, the
squeeze-and-excitation (SE) optimization [37] weight is obtained through training, and the
relationship with the convolution channel is more intuitive.

In our paper, we propose a basic network structure based on mobile inverted bottle-
neck [12,43,44] convolutional layer and squeeze-and-excitation optimization. By changing
its inverted bottleneck expand ratio, the number of LBC kernels in each LBC layer is ad-
justed. By training large models and using pruning methods, we get models with smaller
calculations and higher accuracy. Figure 1 shows our expansion-pruning process. We
conducted experiments on the image classification database CIFAR-10 [45]. The result
proves the effectiveness of our proposed method; in the models with smaller expand ratios,
its recognition accuracy still maintains the same level.



Electronics 2021, 10, 1329 3 of 14Electronics 2021, 10, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. The proposed model pruning method is based on SE (squeeze-and-excitation) optimization weight. Build a 
model with higher accuracy by setting a larger expansion ratio (above model). Calculate the SE weight of the correspond-
ing part of the training data set, and score the depthwise convolution kernel. Cut the corresponding depthwise convolu-
tion kernel to get a smaller model (below model). The accuracy of the model remains at a similar level. 

2. Related Work 
With the good results of deep neural networks in various fields, the computing re-

sources required by the model also increase. Model size, memory footprint, number of 
calculation operations (FLOPs), and power consumption are the main aspects that hinder 
the use of deep neural networks in certain resource-constrained environments. Those 
large models may not be stored and cannot be run in real-time on embedded systems. To 
solve this problem, many methods have been proposed, such as low-rank approximation 
of weights [4,46], weight quantization [47,48], knowledge distillation [49], and model 
pruning, where model pruning has attracted much attention thanks to its competitive per-
formance and compatibility. 

In the work of the early 1990s, when the weight is set to zero, the second-order Taylor 
approximation method with an increased network loss function is used for pruning. In 
optimal brain damage [18], the saliency for each parameter was computed using a diago-
nal Hessian approximation, and the low saliency parameters were pruned from the net-
work, and the network is retrained. In optimal brain surgeon [19], the saliency of each 
parameter was calculated using the inverse Hessian matrix, the low saliency weight was 
pruned, and all other weights in the network were updated with second-order infor-
mation. More recently, another paper [24] proposed to trim the weight of the network to 
a small extent, and further integrate this technology into the deep compression pipeline 
[28] to obtain a highly compressed model. Besides, many researchers have proposed var-
ious algorithms to iteratively remove redundant neurons, use Variational Dropout to trim 
excess weights [50], and learn sparse networks through regularization of the L0 paradigm 
based on random gates [25]. But, one disadvantage of these unstructured pruning meth-
ods is that the resulting weight matrix is sparse, and if there is no dedicated hardware/li-
brary, it cannot cause compression and acceleration [28]. 

In contrast, the structured pruning method is pruning at the channel or even at the 
level. As the original convolution structure is still retained, no dedicated hardware/library 
is required to achieve these benefits. Among the structured pruning methods, channel 

Figure 1. The proposed model pruning method is based on SE (squeeze-and-excitation) optimization weight. Build a model
with higher accuracy by setting a larger expansion ratio (above model). Calculate the SE weight of the corresponding part
of the training data set, and score the depthwise convolution kernel. Cut the corresponding depthwise convolution kernel
to get a smaller model (below model). The accuracy of the model remains at a similar level.

2. Related Work

With the good results of deep neural networks in various fields, the computing
resources required by the model also increase. Model size, memory footprint, number of
calculation operations (FLOPs), and power consumption are the main aspects that hinder
the use of deep neural networks in certain resource-constrained environments. Those large
models may not be stored and cannot be run in real-time on embedded systems. To solve
this problem, many methods have been proposed, such as low-rank approximation of
weights [4,46], weight quantization [47,48], knowledge distillation [49], and model pruning,
where model pruning has attracted much attention thanks to its competitive performance
and compatibility.

In the work of the early 1990s, when the weight is set to zero, the second-order
Taylor approximation method with an increased network loss function is used for pruning.
In optimal brain damage [18], the saliency for each parameter was computed using a
diagonal Hessian approximation, and the low saliency parameters were pruned from the
network, and the network is retrained. In optimal brain surgeon [19], the saliency of each
parameter was calculated using the inverse Hessian matrix, the low saliency weight was
pruned, and all other weights in the network were updated with second-order information.
More recently, another paper [24] proposed to trim the weight of the network to a small
extent, and further integrate this technology into the deep compression pipeline [28] to
obtain a highly compressed model. Besides, many researchers have proposed various
algorithms to iteratively remove redundant neurons, use Variational Dropout to trim excess
weights [50], and learn sparse networks through regularization of the L0 paradigm based
on random gates [25]. But, one disadvantage of these unstructured pruning methods is
that the resulting weight matrix is sparse, and if there is no dedicated hardware/library, it
cannot cause compression and acceleration [28].

In contrast, the structured pruning method is pruning at the channel or even at the
level. As the original convolution structure is still retained, no dedicated hardware/library
is required to achieve these benefits. Among the structured pruning methods, channel
pruning [22,51,52] is the most popular method because it operates at the most granular level



Electronics 2021, 10, 1329 4 of 14

while still being suitable for conventional deep learning frameworks. There are three classic
ideas for the channel pruning algorithm. The first is based on the importance factor [52],
that is, to evaluate the effectiveness of a channel, and to constrain some channels to make
the model structure itself sparse, so that pruning is based on this. The second is to use
reconstruction errors to guide pruning [22,51], indirectly measuring the impact of a channel
on the output. The third is to measure the sensitivity of the channel based on the change
of the optimization target. However, the work of [29] pointed out that, for structured
pruning, after obtaining the compression model through the pruning algorithm, it is better
to initialize and train the compression model randomly instead of using the weights of
the large network for fine-tuning. For the final compressed small model, the network
architecture obtained by the pruning algorithm is more important than the "important"
weight obtained by the pruning. The model through the pruning algorithm can provide
design guidance for designing an effective network architecture. For most convolutional
neural networks, fine-tuned convolution kernels from large networks are more likely to
cause the model to fall into overfitting.

Similar to the method of scoring the part of the model that needs to be cut in model
pruning, the attention mechanism method widely used in image processing and image
sequence processing [53] is used to evaluate the intermediate features extracted by the
model. In CNN, based on the original attention mechanism applied to the human visual
system [31,32], the spatial attention mechanism was applied to it very early. For example,
in the original picture information, focus on the area that needs more attention [33–35],
and find the relationship weight of any pixel in the image to the current pixel from the
global information [36]. In addition to spatial attention, many studies have focused on the
attention mechanism of the convolution channel [37] in CNN. In the work of [37], they use
global average-pooled features to compute channel-wise attention. Spatial attention puts
more weight on the input image, and according to different input images, more information
parts will be found. The channel attention is more about weighting the convolution kernel.
Corresponding to different input images, a specific convolution kernel can find important
information more of the time.

In our work, we use the LBC kernel [41] to replace the general convolution kernel
and perform structured pruning to avoid the above problems. The LBC is inspired by
the LBP [42] of the feature extraction method in traditional image processing. Local
binary pattern (LBP) is a simple, but powerful hand-designed descriptor, used for images
based in the field of facial recognition [54,55], and has a wide range of applications in
computer vision fields such as image classification [56]. The LBP descriptor is formed
by sequentially comparing the intensity of adjacent pixels in the patch with the intensity
of the center pixel. Compared with the center pixel, neighbors with higher intensity
values are assigned 1, otherwise 0. Based on this theory, the LBC layer comprises a set of
sparse, binary, and randomly generated sets of convolutional weights from −1, 0, and 1,
and the pixel intensity relationship in the receptive field can be calculated. Unlike other
binarized networks [47,48,57], the LBC network mixes a non-trainable LBC layer and a
trainable convolutional layer. While retaining the advantages of the binary network in
terms of computational speed and storage space, it can be used as an end-to-end network
for conventional training without additional libraries, also greatly reducing the number
of parameters to be learned during training. The effectiveness of the LBC network has
also been verified [41,44]. However, as other lightweight network designs are proposed,
it is more common to use smaller and more distributed convolution operations such as
depthwise convolution [58,59], pointwise convolution [5,8], and group convolution [60,61]
to replace standard convolution. The advantage of LBC in the calculation is reduced, and
owing to the non-trainable nature of its LBC kernel, the performance of the LBC network is
related to the number of LBC kernels [41]. To achieve better performance, it is necessary to
increase the number of LBC kernels, thereby increasing the number of parameters of the
model. In [62], the paper proposed a 3D version of LBVCNN and imitated the Local Binary
Pattern from Three Orthogonal Planes (LBP-TOP) feature to rotate a 3D image sequence



Electronics 2021, 10, 1329 5 of 14

with a time axis as input. LBVCNN rotates the W, H, and T axes of a 3D image sequence
construct matrices of (W, T, H) and (H, T, W), and uses the 3D LBC kernel to process the
three matrices. This is equivalent to multiplexing these 3D LBC kernels, disguised as an
increase in the number of 3D LBC kernels to get better results.

In our work, we use the LBC kernel to replace the traditional convolution kernel
and use the structured model pruning method to prune the trained large model. While
obtaining a more effective model structure, the LBC kernel parameters that are more
effective for the result are retained, thereby improving the result of the smaller LBC model.

3. Model Pruning Based on SE Optimization Weight

In our work, we propose a moving reverse bottleneck convolution block based on deep
LBC layer and SE optimization. We score the LBC kernel according to the SE optimization
weight, and we obtain the LBC kernel with better performance in the model. By expanding
the ratio in the mobile inverted bottleneck [12,43,44], we get a large model with more LBC
kernels and more parameters. According to the statistics of the output of the SE weight
of each block of the model on the database, we get the score corresponding to each LBC
kernel. Based on this score, the large model can be pruned.

3.1. Depthwise LBC Layer and LB Mobile Inverted Bottleneck Block

Figure 2 showing the difference between the standard LBC and the LBC blocks we
proposed. Figure 2a shows the structure of the LBCNN proposed in [41]; each LBC block is
composed of two parts. The first part is a sparse LBC layer with non-trainable parameters.
The structure of this layer is the same as the standard convolutional layer; the convolution
kernel size is set to 3 × 3 without backpropagation. The parameters of the LBC kernel are
to first generate a set of all-zero matrices and then replace a part of 0 randomly with 1 or
−1 according to the Bernoulli distribution to generate a sparse LBC kernel. The second part
is a standard convolution layer; the size of the convolution kernel is 1 × 1. In such an LBC
block, it consists of a non-trainable convolutional layer and a trainable convolutional layer,
so that the model can be trained normally. The 1 × 1 convolutional layer in the second part
only provides a parameter that can be trained for the previous LBC layer. Figure 2b shows
the structure of the standard LBC block with the residual module. The residual module
adds shortcut connections, but does not change the structure of the LBC block. Figure 2c
shows the structure of the standard LBC block with the SE-residual module.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 14 
 

 

and T axes of a 3D image sequence construct matrices of (W, T, H) and (H, T, W), and uses the 
3D LBC kernel to process the three matrices. This is equivalent to multiplexing these 3D LBC 
kernels, disguised as an increase in the number of 3D LBC kernels to get better results. 

In our work, we use the LBC kernel to replace the traditional convolution kernel and 
use the structured model pruning method to prune the trained large model. While obtain-
ing a more effective model structure, the LBC kernel parameters that are more effective 
for the result are retained, thereby improving the result of the smaller LBC model. 

3. Model Pruning Based on SE Optimization Weight 
In our work, we propose a moving reverse bottleneck convolution block based on 

deep LBC layer and SE optimization. We score the LBC kernel according to the SE opti-
mization weight, and we obtain the LBC kernel with better performance in the model. By 
expanding the ratio in the mobile inverted bottleneck [12,43,44], we get a large model with 
more LBC kernels and more parameters. According to the statistics of the output of the SE 
weight of each block of the model on the database, we get the score corresponding to each 
LBC kernel. Based on this score, the large model can be pruned. 

3.1. Depthwise LBC Layer and LB Mobile Inverted Bottleneck Block 
Figure 2 showing the difference between the standard LBC and the LBC blocks we 

proposed. Figure 2a shows the structure of the LBCNN proposed in [41]; each LBC block 
is composed of two parts. The first part is a sparse LBC layer with non-trainable parameters. 
The structure of this layer is the same as the standard convolutional layer; the convolution 
kernel size is set to 3 × 3 without backpropagation. The parameters of the LBC kernel are to 
first generate a set of all-zero matrices and then replace a part of 0 randomly with 1 or −1 
according to the Bernoulli distribution to generate a sparse LBC kernel. The second part is a 
standard convolution layer; the size of the convolution kernel is 1 × 1. In such an LBC block, 
it consists of a non-trainable convolutional layer and a trainable convolutional layer, so that 
the model can be trained normally. The 1 × 1 convolutional layer in the second part only 
provides a parameter that can be trained for the previous LBC layer. Figure 2b shows the 
structure of the standard LBC block with the residual module. The residual module adds 
shortcut connections, but does not change the structure of the LBC block. Figure 2c shows 
the structure of the standard LBC block with the SE-residual module. 

 
Figure 2. The difference between the standard LBC (local binary convolution) and the LBC blocks we proposed. (a) stand-
ard LBC layer; (b) standard LBC with residual module; (c) standard LBC with SE-residual module; (d) standard depthwise 
LBC with mobile inverse bottleneck module; (e) standard depthwise LBC with SE-mobile inverse bottleneck module. 

In our work, we used depthwise convolution to construct the LBC layer. Compared 
with the standard LBC layer, the depth-separable LBC not only reduces the parameters, 
but also corresponds to each input feature map; there is only a 3 × 3 sparse LBC kernel for 
feature extraction, making the LBC kernel more intuitively reflect the result of its feature 

Figure 2. The difference between the standard LBC (local binary convolution) and the LBC blocks we proposed. (a) standard
LBC layer; (b) standard LBC with residual module; (c) standard LBC with SE-residual module; (d) standard depthwise LBC
with mobile inverse bottleneck module; (e) standard depthwise LBC with SE-mobile inverse bottleneck module.

In our work, we used depthwise convolution to construct the LBC layer. Compared
with the standard LBC layer, the depth-separable LBC not only reduces the parameters,
but also corresponds to each input feature map; there is only a 3 × 3 sparse LBC kernel for
feature extraction, making the LBC kernel more intuitively reflect the result of its feature
extraction shown as Figure 2d. At the same time, we introduced SE optimization to add



Electronics 2021, 10, 1329 6 of 14

attention weights to the feature maps extracted from the depthwise LBC layer, and used SE
optimization weights to replace the 1× 1 convolution of the traditional LBC layer shown in
Figure 2e. In the entire mobile inverted bottleneck, the first and last two 1 × 1 convolutional
layers are mainly used to adjust the number of input and output model channels. Even if
we change the number of LBC kernels through model pruning, the input kernel output of
the whole block will not change, which is convenient for the model to calculate the residual.

3.2. Baseline LB-MBNet Model

By combining the LBC mobile inverted bottleneck block, we propose our baseline
model. The mobile inverted bottleneck has applications in many model structures and
has also been proven to be an efficient model structure. In the EfficientNet [12], the input
resolution, depth, and width of the model are all quantified, and an optimization search is
performed to find the best performance model structure under different parameters. In
our proposed model, the network width is also quantified, but we only change the number
of LBC kernels in the depthwise LBC layer of each block. In the input of the model, we
added a stem block to perform the first step of processing the input image. In this step, we
used the standard convolutional layer instead of the LBC layer. In the subsequent model
pruning, we do not prune the stem part, only pruning the block that uses the LBC. The
expansion rate r in the model, that is, the ratio of the number of input channels in this
block to the LBC convolution kernels in the block can be individually adjusted to adapt to
different pruning scales. Figure 3 shows the proposed baseline model structure.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 

extraction shown as Figure 2d. At the same time, we introduced SE optimization to add 
attention weights to the feature maps extracted from the depthwise LBC layer, and used 
SE optimization weights to replace the 1 × 1 convolution of the traditional LBC layer 
shown in Figure 2e. In the entire mobile inverted bottleneck, the first and last two 1 × 1 
convolutional layers are mainly used to adjust the number of input and output model 
channels. Even if we change the number of LBC kernels through model pruning, the input 
kernel output of the whole block will not change, which is convenient for the model to 
calculate the residual. 

3.2. Baseline LB-MBNet Model 
By combining the LBC mobile inverted bottleneck block, we propose our baseline 

model. The mobile inverted bottleneck has applications in many model structures and has 
also been proven to be an efficient model structure. In the EfficientNet [12], the input res-
olution, depth, and width of the model are all quantified, and an optimization search is 
performed to find the best performance model structure under different parameters. In 
our proposed model, the network width is also quantified, but we only change the num-
ber of LBC kernels in the depthwise LBC layer of each block. In the input of the model, 
we added a stem block to perform the first step of processing the input image. In this step, 
we used the standard convolutional layer instead of the LBC layer. In the subsequent 
model pruning, we do not prune the stem part, only pruning the block that uses the LBC. 
The expansion rate r in the model, that is, the ratio of the number of input channels in this 
block to the LBC convolution kernels in the block can be individually adjusted to adapt to 
different pruning scales. Figure 3 shows the proposed baseline model structure. 

 
Figure 3. The proposed baseline LB-MBNet model framework. 

3.3. Model Pruning Based on SE Optimization Weight 
As mentioned earlier in this paper, we directly connect the SE block and the depth-

wise LBC layer and use the SE optimization weight to express the importance of the LBC 
kernels. By setting the expansion rate r to a larger value, we can get a large model with 
more parameters. Through experiments on the database, we compared the accuracy per-
formance of the large model and the small model and concluded that the results of the 
large model have better performance. This is also the basis for our model pruning. 

SE optimization is used to perform global average pooling on the feature map of each 
channel and quantify the relative strength relationship between the features. It optimizes 
the attention weight of features in different feature channels for each sample. Correspond-

Figure 3. The proposed baseline LB-MBNet model framework.

3.3. Model Pruning Based on SE Optimization Weight

As mentioned earlier in this paper, we directly connect the SE block and the depthwise
LBC layer and use the SE optimization weight to express the importance of the LBC
kernels. By setting the expansion rate r to a larger value, we can get a large model with
more parameters. Through experiments on the database, we compared the accuracy
performance of the large model and the small model and concluded that the results of the
large model have better performance. This is also the basis for our model pruning.

SE optimization is used to perform global average pooling on the feature map of each
channel and quantify the relative strength relationship between the features. It optimizes
the attention weight of features in different feature channels for each sample. Correspond-
ing to different samples, SE optimization weights are also different. However, we can
calculate the mean value and distribution of SE optimization weights in large-scale samples,
and score the characteristic channels in disguised form. Figure 4 shows the relationship
between each LBC kernel and SE optimization weight in the proposed model. For the



Electronics 2021, 10, 1329 7 of 14

input Xc, c is the number of input feature channels. First, channel expansion is performed
through 1 × 1 convolution to obtain Xrc. Xi (i ∈ 0 . . . rc) is the i-th feature map in Xrc
and X’i is the output of the depthwise LBC layer. After the processing of the SE block,
Wi (i ∈ 0 . . . rc) is obtained.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

ing to different samples, SE optimization weights are also different. However, we can cal-
culate the mean value and distribution of SE optimization weights in large-scale samples, 
and score the characteristic channels in disguised form. Figure 4 shows the relationship 
between each LBC kernel and SE optimization weight in the proposed model. For the in-
put Xc, c is the number of input feature channels. First, channel expansion is performed 
through 1 × 1 convolution to obtain Xrc. Xi (i ∈ 0…rc) is the i-th feature map in Xrc and X’i 
is the output of the depthwise LBC layer. After the processing of the SE block, Wi (i ∈ 
0…rc) is obtained. 

 
Figure 4. Relationship between LBC kernel and SE weight; each weight corresponds to a 3 × 3 LBC 
kernel. 

For each sample, Wrc is the weight of this sample for each feature channel, and it is 
also the weight of the corresponding depthwise LBC kernel. By extracting the SE optimi-
zation weights of the overall sample of the database, we can count the mean and distribu-
tion of the SE optimization weights. Figure 5 shows the statistics of SE optimization 
weights of the training set on the CIFAR-10 database. Figure 5a shows our baseline model, 
using randomly initialized model parameters. Figure 5b shows a large model we built 
with more parameters by changing r. The parameters of (a) and (b) are initialized ran-
domly, and the ratio of the model parameters is roughly equal to the ratio of the expansion 
ratio r. Figure 5c shows the use of the model pruning method we proposed. After pruning 
some of the convolution channels of model (b), (a) and (c) have the same expansion ratio 
and parameter amount. The parameters of (c) are calculated from (b). 

In most of the blocks of (b), the number of SE optimization weights is large, the SE 
optimization with higher weights only accounts for a small part of the overall channel 
number, and many weights are close to 0. This also means that the LBC kernel correspond-
ing to the channels with lower weight cannot extract significant features well in the entire 
data set. By filtering the SE optimization weights, we can get better LBC kernel parame-
ters, each of which is a 3 × 3 sparse matrix. After model pruning, the SE weight distribution 
of the reconstructed model (c) is more concentrated than that of (a), and the LBC kernel 
has similar importance. 

Figure 4. Relationship between LBC kernel and SE weight; each weight corresponds to a 3 × 3
LBC kernel.

For each sample, Wrc is the weight of this sample for each feature channel, and it is also
the weight of the corresponding depthwise LBC kernel. By extracting the SE optimization
weights of the overall sample of the database, we can count the mean and distribution
of the SE optimization weights. Figure 5 shows the statistics of SE optimization weights
of the training set on the CIFAR-10 database. Figure 5a shows our baseline model, using
randomly initialized model parameters. Figure 5b shows a large model we built with more
parameters by changing r. The parameters of (a) and (b) are initialized randomly, and
the ratio of the model parameters is roughly equal to the ratio of the expansion ratio r.
Figure 5c shows the use of the model pruning method we proposed. After pruning some
of the convolution channels of model (b), (a) and (c) have the same expansion ratio and
parameter amount. The parameters of (c) are calculated from (b).

In most of the blocks of (b), the number of SE optimization weights is large, the SE
optimization with higher weights only accounts for a small part of the overall channel
number, and many weights are close to 0. This also means that the LBC kernel correspond-
ing to the channels with lower weight cannot extract significant features well in the entire
data set. By filtering the SE optimization weights, we can get better LBC kernel parameters,
each of which is a 3 × 3 sparse matrix. After model pruning, the SE weight distribution of
the reconstructed model (c) is more concentrated than that of (a), and the LBC kernel has
similar importance.



Electronics 2021, 10, 1329 8 of 14

Electronics 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 

between each LBC kernel and SE optimization weight in the proposed model. For the in-
put Xc, c is the number of input feature channels. First, channel expansion is performed 
through 1 × 1 convolution to obtain Xrc. Xi (i ∈ 0…rc) is the i-th feature map in Xrc and X’i 
X’i is the output of the depthwise LBC layer. After the processing of the SE block, Wi (i ∈ 
0…rc) is obtained. 

 
Figure 4. Relationship between LBC kernel and SE weight; each weight corresponds to a 3 × 3 LBC 
kernel. 

 

Figure 5. The statistics of SE optimization weights of the training set on the CIFAR-10 database. (a) 
The model with the expansion ratio r = 6, random initialization; (b) the model with r = 80, random 

Figure 5. The statistics of SE optimization weights of the training set on the CIFAR-10 database. (a) The model with the
expansion ratio r = 6, random initialization; (b) the model with r = 80, random initialization; (c) the model with r = 6,
pruning and retraining from the model r = 80. Each subfigure represents the three blocks in stack 1 of each model.

4. Experiment
4.1. Experiment Settings

For our proposed method, we use the CIFAR-10 database for image classification
experiments. CIFAR-10 [45] is an image classification dataset containing a training set of
50K and a testing set of 10K 32 × 32 color images across the following 10 classes: airplanes,
automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks. Basically, all image
classification models will be verified in the CIFAR-10 database.

In our test models, the model depth is fixed. In addition to the stem part, there are
4 MB blocks with LBC. Except for block 0, each block is repeated six times, and the scale of
the feature map is halved in the initial layer of each block. Out of the SE blocks, each model
has 59 convolutional layers, and there are 18 sets of SE optimization weights involving
LBC in the last three blocks to participate in model pruning. Specific parameters are shown
in Table 1. Besides, we also set the number of repetitions of each block to 3 and established
a model of 32 convolutional layers.



Electronics 2021, 10, 1329 9 of 14

Table 1. Proposed baseline LB-MBNet-59 model structure and input resolution and output channel number of each stack.
The repeat numbers in symbols are the parameters of the LB-MBNet-32 model.

Stack Operator Resolution Channel Repeat Num Expansion Ratio

Stem Conv3 × 3 32×32 32 1 -
0 LB-MBConv, k3 × 3 32×32 16 1 1
1 LB-MBConv, k3 × 3 32×32 64 6 (3) 6
2 LB-MBConv, k3 × 3 16×16 128 6 (3) 6
3 LB-MBConv, k3 × 3 8×8 256 6 (3) 6

Top Conv1 × 1 and
Pooling and FC 4×4 512 1 -

For the input data, we use data augmentation to expand the training data. The
operations include width shift, height shift, and horizontal flip; the shift range is 4 pixels.
All models are compiled using the stochastic gradient descent (SGD) method; the initial
learning rate is set to 0.1, and decays by 0.1 at 80, 140, and 180 epochs. Each model is first
trained for 200 epochs and then pruned, and then trained again for 200 epochs using the
same hyperparameters. We use a graphics card “NVIDIA TITAN X Pascal” as the hardware
for our experiments. The GPU operates at a frequency of 1417 MHz.

4.2. Experimental Result

In this chapter, we will evaluate the effect of the LBC layer in the proposed baseline
model and compare its performance to that of the standard convolutional layer. At the same
time, by changing the value of the expansion ratio r, the impact of different model scales on
the recognition results is evaluated. Table 2 shows the model recognition result obtained
while adjusting the expansion ratio r. We calculated the parameters and floating-point
operations per second (FLOPS) of the model.

Table 2. Model recognition result with different expansion ratio r.

Model Name Accuracy Rate (%) Trainable Params FLOPs (108) Ratio to r6 Model

LB-MBNet-59-r6 92.47 7.11 M 4.57 1×
LB-MBNet-59-r10 93.65 11.75 M 7.57 1.7×
LB-MBNet-59-r18 93.81 21.03 M 13.6 3.0×
LB-MBNet-59-r30 94.40 34.96 M 22.5 4.9×
LB-MBNet-59-r60 95.05 69.78 M 45.0 9.8×
LB-MBNet-59-r80 96.06 92.99 M 59.9 13.1×
LB-MBNet-32-r6 92.88 3.19 M 2.16 1×
LB-MBNet-32-r80 95.63 40.84 M 27.7 12.8×

From Table 2, we can conclude that, with the increase in r, the trainable parameter
amount and FLOPs of the model also increase almost linearly. The accuracy of the model
has also increased. When r = 6, the recognition accuracy of the LB-MBNet-59-r6 model
reached 92.47%, whereas that of the LB-MBNet-32-r6 model reached 92.88%. When r = 80,
the recognition accuracy of the LB-MBNet-59-r80 model reached 96.06%, whereas that of
the LB-MBNet-32-r80 model reached 95.63%, increasing by 3.59% and 2.75%, respectively.

For the experiment of model pruning, we use the model with the best results and
the maximum number of parameters as the basic model and obtain the mean value of
SE optimization weight through 50 K samples of the training data set. For different
optimization scales, we only keep the part with the larger SE optimization weight value
and pruning the corresponding layers in each block of the model. In our experiment, we
separately prune the model in segmented and one-shot ways. In the segmented experiment,
the r-value will gradually drop to the optimal scale we expect. In the one-shot experiment,
we use the basic model to directly modify the r-value to the optimal scale we expect. Table
3 showing the result of model pruning. We use the r80 model as the basic model for



Electronics 2021, 10, 1329 10 of 14

one-shot pruning. Here, we transfer the weight of the corresponding part to the rebuilt
model according to the fixed r.

Table 3. Model recognition result with rebuilt model from r80 model.

Model Name Accuracy Rate (%) Trainable Params FLOPs (108) Ratio to r6 Model

LB-MBNet-59-r80 96.06 92.99 M 59.9 13.1×
Re-LB-MBNet-59-r40 96.15 46.57 M 30.0 6.6×
Re-LB-MBNet-59-r20 95.76 23.36 M 15.0 3.3×
Re-LB-MBNet-59-r18 95.58 21.03 M 13.6 3.0×
Re-LB-MBNet-59-r10 95.65 11.75 M 7.57 1.7×
Re-LB-MBNet-59-r6 95.24 7.11 M 4.57 1×
Re-LB-MBNet-59-r3 93.97 3.63 M 2.33 0.5×
LB-MBNet-32-r80 95.63 40.84 M 27.7 12.8×

Re-LB-MBNet-32-r6 94.90 3.19 M 2.16 1×

From Table 3, we can conclude that, after the model is pruned, the accuracy rate
remains at a relatively high level.

In the LB-MBNet-59 model, compared with the basic r80 model, the accuracy of the
r40 model reaches 96.15%, which is an improvement of 0.09% on the basic model. We
believe this is because the parameters of the r80 model are relatively high, and the model
has over-fitting. In the case of reducing half of parameters while maintaining a more
effective LBC kernel, the results of the r40 model have risen slightly. As we continue
to reduce the expansion ratio, although the accuracy of the model has dropped slightly,
compared with the randomly initialized model, the results of the pruning-rebuild model
are significantly better. When the expansion ratio r is reduced to 6, the model parameters
and FLOPs return to the level of the basic r6 model we proposed, but the rebuilt model
result has been improved by 2.77% to 95.24%. At the same time, compared with the r80
model at the beginning of pruning, the accuracy rate is only reduced by 0.82%, and the
parameter amount and FLOPs are reduced by 92% of the r80 model. This result proves that
our proposed method is effective.

We further reduced the expansion ratio to r3. At this time, the Re-LB-MBNet-59-
r3 model accuracy rate dropped significantly, reaching 93.97%, which is a 1.27% drop
compared with the r6 model. However, compared with the randomly initialized r6 model,
the parameters and FLOPs of this result decreased by 50%, but the result increased by
1.50%. We think that, because the expansion ratio is too small, the generalization ability of
the model is not enough, which leads to overfitting at 93.97%. However, because the LBC
kernel is not trainable, and after selection through model pruning, the result is better than
random initialization.

In the LB-MBNet-32 model, the accuracy of the rebuilt Re-LB-MBNet-32-r6 model
reaches 94.90%. Compared with the LB-MBNet-32-r80 model, it has only decreased by
0.73%. However, compared with the basic LB-MBNet-32-r6 model, it has increased by
2.02%. The resulting level of LB-MBNet-59-r3 and LB-MBNet-32-r6 is similar, but the latter
has fewer parameters and FLOPs.

4.3. Comparison with State-of-the-Art

We also compared the results of our proposed method with the state-of-the-art meth-
ods. At the same time, because many model pruning methods use ResNetV2-56 [63] as
the basic model on the CIFAR-10 database, the baseline model we proposed has a similar
number of convolutional layers (59 layers). We also compared the model pruning method
based on ResNetV2-56. However, it should be noted that, because we have applied the
SE optimization part in the proposed model, the amount of model parameters has also
increased.

Table 4 shows the comparison results between our proposed method and the state-of-
the-art methods.



Electronics 2021, 10, 1329 11 of 14

Table 4. Comparison results with the state-of-the-art methods on the CIFAR-10 database. FLOPS, floating-point operations
per second.

Methods Accuracy Rate (%) Params (M) Params Pruned (%) FLOPs (108) FLOPs Pruned (%)

ResNetV2-56 1 [63] 93.01 0.597 - 1.71 -
Li et al. [20] 93.03 0.516 13.7 1.24 27.6

NISP [64] 92.98 0.343 42.6 0.96 43.6
DCP-A [64] 93.02 0.177 70.3 0.90 47.1

CP [51] 92.01 0.597 0 0.86 50.0
AMC [65] 92.11 0.597 0 0.86 50.0

C-SGD [31] 93.24 0.597 0 0.67 60.8
GBN-40 [66] 93.34 0.278 53.5 0.68 60.1

ResNetV2-164 1 [63] 94.58 1.73 - 4.97 -
L1-Sparse [52] 94.92 1.44 16.8 3.81 23.3

ResNetV2-1001 [63] 95.08 10.48 - 30.3 -

MobileNetV2 1 [43] 91.93 2.2 - 0.88 -
AutoSlim [67] 93.20 1.5 31.8 0.88 0

MobileNetV3 [50] 92.97 1.52 - 0.35 -

LB-MBNet-59-r6 1 92.35 7.11 - 4.57 -
Re-LB-MBNet-59-r6 95.24 7.11 0 4.57 0
Re-LB-MBNet-59-r3 93.97 3.63 48.9 2.33 49

LB-MBNet-32-r6 1 92.88 3.19 - 2.16 -
Re-LB-MBNet-32-r6 94.90 3.19 0 2.16 0

1 Baseline model of model pruning.

Table 4 shows that the results of our method obtained relatively better accuracy com-
pared with the state-of-the-art methods. Because our model uses the SE optimization
module, our model has a relatively large number of parameters. However, because the con-
volution kernel with a size of 1 × 1 is also used in the SE optimization module, the increase
in the number of parameters has little effect on the amount of calculation. Through the
results of the two baseline models of LB-MBNet-59-r6 and LB-MBNet-32-r6, the recognition
accuracy is not good. However, after the expansion and pruning operation, the recognition
accuracy of Re-LB-MBNet-59-r6 has reached the state-of-the-art level while keeping the
number of model parameters and calculations unchanged. Among the Re-LB-MBNet-59-r6
models, the most similar result is the ResNetV2-1001 [63] model, but our mode has much
fewer parameters, and the FLOPs are only about 15%. Besides, in the Re-LB-MBNet-32-r6
model, the ResNetV2-164 [63] and L1-Sparse [52] models are the closest results. Although
our models have more model parameters, but fewer FLOPs.

In our proposed method, precisely through SE optimization weights to score and
prune the LBC kernel, we can make full use of the advantages of the untrainable kernel
to obtain a model with less computation and high accuracy. Based on [29], the weight of
the network after pruning by other methods is not very important, and our method truly
retained only better model parameters.

4.4. Discussion

As we envisioned, the method of superimposing the non-trainable layer and the
trainable layer can reduce the training parameters while allowing the model to be normally
constructed into an end-to-end structure. However, the initialization of the non-trainable
layer is very important. All parameters in the standard convolutional network can be
trained, and reasonable parameters can be found through the optimization method of the
model. However, in a convolution model with non-trainable parameters, it is necessary to
filter out reasonable parameters through the methods like model pruning. In our proposed
method, not only the advantages of LBC are maintained, which has a sparse and non-
trainable binary convolution kernel, and at the same time, more reasonable LBC parameters
are found through the method of model pruning, and the model with high recognition
accuracy and fewer model parameters is obtained.



Electronics 2021, 10, 1329 12 of 14

Besides, the proposed method uses data-driven SE optimization weights as the eval-
uation of pruning, and the results are obtained based on the results of model training,
which are more accurate than some manually designed evaluation indicators. The basic
model we proposed can evolve towards faster and more miniaturization. It is necessary to
further optimize the depth and width of the model. However, this has already involved the
research field of NAS and has not been carried out in this paper. The experimental results
have been able to prove the effectiveness of our current proposed method.

5. Conclusions

Inspired by LBC and SE optimization, we propose a depthwise LBC and SE opti-
mization model structure in this paper. By increasing the expansion ratio of the inverse
bottleneck structure in the model, a large model with higher accuracy, but a huge number
of parameters can be obtained through training. AccordFing to the SE optimization weight,
we perform channel-based model pruning of the basic model and only retain the depthwise
LBC convolution channel that contributes more to the result. Our experimental results
of image classification on the CIFAR-10 database prove the effectiveness of our proposed
method. Our proposed method shows that the untrainable convolution kernel has the
same feature expression capabilities as standard CNNs, and through pruning based on SE
weights, it can indeed retain the more powerful untrainable convolution kernels from the
large model.

Author Contributions: Conceptualization, all authors; methodology, all authors; software, D.F.; data
preprocessing, D.F.; data analysis, all authors; supervision, F.R.; writing—original draft preparation,
D.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Research Clusters program of Tokushima
University (No. 2003002).

Data Availability Statement: Data Availability Statement: Data available in a publicly accessible
repository. Publicly available datasets were analyzed in this study. These data can be found here [33].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.; Huang, J.; Zhu, J. Discrimination-aware channel pruning for deep neural

networks. arXiv 2018, arXiv:1810.11809.
2. Ding, X.; Ding, G.; Guo, Y.; Han, J. Centripetal sgd for pruning very deep convolutional networks with complicated structure. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 4943–4953.

3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
4. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient

evaluation. arXiv 2014, arXiv:1404.0736.
5. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826.
6. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
7. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
8. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
9. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4820–4828.
10. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In European

Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.
12. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning. ICML, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.



Electronics 2021, 10, 1329 13 of 14

13. Cao, X.; Li, T.; Li, H.; Xia, S.; Ren, F.; Sun, Y.; Xu, X. A robust parameter-free thresholding method for image segmentation. IEEE
Access 2018, 7, 3448–3458. [CrossRef]

14. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. arXiv 2014,
arXiv:1405.3866.

15. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
16. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2704–2713.

17. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
18. LeCun, Y.; Denker, J.S.; Solla, S.A.; Howard, R.E.; Jackel, L.D. Optimal brain damage. In Proceedings of the Advances in Neural

Information Processing Systems, Denver, CO, USA, 27–30 November 1989; Volume 2, pp. 598–605.
19. Hassibi, B.; Stork, D.G. Second Order Derivatives for Network Pruning: Optimal Brain Surgeon; Morgan Kaufmann: Denver, CO, USA,

1993; pp. 164–171.
20. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
21. Zhu, M.; Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv 2017,

arXiv:1710.01878.
22. Luo, J.H.; Wu, J.; Lin, W. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of the IEEE

International Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 5058–5066.
23. Carreira-Perpinán, M.A.; Idelbayev, Y. “learning-compression” algorithms for neural net pruning. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8532–8541.
24. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015,

arXiv:1506.02626.
25. Louizos, C.; Welling, M.; Kingma, D.P. Learning Sparse Neural Networks through L0 Regularization. arXiv 2017, arXiv:1712.01312.
26. Huang, Z.; Wang, N. Data-driven sparse structure selection for deep neural networks. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 304–320.
27. Chin, T.W.; Zhang, C.; Marculescu, D. Layer-compensated pruning for resource-constrained convolutional neural networks. arXiv

2018, arXiv:1810.00518.
28. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep

neural network. ACM Sigarch Comput. Archit. News 2016, 44, 243–254. [CrossRef]
29. Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; Darrell, T. Rethinking the value of network pruning. arXiv 2018, arXiv:1810.05270.
30. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1–21.
31. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.

Intell. 1998, 20, 1254–1259. [CrossRef]
32. Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3,

201–215. [CrossRef] [PubMed]
33. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial transformer networks. arXiv 2015, arXiv:1506.02025.
34. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. HARP: Hierarchical Attention Oriented Region-Based Processing for High-Performance

Computation in Vision Sensor. Sensors 2021, 21, 1757. [CrossRef] [PubMed]
35. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Bio-inspired smart vision sensor: Toward a reconfigurable hardware modeling of the

hierarchical processing in the brain. J. Real-Time Image Process. 2020, 18, 157–174. [CrossRef]
36. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.
37. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.
38. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
39. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings

of the IEEE/CVF International Conference on Computer Vision Workshops, Long Beach, CA, USA, 16–20 June 2019.
40. Liu, W.; Wu, G.; Ren, F.; Kang, X. DFF-ResNet: An insect pest recognition model based on residual networks. Big Data Min. Anal.

2020, 3, 300–310. [CrossRef]
41. Juefei-Xu, F.; Naresh Boddeti, V.; Savvides, M. Local binary convolutional neural networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 19–28.
42. Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback

discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel,
9–13 October 1994; Volume 1, pp. 582–585.

43. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

http://doi.org/10.1109/ACCESS.2018.2889013
http://doi.org/10.1145/3007787.3001163
http://doi.org/10.1109/34.730558
http://doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://doi.org/10.3390/s21051757
http://www.ncbi.nlm.nih.gov/pubmed/33806329
http://doi.org/10.1007/s11554-020-00960-5
http://doi.org/10.26599/BDMA.2020.9020021


Electronics 2021, 10, 1329 14 of 14

44. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 1314–1324.

45. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Citeseer: University Park, PA, USA, 2009.
46. Rakhuba, M.; Oseledets, I.; Lempitsky, V.; Lebedev, V.; Ganin, Y. Speeding-up convolutional neural networks using fine-tuned

cp-decomposition. arXiv 2018, arXiv:1412.6553.
47. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with

weights and activations constrained to+ 1 or-1. arXiv 2016, arXiv:1602.02830.
48. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks.

In European Conference on Computer Vision; Springer: Cham, Switzerland, October 2016; pp. 525–542.
49. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. arXiv 2014,

arXiv:1412.6550.
50. Molchanov, D.; Ashukha, A.; Vetrov, D. Variational dropout sparsifies deep neural networks. In Proceedings of the International

Conference on Machine Learning, ICML, Sydney, Australia, 6–11 August 2017; pp. 2498–2507.
51. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 1389–1397.
52. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In

Proceedings of the IEEE International Conference on Computer Vision, Honolulu, Hawaii, USA, 21–26 July 2017; pp. 2736–2744.
53. Hu, M.; Qian, F.; Guo, D.; Wang, X.; He, L.; Ren, F. ETA-rPPGNet: Effective Time-Domain Attention Network for Remote Heart

Rate Measurement. IEEE Trans. Instrum. Meas. 2021, 70, 1–12.
54. Zhang, G.; Huang, X.; Li, S.Z.; Wang, Y.; Wu, X. Boosting local binary pattern (LBP)-based face recognition. In Chinese Conference

on Biometric Recognition; Springer: Berlin/Heidelberg, Germany, December 2004; pp. 179–186.
55. Hu, M.; Yang, C.; Zheng, Y.; Wang, X.; He, L.; Ren, F. Facial Expression Recognition Based on Fusion Features of Center-Symmetric

Local Signal Magnitude Pattern. IEEE Access 2019, 7, 118435–118445. [CrossRef]
56. Nanni, L.; Lumini, A.; Brahnam, S. Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 2012, 39,

3634–3641. [CrossRef]
57. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.

arXiv 2015, arXiv:1511.00363.
58. Sifre, L.; Mallat, S. Rigid-motion scattering for texture classification. arXiv 2014, arXiv:1403.1687.
59. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
60. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
61. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
62. Kumawat, S.; Verma, M.; Raman, S. LBVCNN: Local binary volume convolutional neural network for facial expression recognition

from image sequences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
Long Beach, CA, USA, 16–20 June 2019.

63. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In European Conference on Computer Vision;
Springer: Cham, Switzerland, October 2016; pp. 630–645.

64. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. Nisp: Pruning networks using neuron
importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 9194–9203.

65. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.J.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–800.

66. You, Z.; Yan, K.; Ye, J.; Ma, M.; Wang, P. Gate decorator: Global filter pruning method for accelerating deep convolutional neural
networks. arXiv 2019, arXiv:1909.08174.

67. Yu, J.; Huang, T. Autoslim: Towards one-shot architecture search for channel numbers. arXiv 2019, arXiv:1903.11728.

http://doi.org/10.1109/ACCESS.2019.2936976
http://doi.org/10.1016/j.eswa.2011.09.054
http://doi.org/10.1145/3065386

	Introduction 
	Related Work 
	Model Pruning Based on SE Optimization Weight 
	Depthwise LBC Layer and LB Mobile Inverted Bottleneck Block 
	Baseline LB-MBNet Model 
	Model Pruning Based on SE Optimization Weight 

	Experiment 
	Experiment Settings 
	Experimental Result 
	Comparison with State-of-the-Art 
	Discussion 

	Conclusions 
	References

