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Abstract: Cloud computing as a service-on-demand architecture has grown in importance over the
last few years. The storage subsystem in cloud computing has undergone enormous innovation to
provide high-quality cloud services. Emerging Non-Volatile Memory Express (NVMe) technology
has attracted considerable attention in cloud computing by delivering high I/O performance in
latency and bandwidth. Specifically, multiple NVMe solid-state drives (SSDs) can provide higher
performance, fault tolerance, and storage capacity in the cloud computing environment. In this
paper, we performed an empirical evaluation study of performance on recent NVMe SSDs (i.e.,
Intel Optane SSDs) with different redundant array of independent disks (RAID) environments. We
analyzed multiple NVMe SSDs with RAID in terms of different performance metrics via synthesis
and database benchmarks. We anticipate that our experimental results and performance analysis will
have implications for various storage systems. Experimental results showed that the software stack
overhead reduced the performance by up to 75%, 52%, 76%, 91%, and 92% in RAID 0, 1, 10, 5, and 6,
respectively, compared with theoretical and expected performance.

Keywords: non-volatile memory; solid-state drives; redundant array of independent disks (RAID)

1. Introduction

Cloud computing is widely used since it provides flexibility to users and increases
system utilization [1–3]. Clouds, or clusters of distributed computers, provide on-demand
resources and services over a network [4]. Cloud computing systems provide various,
high-performance, and large-scale clustered storage devices to handle a large amount of
data [5]. In addition, emerging Non-Volatile Memory Express (NVMe) technology has
garnered considerable attention in cloud and enterprise storage subsystems to deliver
higher I/O performance in terms of latency and bandwidth [6,7]. With this development,
industries have begun to adopt NVMe SSDs in various places. For example, because of
its performance benefits compared with SSDs that use traditional interfaces (e.g., SATA,
SAS), cloud platforms (e.g., Cloud Platform [8], Amazon Web Service (AWS) [9]) provide
NVMe options for their storage solutions. Table 1 shows a simple benchmark result with
Flash-based SATA SSDs, Flash-based NVMe SSDs, and Optane SSDs. We used a Flash-
based SATA SSD (Micron CT250MX500SSD1), Flash-based NVMe SSD (Intel P3700), and
Optane SSD (Intel Optane 900P). As shown in the table, the Optane SSD outperformed
the Flash-based SATA SSD by up to 10 times. The read performance of the Flash-based
NVMe SSD was close to that of the Optane SSD; however, the write performance of the
Optane SSD outperformed the performance of the Flash-based NVMe SSD. The Optane
SSD supports consistent performance on both a buffered and direct I/O path, sequential
and random patterns, and even read and write operations. Moreover, the Optane SSD
performs in-place updates in 3D XPoint memory that do not incur GC overheads.
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Table 1. Comparison among SATA SSDs, NVMe SSDs, and Optane SSDs.

Flash-Based SATA SSD Flash-Based NVMe SSD Optane SSD

Buffered I/O Direct I/O Buffered I/O Direct I/O Buffered I/O Direct I/O

Sequential Read 220 MB/s 211 MB/s 2485 MB/s 2563 MB/s 2558 MB/s 2553 MB/s
Random Read 194 MB/s 207 MB/s 2478 MB/s 2585 MB/s 2554 MB/s 2556 MB/s

Sequential Write 256 MB/s 170 MB/s 2011 MB/s 1925 MB/s 2499 MB/s 2445 MB/s
Random Write 194 MB/s 162 MB/s 1995 MB/s 1953 MB/s 2468 MB/s 2445 MB/s

In this article, we evaluated and analyzed the performance of Optane SSDs developed
by Intel, focusing on the environment of RAID via synthesis and database benchmarks. The
Optane SSD has a capacity of 480 GB and a performance of up to 2.5 GB/s for both read and
write operations in the case of 512 KB with multiple threads. We compared the performance
of Optane SSDs with various RAID schemes, which have different characteristics. Moreover,
we analyzed the results of the synthesis and database benchmarks. By doing so, we
identified software bottlenecks that were exposed by the rapid storage growth. (This
article is an extended version of our paper published in the International Conference on
Information Networking (ICOIN’21) in January 2021 [10].)

The contributions of our work are the following: (1) the results of our performance
study on a real Optane SSDs array, (2) the performance analysis of the Optane SSD array
according to workload behavior to show the feasibility and benefits of the Optane SSD
array, and (3) identifying bottlenecks in the storage stack. The rest of this article is organized
as follows: Section 2 discusses the background and related work. Section 3 explains the
experimental setup. Section 4 evaluates and analyzes the performance using a synthesis
benchmark and database benchmark. Section 5 provides the summary and implications of
the research. Finally, Section 6 concludes this article.

2. Related Work
2.1. Performance Evaluation of Fast Storage Devices

There have been several research efforts to optimize and evaluate the performance of
non-volatile memory storage devices. Some works have optimized and evaluated the file
systems and memory management for fast storage devices [6,11–13]. Wu et al. [14] analyzed
a popular NVM-based block device: the Intel Optane SSD. They formalized the rules that
Optane SSD users need to follow. They provided experiments to present the impact when
violating each rule and examined the internals of the Optane SSD to provide insights for
each rule. The unwritten contract provided implications and pointed to directions for
potential research on NVM-based devices. Kim et al. [15] explored the opportunities for
PCM technology within enterprise storage systems. They compared the latest PCM SSD
prototype to an eMLC Flash SSD to understand the performance characteristics of the PCM
SSD as another storage tier, given the right workload mixture. They conducted a modeling
study to analyze the feasibility of PCM devices in a tiered storage environment. Xu et al. [7]
presented the analysis and characterization of SSDs based on the the Non-Volatile Memory
Express standard for storage subsystem. They showed that there was a benefit to be gained
from re-architecting the existing I/O stack of the operating system. They also verified
the rated, raw performance of the NVMe SSDs using synthetic and DB benchmarks. Son
et al. [6] evaluated the NVMe SSD’s performance with micro benchmarks and database
workloads in a number of different I/O configurations and compared it with the SATA
SSD’s performance. Bhimani et al. [16] investigated the performance effect of increasing
the number of simultaneously operating docker containers that were supported by the
docker data volume on a stripped logical volume of multiple SSDs.

Our study was in line with these studies in terms of evaluating fast storage devices. In
contrast, we focused on evaluating and analyzing the performance of fast storage devices
in different RAID schemes.
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2.2. Study on Redundant Array of Independent Disks Schemes

There have been many studies on RAID schemes [17–20]. Menon et al. [17] described
their approach that supported compression and cached RAIDS called log-structured arrays
(LSA). They gave some performance comparisons of RAID-5 designs that support com-
pression only in the cache (not on disk) versus LSA, which supports compression on disk
and in cache. Chen et al. [19] contributed a study of the design issues, the development
of mathematical models, and an examination of the performance of different disk array
architectures in both small I/O and large I/O environments. Le et al. [20] proposed the
analytical model to quantify the reliability dynamics of an SSD RAID array. They com-
pared the reliability dynamics of the traditional RAID-5 schemes and the new Diff-RAID
scheme under different error patterns and different array configurations. Our study is
similar to these studies in terms of evaluating the RAID environment. In contrast, we
focused on evaluating and analyzing the performance of fast storage devices with different
RAID schemes.

3. Experimental Setup
3.1. NVMe SSD

Compared with conventional SATA SSDs, the current generation of peripheral compo-
nent interconnect express (PCIe) Flash SSDs is immensely popular in modern industrial
environments due to their higher bandwidth and faster random access [21]. However, PCIe-
based SSDs have also used non-standard specification interfaces. For faster adoption and
interoperability of PCIe SSDs, industry leaders have defined the NVM Express standard,
arguing that standardized drivers reduce verification time. NVMe is a specification for
accessing SSDs connected to PCIe buses. It defines optimized register interfaces, command
sets, and function sets [6]. These NVM technologies provide significant performance levels
for persistent storage. One example is Intel’s 3D XPoint memory [22,23] from Intel and
Micron, available on the open market under the brand name Optane [24]. The Optane SSD
is based on 3D XPoint memory, which is claimed to provide up to 1000 times lower latency
than NAND Flash [23]. The influence of this extremely low-latency and high-bandwidth
storage on computing is significant.

3.2. Redundant Array of Independent Disks

Initially, RAID [18] was designed to use relatively inexpensive disks as a disk ar-
ray due to the rapid increase of CPU and memory performance. However, these RAID
schemes have been popular in cloud computing and big data environments because of their
characteristics, providing higher fault tolerance, performance, and other benefits [25–27].

Moreover, RAID has three main strategies. First, striping divides the flow of data
into blocks of a specified chunk size and writes one on RAID. These strategies improve
the performance of RAID. Second, mirroring stores the same copy of the requested data
simultaneously on a RAID member. These strategies improve fault tolerance and perfor-
mance. Finally, parity is calculated for a specific parity function for a block of data. The
parity strategy recalculates data via the checksum method to provide RAID fault tolerance.
In addition, RAID has various characteristics depending on the level. We chose five of
the RAID types that are used in general. The selected RAID types are briefly described as
follows:

• Raid 0 provides a striping strategy;
• Raid 1 provides a mirroring strategy;
• Raid 5 provides striping with parity;
• Raid 6 provides striping with double-parity;
• Raid 10 provides a stripe of mirrors (a combination of RAID 1 and 0).
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3.3. Setup

For the experimental setup, we used servers equipped with an Intel(R) Xeon(R)
Gold 6242 (2.8 GHz) CPU, which has 64 physical cores and 64 GB of memory. For the
storage devices, we used eight Intel Optane SSD 900P (480 GB) with RAID-0, 1, 5, 6, and
10 [18]. Our server had eight PCIe sockets, so we could use up to eight Optane SSDs.
We used Linux Kernel 5.4.1, Ubuntu 20.04 LTS, and EXT4 [28] for the filesystem. We
evaluated the performance of Optane SSDs in different RAID environments via synthesis
and database benchmarks. We used the FIO benchmark [29] for the synthesis benchmark.
For the database benchmark, we used DBbench with RocksDB v.6.1.18 and TPC-C [30]
with MySQL 5.7 InnoDB [31] to evaluate the Intel Optane SSDs in terms of bandwidth and
latency. Note that all experimental results were the average of five runs.

Table 1 shows the baseline performance of a single Intel Optane SSD via the FIO
benchmark. The configuration of the FIO benchmark is explained in Section 4.1. As shown
in Table 1, no significant difference existed in performance across the direct I/O, buffered
I/O, read operation, and write operation. Note that the maximum throughput of the Intel
Optane SSD 900P was 2.5 GB/s for sequential read and 2.4 GB/s for sequential write in the
case of direct I/O, respectively. The maximum throughput of buffered I/O was 2.5 GB/s
for sequential read and 2.4 GB/s for sequential write.

4. Experiment
4.1. Synthesis Benchmark

As mentioned earlier, we used the FIO benchmarking tool as the synthesis benchmark.
We executed 64 threads that wrote 4 GB files each with a 512 KB block size, the default
chunk size for RAID using the FIO benchmark. We evaluated both buffered and direct I/O
to analyze different paths of I/O.

Figure 1 shows the throughput and the latency for different numbers of devices in a
RAID 0-level environment for different options. Theoretically, when constructing RAID
0 with N devices, the capacity of RAID 0 is (N × one device capacity), the expected write
performance is (N × write per f ormance o f one device), and the expected read performance
is (N × read per f ormance o f one device). Figure 1a shows experimental results with the
buffered read operation. In this configuration, no significant difference existed in the
read performance between random and sequential access patterns. Moreover, the read
throughput increased and the latency decreased as the number of devices increased. As
shown in the figure, the read performance of RAID 0 showed up to 4.8 GB/s, 7.2 GB/s, 8.1
GB/s, and 9 GB/s in the case of 2, 4, 6, and 8 devices, respectively. This result was because
the RAID 0 level uses a striping strategy, as mentioned, resulting in improved performance
as the number of devices increases. However, the read throughput was still lower than
the expected read performance of RAID 0. Figure 1b shows experiment results with the
buffered write operation. As shown in the figure, the write performance according to the
number of devices was similar. Even if the number of devices increased, no significant
difference existed in the write performance. There was also no significant performance
difference between sequential and random writes.

Figure 1c shows experimental results with the direct read operation. As shown in
the figure, the performance increased as the number of devices increased. The read
performance showed up to 5.1 GB/s, 9.9 GB/s, 12.4 GB/s, and 16.5 GB/s in the case of 2, 4,
6, and 8 devices, respectively. Figure 1d shows experimental results with the direct write
operation. As shown in the figure, the write performance also increased as the number of
devices increased. The write performance improved from 4.5 GB/s for two devices to 16.9
GB/s for eight devices. Since the direct I/O bypasses the Linux kernel page caching layer,
it can reduce the influence of the OS. With less influence of the OS, direct I/O performance
outperformed buffered I/O performance. Moreover, the direct I/O performance was close
to the expected performance of RAID 0.
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Figure 1. Experimental results under RAID 0 (S: sequential, R: random, Dev: number of devices).

Figure 2 show the throughput and the latency for different numbers of devices in a
RAID 1-level environment with different options. Theoretically, when constructing RAID
1 with N devices, the capacity of RAID 1 is (1 × one device capacity), the expected write
performance is (1 × write per f ormance o f one device), and the expected read performance
is (N × read per f ormance o f one device). Figure 2a shows experimental results with the
buffered read operation. In this scheme, the performance of sequential reads was similar
to that of random reads. It also shows that the read throughput increased and the latency
decreased as the number of devices increased. As shown in the figure, the read performance
of RAID 1 showed up to 4 GB/s, 6.8 GB/s, 7.1 GB/s, and 7.7 GB/s in the case of 2, 4, 6,
and 8 devices, respectively. This outcome was because the RAID 1 level used a mirroring
strategy as mentioned above, resulting in improved read performance as the number of
devices increased. Figure 2b shows experimental results with the buffered write operation.
The write performance of two devices was lower than that of a single device (1.7 GB/s).
Furthermore, the performance did not change even if the number of devices increased (1.5
GB/s for eight devices). As the write operations were conducted using a mirroring strategy,
the data were written to one device, and the copies of the data were written to all other
devices. Even though this mirroring strategy reduced the write performance, the strategy
increased the fault tolerance and read performance.

Figure 2c shows experimental results with the direct read operation. As shown in
the figure, the read performance increased as the number of devices increased. The read
performance showed up to 5.1 GB/s, 9.8 GB/s, 13.3 GB/s, and 15.2 GB/s in the case of 2, 4,
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6, and 8 devices, respectively. The read performance of direct I/O was significantly higher
than that of the buffered read. However, the read performance of direct I/O did not reach
the expected read performance of RAID 1.

Figure 2d shows experimental results with the direct write operation. As Figure 2b,
the write performance did not increase as the number of devices increased. The write
performance showed 2.3 GB/s for two devices to 1.9 GB/s for eight devices. Since the
copies of the data were written to all other devices, the write performance decreased
slightly as the number of devices increased. In the case of the write performance, we could
not observe the upper-bound of the performance. Since the mirroring strategy used one
data device and other devices to mirror devices, RAID 1 could not reach the upper-bound
of the buffered I/O write performance (4.2 to 4.6 GB/s in Figure 1).
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Figure 2. Experimental results under RAID 1 (S: sequential, R: random, Dev: number of devices).

Figure 3 shows the throughput and the latency for different numbers of devices in a
RAID 10-level environment with different options. Theoretically, when constructing RAID
10 with N devices, the capacity of RAID 10 is (N × one device capacity ÷ 2), the expected
write performance is (N × write per f ormance o f one device ÷ 2), and the expected read
performance is (N × read per f ormance o f one device). Note that RAID 10 requires a
combination of RAID 0 and 1; therefore, RAID 10 included at least four devices. Thus, we
configured the number of devices as 4, 6, and 8 devices.

Figure 3a shows experimental results with the buffered read operation. As shown
in the figure, the read performance showed up to 7 GB/s, 8.3 GB/s, and 8.3 GB/s in the
case of 4, 6, and 8 devices, respectively. Contrary to expectations, the read performance
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did not scale enough as the number of devices increased. The results were similar to
RAID 1’s buffered read result. Figure 3b shows experimental results with the buffered
write operation. From the experimental results, the write performance was affected by the
redundant write operations of the RAID 1 scheme. The write performance of RAID 10 was
very similar to that of RAID 1 in terms of throughput and latency. The write performance
did not increase as the number of devices increased.

Figure 3c shows the experimental results with the direct read operation. As shown in
the figure, the read performance showed up to 9.0 GB/s, 10.9 GB/s, and 13.9 GB/s in the
case of 4, 6, and 8 devices, respectively. The read performance of direct I/O was higher
than that of the buffered read performance. Since the RAID 10 scheme was nested and
consisted of RAID 0 and 1, the read performance showed results similar to RAID 1 and
RAID 0. The experimental results revealed that the read performance was affected by the
overhead from the page cache (as the results of the RAID 0 and 1 schemes).

Figure 3d shows the experimental results with the direct write operation. As shown in
the figure, the write performance showed up to 4.4 GB/s, 6.4 GB/s, and 7.9 GB/s in the case
of 4, 6, and 8 devices, respectively. Compared to Figure 3b, we could observe differences
in the performance between buffered write and direct write. The write performance of
buffered I/O showed results similar to RAID 1; however, the write performance of direct
I/O showed results similar to RAID 0.
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Figure 3. Experimental results under RAID 10 (S: sequential, R: random, Dev: number of devices).
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Figure 4 shows the throughput and the latency for different numbers of devices
in a RAID 5-level environment with different options. Theoretically, when constructing
RAID 5 with N devices, the capacity of RAID 5 is ((N − 1) × one device capacity), the
expected write performance is ((N − 1) × write per f ormance o f one device ÷ 4), and the
expected read performance is ((N− 1) × read per f ormance o f one device). Figure 4a shows
experimental results with the buffered read operation. In this scheme, the performance
of the random read was higher than the performance of sequential reads. Moreover, the
read throughput increased and the latency decreased as the number of devices increased.
As shown in the figure, the read performance of RAID 5 showed up to 6.1 GB/s, 7 GB/s,
8 GB/s, and 8.7 GB/s in the case of 3, 4, 6, and 8 devices, respectively. Note that RAID 5
should include at least three devices. Thus, we configured the number of devices as 3, 4, 6,
and 8 devices.

Figure 4b shows experimental results with the buffered write operation. The write
performance for all the cases in RAID 5 was significantly lower than that of a single device.
The write performance of RAID 5 showed up to 499 MB/s, 611 MB/s, 750 MB/s, and 672
MB/s in the case of three, 4, 6, and 8 devices, respectively. This was because the write
operation was performed with block-interleaved distributed parity. This scheme needs to
perform the parity operations to increase fault tolerance for every write operation, and the
computational results are also stored on other devices. This result demonstrated that these
operations can significantly reduce the performance.

Figure 4c shows the experimental results with the direct read operation. Similar to the
previous experimental results (RAID 0, 1, and 10), the read performance increased as the
number of devices increased. The difference in the read performance between buffered
I/O and direct I/O was also similar to previous experiments

Figure 4d shows the experimental results with the direct write operation. The write
performance showed up to 329 MB/s, 321 MB/s, 342 MB/s, and 384 MB/s in the case of 3, 4,
6, and 8 devices, respectively. For the write performance, the direct write performance was
lower than that for the buffered write. Since the RAID 5 write operation was performed with
block-interleaved distributed parity, RAID 5 should calculate the parity when processing
the write operation. Buffered I/O uses the page cache, which can accelerate the parity
calculation by the page hit. Thus, for the parity strategy, the buffered write can outperform
the direct write.

With the results of Figures 1–3, the performance of direct I/O was significantly higher
than that of buffered I/O even if, in the general cases, the buffered I/O performance was
higher than the direct I/O [32]. According to our observation, a page caching issue occurred
within the Linux kernel. Therefore, as the issue did not depend on the file system, when
direct I/O was used, page cache overhead could be avoided since direct I/O bypassed the
page cache.

Figure 5 shows the throughput and the latency for different numbers of devices in a
RAID 6-level environment with different options. Theoretically, when constructing RAID
6 with N devices, the capacity of RAID 6 is ((N − 2) × one device capacity), the expected
write performance is ((N − 2) × write per f ormance o f one device ÷ 6), and the expected
read performance is ((N− 2) × read per f ormance o f one device). Note that RAID 6 should
include at least four devices. Thus, we configured the number of devices as 4, 6, and 8
devices. Figure 5a shows experimental results with the buffered read operation. As shown
in the figure, the read performance of RAID 6 showed up to 7.1 GB/s, 7.8 GB/s, and 8.5
GB/s in the case of 4, 6, and 8 devices, respectively.

Figure 5b shows experimental results with the buffered write operation. The write
performance for all cases in RAID 6 was significantly lower than that for the single device
write performance similar to RAID 5. The write performance of RAID 6 showed up to 493
MB/s, 646 MB/s, and 570 MB/s in the case of 4, 6, and 8 devices, respectively, because the
write operation was performed by striping with double-parity. Each write operation in
this scheme must read the data, read the first parity, read the second parity, write the data,
write the first parity, and then, finally, write the second parity.
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Figure 4. Experimental results under RAID 5 (S: sequential, R: random, Dev: number of devices).

Figures 5c,d show experimental results with the direct read operation. For direct I/O,
the results were very similar to RAID 5 in terms of throughput and latency. As shown
in the figure, the read performance of RAID 6 showed up to 8.4 GB/s, 12.8 GB/s, and
14.7 GB/s, and the write performance showed up to 267 MB/s, 213 MB/s, and 274 MB/s
in the case of 4, 6, and 8 devices, respectively. The difference in performance was similar to
the experimental results for RAID 5. As mentioned above, the direct write performance
was lower than the buffered write performance due to page caching.

4.2. Database Benchmark

As mentioned earlier, we used DBbench and TPC-C [30] to evaluate the Intel Optane
SSDs. DBbench is a popular benchmark provided by RocksDB to evaluate the KV stores,
and it provides various I/O operations. We evaluated four operations fill random (Fill-
Rand), fill sequential (FillSeq), read random (ReadRand), and read sequential (ReadSeq).
We configured the maximum read/write buffer number at sixty-four and the batch size at
eight and used one-hundred million read and write operations. We also used direct I/O for
the flush, compaction, and write and read operations. Figures 6 and 7 show experimental
results under various RAID schemes.
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Figure 5. Experimental results under RAID 6 (S: sequential, R: random, Dev: number of devices).

Figure 6 shows the DBbench results on the Intel Optane SSDs under different RAID
schemes such as RAID 0, 1, and 10. Figure 6a shows the performance results for RAID 0.
Each operation showed 1.3 MOPS, 1.8 MOPS, 1.1 MOPS, and 60.1 MOPS and 46.3 ms,
35.2 ms, 52.7 ms, 1.06 ms for fill random, fill sequential, read random, and read sequential,
respectively. Figure 6b shows the performance results for RAID 1. The MOPS for each
operation were 0.7 MOPS, 1.74 MOPS, 1.1 MOPS, and 60.8 MOPS, and the microseconds
per operation of each operation were 83.9 ms, 36.5 ms, 56.6 ms, and 1.05 ms for fill random,
fill sequential, read random, and read sequential, respectively. Figure 6c shows the per-
formance results for RAID 10. The MOPS of each operation were 0.9 MOPS, 1.8 MOPS,
1.1 MOPS, and 52.7 MOPS, and the microseconds per operation of each operation were
69.3 ms, 34.8 ms, 54.5 ms, and 1.2 ms for fill random, fill sequential, read random, and read
sequential, respectively. As we expected, similar strategies showed similar results. Thus,
RAID 0 was fastest in most operations. Since there a transaction overhead existed in the
database application, the performance of DBbench could not reach the full performance of
the storage array (Figures 1–3).

Figure 7 shows the DBbench results on the Intel Optane SSDs under different RAID
schemes. Figure 7a shows the performance results for RAID 5. The MOPS of each operation
were 0.49 MOPS, 1.7 MOPS, 1.1 MOPS, and 57.8 MOPS, and the microseconds per operation
of each operation were 129.5 ms, 36.3 ms, 54.2 ms, and 1.1 ms for fill random, fill sequential,
read random, and read sequential, respectively. Figure 7b shows the performance results
for RAID 6. The MOPS of each operation were 0.9 MOPS, 1.8 MOPS, 1.1 MOPS, and
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59.6 MOPS, and the microseconds per operation of each operation were 159 ms, 36.8 ms,
55.5 ms, and 1.07 ms for fill random, fill sequential, read random, and read sequential,
respectively. Comparing Figure 6 with Figure 7, no significant difference in performance
existed among various RAID schemes, and almost all performance except for the sequential
read workload was in the range of 84.4 to 214.8MB/s. The performance overhead from the
database concealed the characteristics of various RAID schemes that were observed in the
previous experiments (Figures 1–5).
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Figure 6. Experimental results under different RAID schemes (RAID 0, 1, and 10) via DBbench.
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Figure 7. Experimental results under different RAID schemes (RAID 5 and 6) via DBbench.

The TPC-C benchmark is a mixture of read and write (1.9:1) transactions [30] that sim-
ulates online transaction processing (i.e., OLTP) application environments. We configured
the user buffer size to 1 GB, page size to 16KB, flushing method to direct I/O (O_DIRECT),
ramp-up time to 180 s, and execution time to 10 minutes.
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Figure 8 shows the TPC-C results on the Intel Optane SSDs under different RAID
environments. The performance of each scheme was 143,027, 94,375, 42,183, 34,581, and
112,536 tmpC for RAID 0, 1, 5, 6, and 10, respectively. In the case of RAID 0, tmpC was the
highest because all data were only striped. The second-highest performance was RAID 10,
which was due to the advantages of striping (RAID 0) and the increased read performance
through mirroring (RAID 1). For RAID 1, the results showed high performance due to the
increased read performance, although the write performance was very low because the
TPC-C benchmark for OLTP workloads had a larger ratio of reads than writes (the read-
to-write ratio was 1.9:1). As mentioned earlier, RAID 5 exhibited lower performance than
other RAID schemes due to the overhead from parity operations. Moreover, RAID 6 also
had lower performance than RAID 5 due to the overhead of the double-parity operations.
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Figure 8. Experimental results under the TPC-C benchmark.

4.3. Performance Comparison under Multiple OSes and SSDs

We performed the evaluation and compared the results on multiple OSes (i.e., Ubuntu
20.04 and CentOS 7) and multiple SSDs (i.e., Intel Optane SSDs (900P) and Intel Flash-
based NVMe SSDs (P3700)). Figure 9 shows experimental results on multiple OSes and
SSDs in the case of RAID 0. Note that the single-device performance is depicted in Table 1.
Figure 9a shows experimental results of RAID 0 under the Intel Optane SSD (900P) and the OSes.
As shown in the figure, there was almost no significant performance difference between
Ubuntu and CentOS since both CentOS and Ubuntu have a similar I/O path (e.g., page
cache layer).

Figure 9b shows the experimental results of RAID 0 under the Intel Flash-based NVMe
SSD (P3700) and the OSes. As shown in the figure, there was still no significant perfor-
mance difference between Ubuntu and CentOS. In the case of the performance comparison
between the two SSDs, the Flash-based NVMe SSDs had better performance by up to
22.1% compared to the Optane SSDs in the case of read operations. This showed that the
Flash-based NVMe SSDs can outperform the Optane SSDs in terms of the read operations
and the RAID configuration. Meanwhile, the Optane SSD had better performance by up to
18.4% compared with the Flash-based NVMe SSD in the case of the write operations. As
mentioned earlier, the 3D Xpoint technology of Optane SSD does not incur GC overhead,
so that it can provide a higher and consistent write performance. Though the experimental
results, we can recommend the Optane SSD (900P) for write-intensive workloads, and we
also can recommend the Flash-based NVNe SSD (P3700) for read-intensive workloads.

4.4. Comparison with Related Works

In this section, we provide a comparison of our results and those of related works in
the case of a single device, as shown in Table 2. All the works used the same Intel Optane
SSD (900P), but they used different configurations. Each experiment configuration was as
follows: Zhang et al. [33] used two Intel Xeon E5-2609s (1.70 GHz 8 cores), 128GB DRAM,
RHEL 7.0, Kernel Version 4.14, and the FIO benchmark. Yang et al. [34] used two Intel
Xeon E5-2680s v4 (2.4GHz, 14 cores), 64GB DRAM, Ubuntu 16.04, Kernel Version 4.11.0-rc6,
and the FIO benchmark.
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Figure 9. Experimental results of RAID 0 under multiple OSes and SSDs (S: sequential, R: random, Dev: number of devices).

Table 2. Comparison to related works.

Read Write

Read Throughput Read Latency Write Throughput Write Latency

Zhang et al. [33] 2557 MB/s 13.8 us 2185 MB/s 15.7 us
Yang et al. [34] 2383 MB/s 219.5 us 2241 MB/s 230.1 us

Our result 2580 MB/s 9.7 us 2559 MB/s 10.1 us

For the FIO configuration, Zhang et al. [33] ran FIO during 30s and stored the fixed-
size data (i.e., 20 GB) in the SSD before the performance evaluation. Yang et al. [34] ran FIO
with a 4K block size, four threads, and a 32 iodepth. Our experimental setup was described
in Section 3. As shown in the table, there was no significant difference except for the latency.
We assumed that the larger number of iodepths in Yang et al. [34] could increase the latency
compared with other works. Since the number of cores in our setup was larger than those
of related works, we could assume that our evaluation results provided slightly higher
throughput and lower latency compared with others due to the higher parallelism.

5. Summary and Implication

In this section, we summarize the implications of our evaluation study performed in
this article. Our main findings and insights were as follows:

• Through the performance baseline of the Intel Optane SSD in the Section 3, we showed
no difference in performance between direct I/O and buffered I/O in a single-device
environment. However, when compared in a RAID environment, through Figures 1–5,
there was a difference in performance. This showed that the storage stack had an
overhead;

• As shown in Figure 3, nested RAID (RAID 10) showed that the performance was
similar to RAID 1 (Figure 2). This means that there were certain bottlenecks in the
software RAID environment;

• As shown in Figures 4 and 5, the parity operations caused serious overhead to the
write performance in RAID. This was because the parity operation should read the
data, read the parity, write the data, and, finally, write the parity.
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6. Conclusions and Future Work

In this paper, we evaluated and analyzed the Optane SSDs’ performance via synthesis
and database benchmarks in different RAID schemes. First, we presented the results of our
performance study on a real Optane SSD array. Second, we analyzed the performance of
the Optane SSD array according to the workload behavior to examine the feasibility and
benefits of the Optane SSD array. Finally, we identify bottlenecks in the storage stack. Our
experimental results showed that the software stack overhead reduced the performance
by up to 75%, 52%, 76%, 91%, and 92% for RAID 0, 1, 10, 5, and 6, respectively, compared
to the expected performance. This result showed the bottleneck of the OS software stack,
which came from the result of the significant performance improvement of the storage
devices. In the future, we will plan to analyze and optimize the storage stack to improve
the performance in different RAID schemes.
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