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Abstract: Dielectric electroactive polymer actuators are new important transducers in control system
applications. The design of a high performance controller is a challenging task for these devices.
In this work, a PI controller was studied for a dielectric electroactive polymer actuator. The pole
placement problem for a closed-loop system with the PI controller was analyzed. The limitations of a
PI controller in the pole placement problem are discussed. In this work, the analytic PI controller
gain rules were obtained, and therefore extension to adaptive control is possible. To minimize the
influence of unmodeled dynamics, the robust adaptive control law is applied. Furthermore, analysis
of robust adaptive control was performed in a number of simulations and experiments.

Keywords: robust adaptive control; PID controller; dielectric electroactive polymer actuator

1. Introduction

The dielectric electroactive polymer (DEAP) actuators are being intensively developed
as a new generation of transducers [1–3]. The properties of the DEAP actuator enable a
wide range of practical applications. For instance, recently DEAP actuators were applied in
the construction of speakers [4] and pumps [5,6], and in robotics applications [7,8]. DEAP
actuators are constructed from an elastic membrane and covered with two electrodes [9,10].
In the literature, the models of DEAP actuator have been deeply studied [2,11–13] to design
actuator geometry or to design the control systems.

The controller’s design is the crucial aspect of the control system’s performance.
The most popular design technique for DEAP actuators is using a PID controller. The model-
based control design methods are presented in [12,14,15]. In the works [12,15], a model of
a DEAP actuator was used to design a robust controller. Furthermore, various structures
of PID controller were also analyzed. A PID controller was also successfully applied in
works [16,17]. In the discussed works, the PID controller was tuned offline. Additionally,
the presented approach cannot be directly incorporated into online tuning. In the work [18],
the self tuning method was applied to tune the PID gains using the methodology of [19],
where gains are tuned with the gradient descent method.

In this work, a PI controller was studied on the basis of a second-order model. The ad-
vantage of presented design is using only the proportional and integral parts of the PID
controller. Therefore, the derivative of control error is not required. From the general prop-
erties of a PID controller [20], it is known that the pole placement problem for a PI controller
cannot be solved for higher-order plants. As long as the DEAP actuator is modeled by an at
least second-order system, this limitation also exists for the DEAP actuator. The properties
of the self tuning methods for PID controllers have been studied in many works [20,21].
In this study, the certainty equivalence method was applied. Firstly the design rules were
obtained for known parameters. Then, the design of an adaptive controller was based on
robust adaptive control, which has been widely discussed [22–25].

At the beginning of this paper, the model of DEAP actuator is described. Then,
the design of PI controller is analyzed for the second-order model. The design limitations
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of a PI controller are shown for the DEAP actuator. The main advantages of the presented
approach are the analytic rules for PI controller gains. This enables one to calculate the
gains online, and therefore, the adaptive control can be applied by using identification
of parameters. The obtained PI controller is used with online parameter identification
by applying the certainty equivalence method. We improved the robustness of the PI
controller by extending it with an adaptive algorithm. Further, to assure robustness of
identifier to unmodeled dynamics, we have applied the robust adaptive laws (as described
for instance in [22]). The results of the work were verified in the extensive simulations
and experiments.

The paper is organized as follows. Descriptions of the DEAP actuator model and its
linearized form are given in Section 2. The PI controller, its key elements, tuning guidelines
and its properties are presented in Section 3. Section 4 describes robust adaptation processes
and the extension of a PI controller to an adaptive version. Simulations and experiments
are presented in Sections 5 and 6. There we include the simulations’ and experiments’ goals,
assumptions, and results. The paper ends with a few concluding remarks in Section 7.

2. DEAP Actuator Model

The DEAP actuator is described by a nonlinear model [11,12,26] which can be written
in the state space form as:

ẋ = f (x) + g(x)u2

y = h(x)
(1)

where f (x), g(x), and h(x) are the state space representation functions; x is the state; and
u is the input voltage. The output is the distance y. The definition of the model can be
found in [26]. Furthermore, different working configurations of the DEAP actuator were
also studied in [1,2,11,12,15]. The static input linearization v = u2 is applied to cancel the
input nonlinearity. The considered linearization was successfully applied in works [12,27].
In this work, the DEAP actuator was modeled by a linear model [27] for some working
point yn = h(xn), vn = u2

n where f (xn) + g(xn)u2
n = 0. The transfer function can be

represented as:

GDEAP(s) = ka
s + z0

(s + s0)(s2 + 2αas + ω2
a + α2

a)
(2)

where ka, z0, s0, αa, and ωa define the transfer function. The input and the output of
transfer function are given by y∆ = y− yn and v∆ = v− vn. Generally, the dynamics of
DEAP actuator can be split into two parts. A short-term oscillation is described by the
part G f ast(s) = ka

s2+2αas+ω2
a+α2

a
and a long time relaxation process is defined by the part

Gslow(s) =
s+z0
s+s0

. The steady state gain is given by ks =
kaz0

s0(ω2
a+α2

a)
. The parameters of the

transfer function depend on the actuator material, geometry, and working point.

3. PI Controller

The PI controller is applied to drive the DEAP actuator. The target of the control
system is to follow the reference r. The control error is defined as ec = r− y∆ where y∆
is the output in the working point coordinates. It is assumed that the state of actuator
is unavailable, so only the output feedback is possible. The structure of PI controller is
as follows:

GPI(s) = kp +
ki
s

(3)

In this design, the controller is constructed based only on the short-time part. The re-
duction is possible as long as the pole/zero represents slow dynamics. The plant is
represented by:

G f ast(s) =
b0

s2 + a1s + a0
(4)
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where b0 = ka, a1 = 2αa, and a0 = α2
a + ω2

a . The closed-loop system is given by:

Gclosed(s) =
b0kps + b0ki

s3 + a1s2 +
(
b0kp + a0

)
s + b0ki

(5)

Let us denote the closed loop poles as −p0, −α + jω and −α− jω. Then the denomi-
nator of the closed-loop system is given by (s + p0)

(
s2 + 2αs + α2 + ω2). The comparison

of two forms of denominator gives us:

a1 = 2α + p0

a0 + b0kp = α2 + ω2 + 2αp0

b0ki = p0

(
α2 + ω2

) (6)

The poles of s2 + 2αs + α2 + ω2 influence the behavior of the closed-loop system. If ω
is a real nonzero number, then the system is underdamped (∆ < 0); if ω = 0, then the
system is critically damped (∆ = 0); and if ω is an imaginary nonzero number, then the
system is overdamped (∆ > 0).

The following property describes the limitation of a PI controller for a DEAP actuator.
From (6) the equation with kp and ω is rewritten into:

ω =
√

a0 − 2αp0 − α2 + b0kp (7)

It is easy to see that kp can be chosen to be large enough to make ω real. However,
to obtain imaginary ω we must have:

a0 − 2αp0 − α2 < 0 (8)

or negative kp. The negative kp causes positive feedback, which is very rarely used in control
systems. Hence, only the positive values of kp are taken into account. Using (6), (8) is
written into:

a0 + 3α2 − 2αa1 < 0 (9)

The minimum of the left side of the above equation is for α = a1
3 . This means that if

a0 − a2
1

3 is negative, then the PI controller has the possibility of dampening oscillations in

the control system. However, if a0 − a2
1

3 is positive, then the PI controller cannot dampen
the oscillations. In general it means that it is not always possible to dampen the oscillations
with the PI controller. In the case of the DEAP actuator described in [26], the parameters
satisfy: a0 � a1. This means also that a DEAP actuator with a PI controller has the
oscillations in the closed-loop system and ω has
real values.

In general, the PI controller coefficients can be expressed as:

kp =
α2 + ω2 + 2αp0 − a0

b0

ki =
p0

b0

(
α2 + ω2

) (10)

considering the constrain a1 = 2α + p0. Therefore, the goal is to specify the α, ω and p0
which give the desired performance of the closed-loop system. Further, the PI controller does
not allow one to freely choose all of the poles of the closed-loop system. This is visible in (6)
which has three equations and two variables (kp and ki). For this reason the problem of
pole placement is redefined as an optimization problem. The goal is to maximally dampen
the oscillations. Therefore, the target is to choose p0 α such that:

max min(p0, α) (11)



Electronics 2021, 10, 1326 4 of 16

taking into account the constraint p0 = −2α + a1 from (6) and α, p0 > 0 to assure stability.
The solution of above problem is α = p0. Thus, from (6) the coefficients are given by
α = p0 = a1

3 . Next, let us define the imaginary part of pole (7) as:

ω =

√
a0 −

1
3

a2
1 + b0kp,min + r (12)

where the proportional gain kp,min ≥ 0 is some minimal value of kp and r ≥ 0 is the
auxiliary variable. As it was discussed earlier, the expression a0 − 1

3 a2
1 is assumed to be

positive (because of a0 � a1 for the considered DEAP actuator). Let us consider that the
goal is to choose minimal ω. As long as ω(r) is increasing function of r, the minimum is
for r = 0.

The final value of control gains are equal to:

kp = kp,min

ki =
a1

3b0

(
a0 −

2a2
1

9
+ b0kp,min

)
(13)

The stability of the closed-loop system is assured because the values α and p0 are
positive, and hence poles have negative real parts. Further, in the simulation part it will be
shown that the gains calculated by (13) leads to large stability margins. It is worth pointing
out that the controller coefficients are simply calculated from the parameters of the DEAP
actuator model, which is an important advantage in adaptive control.

The linear PI controller can be designed to control the nonlinear system around a
working point using the linearized model [20,28]. In our work the linear model in a
working point is defined by the transfer function GDEAP(s). The model GDEAP(s) presents
a linearized form of the nonlinear model using the transfer function presented in (2) in
which two components can be distinguished (short term oscillation part and a long time
relaxation process). It is also worth pointing out that our work uses the static input
linearization v = u2 to cancel out the input nonlinearity. Such an approach for a DEAP
actuator is well known of in the literature [12,27] and gives the possibility to control
the DEAP actuator by linear controllers such as PIDs and model reference controllers.
Additionally, the extension of control schema with the adaptation presented in the next
section allows for the correction of parameter values which my vary due to changes of
external conditions or going further from the working point.

4. Robust Adaptation

In this section, the extension of PI controller to an adaptive version is shown. Further,
we would like to show different modifications of the adaptive control law which assure
robustness. By means of robustness, we mean the ability to assure the stability of an
adaptive system in the presence of uncertainties, unmodeled dynamics, or disturbances.
If one of those phenomena exists in an adaptive system, instability of the control system
or parameter unboundedness can occur [22,25]. A summary of robust adaptive laws is
well described, for instance, in work [22]. In our work, in the simulations the unmodeled
dynamics were the difference between the linear and nonlinear models (the models did
not perfectly match). Additionally, in the experiments all uncertainties related to physical
implementation (like measurement noise, model to physical device imperfections) had
influences on the adaptive system.

The results of simulations show that a second-order identifier is too simple to perform
identification with. Therefore, the identifier was built based on the model:

GDEAP(s) =
b1s + b0

s3 + a2s2 + a1s + a0
(14)
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which was obtained from (2). The parameters of model G f ast(s) defined in (4) can be
obtained based on calculations:

b0 = b1

a0 =
a0

s0

a1 =
a1 − a0

s0

(15)

where −s0 is a pole of (14), as presented in (2).
In the DEAP actuator the state is not available. Therefore, a nonminimal state repre-

sentation is applied with filter Λ(s) [22,23]. The DEAP actuator is third-order; hence, the
filter is defined as: Λ(s) = s3 + λ2s2 + λ1s + λ0. The state space representation is given by:

Φ̇v = FΦv + Gv∆

Φ̇y = FΦy + Gy∆

z∆ = y∆ + λTΦy = θTΦ

(16)

where the vectors are defined as:

θ =
[

b1 b0 −a2 −a1 −a0
]T

Φ =
[

Φv1 Φv0 Φy2 Φy1 Φy0
]T

Φv =
[

Φv2 Φv1 Φv0
]T

Φy =
[

Φy2 Φy1 Φy0
]T

λ =
[

λ2 λ1 λ0
]T

F =

 0 1 0
0 0 1
−λ2 −λ1 −λ0


G =

[
0 0 1

]T

(17)

The signals v∆ and y∆ are directly measured from the input and output of the actuator
and the signal z∆ is available even for unknown parameters.

The values of θ are assumed to be unknown. For this reason the estimate of a param-
eters is defined as θ̂. The normalized adaptive law (see [22]) is designed to estimate the
parameter values. The adaptation error is given by:

εa =
z∆ − ẑ∆

m2 (18)

where m2 = 1 + ΦT
v Φv + ΦT

y Φy and ẑ∆ = θ̂TΦ.
In this work, the least-square adaptive law with a forgetting factor is considered.

The adaptive law was modified to obtain robustness. To assure the robustness of an
adaptive control law, the parameters θ̂ are constrained, the adaptive law has a dead
zone, and the norm of covariance matrix P is limited. The idea of these extensions is
widely discussed in the literature [22]. The reason for the robust extension is to reduce
the influence of the DEAP actuator’s nonlinearities, which exist in the control system as
unmodeled dynamics.

The dead zone is applied to update parameters only if the adaptation error εa is large.
The adaptation law with the dead zone is as follows [22]:

˙̂θ = PΦ(εa + g)

g =


g0
m , if εam < −g0
− g0

m , if εam > −g0
−εa, if |εam| ≤ g0

(19)
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where g0 is the threshold of dead zone. The norm of covariance matrix P is constrained as
in the leakage algorithm:

Ṗ =

{
βP− P ΦΦT

m2 P, if ‖P(t)‖ ≤ R0‖P(0)‖
0, otherwise

(20)

where R0 > 1 defines the threshold on the matrix norm ‖P(t)‖.
The parameters θ define the transfer function properties such as gain, poles, and zeros.

Let us consider that vector p consists of [ks, s0, αa, ωa, z0], which describes the transfer
function of a DEAP actuator. Then, based on the parameters θ it is possible to find the value
of p = f (θ). In this work, the constraints on parameters are defined for the parameters p
rather than θ. Hence, it is assumed that:

Sin(p) =
(

ks − ksn

∆ks

)2
+

(
s0 − s0n

∆s0

)2
+

(
z0 − z0n

∆z0

)2
+

(
αa − αan

∆αa

)2
+

(
ωa −ωan

∆ωa

)2
(21)

The goal of adaptive law is to keep the function Sin below 1 to assure that values of p
are in some range of nominal values. Hence, the parameter update law is given by:

˙̂θ =

{
PΦ(εa + g), if Sin( f (θ̂)) ≤ 1.0

0, otherwise
(22)

The discontinuous equations such as (20) and (22) cannot assure that the constraints
are maintained after the discretization [22]. If the Euler forward simulation method is
assumed, the conditions can be written as:

P(t + Tp) =

{
P(t) + TpdP(t), if

∥∥P(t) + TpdP(t)
∥∥ ≤ R0‖P(0)‖

P(t), otherwise

dP(t) = βP(t)− P(t)
ΦΦT

m2 P(t)

(23)

θ̂(t + Tp) =

{
θ̂(t) + Tpdθ(t), if g( f (θ̂(t) + Tpdθ(t))) < 1.0

θ̂(t), otherwise

dθ(t) = P(t)Φ(t)(εa(t) + g(t))
(24)

to assure that constraints are maintained.
The schema of the presented adaptive controller is presented in Figure 1. The parame-

ters of transfer GDEAP(s) described in (14) are estimated by an identifier. The parameter
vector is given by θ and it is defined in (17) (the estimated parameters are denoted by θ̂).
The vector θ contains all parameters of transfer function GDEAP(s). From the parameter
vector θ, the parameters of G f ast(s) are obtained by the transformation defined in (15).
Relying on the estimated parameters of G f ast(s), the gains of the PI controller are found
using (13).

DEAP actuatork̂p + k̂i

s
+

√
v ++

−yn+vn

r ec ∆v v u2 y ∆y

−∆y

IdentifierModel conversionController tuning

∆y∆v

θ̂b̂0, â0, â1

k̂p, k̂i

Figure 1. The schema of the PI controller with an online parameter identifier.

In the presented adaptive PI controller, the estimated parameters are applied to
calculate the PI controller gains. Relying on the certainty equivalence principle [29], it is
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assumed that the parameters estimated by the adaptive laws recover the performance of
the system. The presented adaptive laws are called normalized due to the term m2 applied
in (18). This term ensures that even if the signals y and u are ill posed, the normalized
signal εa will be applicable in the adaptive laws (exactly will be in class L∞) [22]. Further,
the extension of adaptive law with the leakage and dead zone gives that the estimated
parameters are bounded even under plant uncertainty and existence of disturbance. If the
system is persistently excited, then true estimates of parameters are possible to obtain with
bounded error.

5. Simulations

In this section the simulation results are presented to verify the proposed algorithm.
The calculations were done based on the nonlinear plant defined in work [26]. The nominal
voltage was set to un = 3.5 [kV]. The nominal parameters of DEAP model are given as
ks = 1.485, z0 = 0.17, s0 = 0.09, αa = 3.1, and ωa = 34. The high value of ωa in comparison
to αa meant that a0 � a1 was satisfied. The parameter range was defined as 0.3 of the
nominal value—that is,

∆ks = 0.3ks, ∆s0 = 0.3s0, ∆z0 = 0.3z0, ∆αa = 0.3αa, ∆ωa = 0.3ωa. (25)

The analysis is presented for two cases: underestimated α̂a(0) = 0.8αa with initial
parameters equal to ( k̂s(0) = 1.05ks, ŝ0(0) = 1.05s0, ẑ0(0) = 0.95z0, ω̂a(0) = 0.95ωa):

b̂0(0) = 1.40× 102, b̂1(0) = 8.66× 102,
â0(0) = 9.92× 101, â1(0) = 1.05× 103, â2(0) = 5.05

(26)

and overestimated α̂a(0) = 1.2αa with initial parameters equal to ( k̂s(0) = 1.05ks, ŝ0(0) = 1.05s0,
ẑ0(0) = 0.95z0, ω̂a(0) = 0.95ωa):

b̂0(0) = 1.41× 102, b̂1(0) = 8.72× 102,
â0(0) = 9.99× 101, â1(0) = 1.06× 103, â2(0) = 7.53.

(27)

For initial conditions, the PI controller gains were equal to kp = 0.014 and ki = 2.02
(underestimated), and kp = 0.014 and ki = 3 (overestimated). The minimal value of gain
kp,min was set to 0.014. The PI controller gains calculated by formula (13) lead to a stable
closed loop if the true parameters are known. This is visible in Figure 2 where in the
nominal case (meaning that PI controller gains are calculated for true plant parameters)
the Nyquist criterion is satisfied [30]. Further, it has large stability margins (around 9.8 dB
and 90◦ for gain and phase margin, respectively). Additionally, to present an example
of parameter sensitivity, the underestimated and overestimated PI controller gains were
applied to a nominal plant. It is visible that in both cases the characteristics of the system
varied, which shows the importance of having an adaptive controller to compensate.

The reference is a square wave signal with period T = 8 s and amplitude 0.1 mm. Other
parameters of adaptive controller were β = 0.05 and P(0) = 104 I5×5. The nonminimal
state representation filter (16) was defined by λ2 = 300 and λ1 = 30, λ0 = 1000 with pole
10. To make the simulation more realistic, the noise with amplitude 10−6 was added to the
DEAP actuator’s output.

To make the results more clear, the reference output yr was introduced as the response
of a nominal closed-loop system. The nominal closed-loop system was the DEAP actuator
linear model with nominal parameters and a PI controller with gains calculated based
on the plant model. The reference output describes the output of adaptive system when
all parameters converge to nominal values. The reference error er = y − yr shows the
difference between the current output of the actuator and the reference output.
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)

nominal
under-estimated
over-estimated

Figure 2. The Nyquist plots for various PI controller gains.

The first analysis is presented for cases with under/overestimated αa and adaptation
turned on/off. The aim of this analysis was to show the advantage of the adaptive
system. The parameters of the robust adaptive controller were set to R0 = 100 and
g0 = 1.0× 10−5. The simulation results are visible in Figure 3. At the beginning of the
adaptation process shown in Figure 3a,b, the reference error er is large for all cases. There is
also a difference visible between the under/overestimate αa. At the end of the adaptation
process shown in Figure 3c,d, the reference error is much lower than for the static PI
controller. The PI controller with adaptation has a reference error much lower than that of
the static alternative. The improvement of control system behavior is also visible in the
performance indexes which are given in Table 1. The performance improvement of the
adaptive PI controller was at least 40% compared to the static alternative.
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static adaptive

(a) begin of the adaptation, underestimated
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Figure 3. The transients of reference error for time intervals.
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Table 1. Performance indexes for different control methods (RA-PID is a PID controller with adapta-
tion turned on; PID is a PID controller without adaptation).

Performance Index

Case Jise Jiae Jitae

PID, underestimated 0.086 6.14 2457.57
RA-PID, underestimated 0.015 2.82 1030.91
PID, overestimated 0.028 4.22 1688.55
RA-PID, overestimated 0.012 2.72 1013.26

The robustness of an adaptive control system is visible after a long running time.
Therefore, the analysis was run for a long time: Tf = 800[s]. To simplify the visualization,
the following function for signal s(t) defined in t ∈ [0, Tf ] is introduced:

γ(s(t)) =


max0≤r<t+ T

2
|s(r)|, t < T

2

maxt− T
2≤r≤t+ T

2
|s(r)|, T

2 ≤ r ≤ Tf − T
2

maxt− T
2 <r≤Tf

|s(r)|, t < Tf − T
2

(28)

The goal of the function γ is to display the peak of absolute value of signal considering
a window T. This is useful in the analysis of reference error in long processes. The vi-
sualization of the reference error with the function γ is shown in Figure 4. It is worth
mentioning that the influences of robust adaptive laws are visible in the analysis of the
long process.
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(b) function γ for overestimated initial
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Figure 4. The transients of reference error analyzed with γ for a long period.
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The second analysis was performed for dead zone g0 (R0 was constant and equal 104,
which is large value). The results are visible in Figure 5 for the following values of g0: 0,
10−5, 10−4, 10−3, 0.5× 10−2, and 10−2. In the case of large values of g0, the function Sin
did not produce large values (near 1). However, the reference error also did not decrease.
Therefore, the influence of adaptation on the system was limited, and hence there was little
improvement in control error. The decrease of g0 caused the reference error to get close to
0; however, the parameters went further from the nominal values.
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Figure 5. The transients of the control process for various values of g0 (g0 equal to 0 with no
dead zone).

The third analysis was performed for the constraint on the norm of matrix P. The re-
sults for values of R0 102, 5× 102, 103, 5× 103, 7.5× 103, and 104 are shown in Figure 6. It is
visible that increasing R0 did not have a strong influence on the reference error. However,
it prevented a parameter increase in the adaptive control system. Hence, it improved the
robustness properties of the control system.

In the last part, a summary simulation of the proposed algorithms was presented on
Figure 7. The goal of the figure is to show the differences in parameter transients for various
adaptive laws. The values of parameters are represented by function Sin, which is close to 0 if
a given parameter is estimated near the nominal (true) value. If the projection is not applied,
its values can go without limit. It is visible in Figure 7 that an adaptive law without projection,
leakage, and a dead zone can cause unbounded parameters. Thanks to the application of
the projection, Sin was limited to below 1, as presented in Figure 7. The modifications of
adaptive laws described in Section 4 led to estimations close to nominal (true) values for the
parameters. From this point of view, the adaptive law is called a robust adaptive law.
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Figure 6. The transients of the control process for various values of R0 (a large R0 approximates an
unconstrained covariance matrix P).

0 200 400 600 800 1000 1200
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S i
n

adaptive law without projection
adaptive law with projection
robust adaptive law

(a) overestimated parameter α̂a

0 200 400 600 800 1000 1200
time [s]

0.0

0.5

1.0

1.5

2.0

2.5

S i
n

adaptive law without projection
adaptive law with projection
robust adaptive law

(b) underestimated parameter α̂a

Figure 7. The transients of function Sin for different adaptation algorithms.

6. Experiments

The experiments on a DEAP actuator were performed to verify the presented controller.
The construction of the DEAP actuator was based on mass bias. The laboratory setup is
presented in Figure 8. The distance was measured with a laser sensor, and voltage was
applied by a high-voltage amplifier. The signals were processed by a data acquisition card
connected to a computer. The construction of the actuator was the same as in work [26];
however, due to a new production sample, the identification of parameters was performed
once again.
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Figure 8. The laboratory kit with a DEAP actuator, a high-voltage amplifier, and a data acquisi-
tion card.

To get information about the behavior of the system, the series of step responses
was measured in different working conditions. Due to working in local coordinates
of transfer function GDEAP(s) (2), the control signal v∆ was the input and y∆ was the
output. The output was filtered by low pass Butterworth filter with cutt-off frequency
100 Hz. The results of step responses are shown in Figure 9. It is visible that the varying
nominal voltage un caused the damping of the response to vary. In the case of a varying
mass, the oscillation period is slightly different. This was one of the motivations for
building an adaptive controller that in varying working conditions causes different transfer
function parameters. Further, relying on the step responses, the identification of transfer
function coefficients was performed. The process was split into to steps. In the first one,
the parameters’ transfer functions (G f ast(s)), which are responsible for fast dynamics,
were identified. In the second one, the transfer function Gslow(s) was identified. In both
cases the parameters were found for single operation conditions—that is, a constant mass
and a nominal voltage. In the case of G f ast(s), the optimization problem was solved
for parameters

min
ka ,αa ,ωa

∑
vi

∆

∫ Tf ast

0

(
ym,vi

∆
(τ)− y f ast,vi

∆
(τ)
)

dτ (29)

where Tf ast is duration of a fast-step response (in our experiments it was 2.5 s), ym is the
measured response, and y f ast is the transfer function G f ast(s) of the response. The goal
function takes into account steps with different amplitudes vi

∆. In our experiment, eight
steps were performed (4 with positive amplitude and 4 with negative amplitude): the volt-
age u was set to u = un ± 0.25, u = un ± 0.5 kV, u = un ± 0.75 kV, or u = un ± 1 kV.
The optimization was performed by the Nelder–Mead algorithm. The identification of
slow dynamics was performed by solving the problem:

min
s0,z0

∑
vi

∆

∫ Tslow

0

(
ym,vi

∆
(τ)− yslow,vi

∆
(τ)
)

dτ (30)

where Tslow is the final time of a slow-step response (in our experiments it was 30 s), and
yslow is the transfer function GDEAP(s) response. The example comparison of the identified
model with measurement is presented in Figure 10. The parameters of transfer functions
for different conditions are presented in Table 2.
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Figure 9. The step responses for various nominal voltages and mass loads.

Table 2. The transfer function coefficients for various working conditions.

Transfer Function Coefficients

Working Condition ka αa ωa z0 s0

mass 47[g], un = 2[kV] 100.1 2.27 43.9 0.14 0.11
mass 59[g], un = 3.5[kV] 101.1 2.48 42.1 0.14 0.11
mass 71[g], un = 5[kV] 101.4 2.96 40.9 0.14 0.11
mass 59[g], un = 3.5[kV] 96.1 2.06 42.7 0.16 0.14
mass 59[g], un = 3.5[kV] 122.1 3.86 41.4 0.09 0.07
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Figure 10. A comparison of the identified model with measurements.
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To verify the properties of the adaptive control system, the experiments were per-
formed with the described PI controller. The experiment was performed for the working
point un = 3.5 kV and mass 59 g. The identified parameters were used to set the ranges of
control system parameters. Each parameter’s range was defined as 0.5 of the nominal value:

∆ks = 0.5ks, ∆s0 = 0.5s0, ∆z0 = 0.5z0, ∆αa = 0.5αa, ∆ωa = 0.5ωa. (31)

The initial parameters were set to nominal values, aside from the value of αa, which
was decreased by 40%. Other parameters were the same as in the simulation. The sample
transients with R0 = 10 and g0 = 0.01 are presented in Figure 11a–c. It is visible that the
reference error was much greater at the beginning of the adaptation process. In the steady
state, in which adaption finished the estimation of parameters, it is clear that the reference
error was significantly lower. Further, the output transients show the minimal oscillations.
This shows that a PI cannot fully dampen oscillations, as was shown earlier in this paper. It
is worth mentioning that the control signal did not contain any noise. This was due to the
strong influence of integral action and the low value of proportional gain. Relying on the
presented results, we can state that the adaptation improves the performance of the system.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

0.00

0.02

0.04

0.06

0.08

0.10

di
st

an
ce

 y
 [m

m
]

reference
output

(a) zoom of begin of adaptation process

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

0.10

0.05

0.00

0.05

0.10

di
st

an
ce

 y
 [m

m
]

reference
output

(b) zoom of end of adaptation process

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s] 

3

2

1

0

1

2

co
nt

ro
l s

ig
na

l v
[k

V
2 ]

begin
end

(c) zoom of control signal for begin and
end of adaptation

0 100 200 300 400 500
time [s]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

sig
na

l 
(e

r)

R0 = 101, g0 = 0.00
R0 = 104, g0 = 0.00
R0 = 101, g0 = 0.01
R0 = 104, g0 = 0.01

(d) control error trough adaptation
process

0 100 200 300 400 500
time [s]

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

pl
an

t p
ar

am
et

er
 

a

R0 = 101, g0 = 0.00
R0 = 104, g0 = 0.00
R0 = 101, g0 = 0.01
R0 = 104, g0 = 0.01

(e) transients of parameter α̂a

0 100 200 300 400 500
time [s]

20

30

40

50

60

co
nt

ro
lle

r g
ai

n 
k i

R0 = 101, g0 = 0.00
R0 = 104, g0 = 0.00
R0 = 101, g0 = 0.01
R0 = 104, g0 = 0.01

(f) controller gain k̂i

Figure 11. The transients of the adaptive control system.
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Analysis of robustness in the adaptive controller was performed by varying the
parameters: R0 = 10 and 104; and g0 = 0 and 0.01. It is worth pointing out that a small
value of R0 constrains the matrix P; hence, it applies robustness. In the case of dead
zone parameter g0, the value of 0.01 should improve robustness because the adaptation
law does not work for small errors. The summary of transients is visible in Figure 11d–f.
In the presented figure, the reference error is transformed by function γ (28) to increase
visibility. The transients of error show that the adaptation causes a decrease of error. Further,
the algorithm with no robustness (g0 = 0, R0 = 104) has a high level of error (it can be
defined as nominal case with standard adaptive law). The case with the highest robustness
(g0 = 0.01, R0 = 101) has a low level of error and very soft transients of estimated control
gains. The performance indexes were computed for all four cases and are presented in
Table 3. It is clear that applying one of the robustness algorithms improves significantly
the quality of control.

Table 3. Performance indexes for the experiment with different levels of robust adaptation (g0 = 0
no dead zone; a large R0 approximates an unconstrained covariance matrix P).

Performance Index

Case Jise Jiae Jitae

R0 = 101, g0 = 0 11.0× 10−2 5.2 12.0× 102

R0 = 104, g0 = 0 6.4× 10−2 3.4 5.5× 102

R0 = 101, g0 = 0.01 6.8× 10−2 3.2 4.8× 102

R0 = 104, g0 = 0.01 7.2× 10−2 3.6 5.7× 102

7. Conclusions

This work presents the design of a PI controller. The simplicity of controllers causes
limitations when tuning control systems’ behavior. This means that pole placement for a
closed-loop system is only partially possible. As a result of the design process, the simple
rules for proportional and integral gains were given. Further, the extension with adaptive
parameters was described. For parameter variations which can cause PI controller tuning
based on the non-nominal parameters, the adaptive system improves the performance
significantly. The influences of robust adaptive laws were analyzed in the simulations. It
was shown that bounding the covariance matrix improves the robustness of the control
system. Further, the experiments performed in the laboratory confirmed the theoretical
and simulation results.

Further research topics include the application of the developed control to the different
geometries of the DEAP actuator. Moreover, we plan to work on the development of more
advanced estimation techniques implementing the sensorless interaction control approach.
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