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Abstract: In this paper, a novel intrinsically switched tunable bandpass filter based on a dual-mode
T-shaped varactor-loaded resonator is presented. The varactors loaded in the T-shaped resonator
are capable of efficiently tuning the resonant frequencies of the even and odd modes, as well as the
transmission-zero frequency. Without any additional RF switches, the passband of the filter can
be intrinsically switched off by adjusting the transmission zero to the resonant frequencies. In the
switch-on state, the constant absolute bandwidth (CABW) or constant fractional bandwidth (CFBW)
passband can be achieved by controlling the frequency space between the two resonances. For a
demonstration, a 0.8–1.1 GHz intrinsically switched tunable bandpass filter with 74 MHz CABW or
8.5% CFBW was fabricated and tested. In the whole operating band with |S11| < 10 dB, the insertion
losses for CABW and CFBW are better than 3.3 dB and 3 dB, respectively, and the isolations are better
than 20 dB in the switch-off state. The measured results have a good agreement with simulated
results, which verifies the design theory.

Keywords: tunable filter; intrinsic switch; CABW; CFBW

1. Introduction

Reconfigurable filters have been extensively applied in the frequency-agile and
software-defined radio systems due to their adjustable operating performance [1,2]. To
meet the requirement of having constant passband characteristics in the whole tuning
range, center-frequency-tunable bandpass filters with CABW or CFBW have been reported.
Two methods are always used to achieve CABW or CFBW. The first way is to control the
coupling strength by using varactors or selecting a proper coupling region [3–7]. The other
method is to control the distance between the in-band transmission poles [8,9].

To adapt to complex operating environment, reconfigurable filters with switching
capability have aroused a wide attention recently. By using the pin diodes as switches, the
proposed filters in [10–14] can be operated in four states. Through utilizing combinations
of pin diodes and varactors, the center-frequency-tunable filters can be switched in on/off
state or in high/low passband [15,16]. However, it is worth noting that switching the pin
diodes requires extra control voltages.

In order to reduce the number of external control variables and simplify the control
complexity, intrinsically switched tunable bandpass filters are proposed [17]. In these
structures, the off states can be obtained by the tuning elements which are also used to
tune the center frequencies, bandwidths or coupling coefficients. Normally, two typical
methods are utilized to realize intrinsically switched function. One way to switch off the
passband is by changing the varactors embedded between the resonators that can control
the coupling coefficients of the filters [17–19]. However, the magnetic coupling between the
resonators has to be generated in these works in order to cancel the negative electric cou-
pling from the coupling varactors. The other efficient way is to use the transmission zeros
to switch off the passbands constructed by the spacing between transmission zeros [20–22].
However, these bandpass filters require more cascaded bandstop filters to realize wide
out-band suppression.
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In this paper, a novel intrinsically switched tunable bandpass filter with CABW/CFBW
properties based on dual-mode varactor-loaded T-shaped resonator is presented. The
varactors, in which the resonant frequencies are able to be tuned, adjust the transmission
zero and switch off the passband, simultaneously. In addition, a feature of tunable passband
with CABW/CFBW can be achieved by controlling the resonant frequencies and the spacing
between them. As a demonstration, a prototype of a 0.8–1.1 GHz tunable 74 MHz CABW
or 8.5% CFBW filter with intrinsically switchable function is developed and characterized.
The proposed design possesses multiple functions only realized by two control voltages,
which can simplify the control complexity extensively.

2. Filter Design and Analysis
2.1. Transmission Line Model Analysis

The schematic diagram of the proposed filter is provided in Figure 1a, which consists of a
dual-mode T-shaped resonant loaded with two types of varactors (C1 and C2) and a pair of
feed lines. The capacitor Cb and resistor Rb are applied as dc block and dc bias, respectively.
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Due to the symmetrical structure, the odd–even mode method is utilized to analyze
the proposed filter [23,24]. In order to simplify the analysis process of the dual-mode T-
shaped resonator, the basic transmission line model of the proposed resonator is presented
in Figure 1b, ignoring the influences of Cb and Rb, where Y1, Y2 and Y3 are the characteristic
admittances and θ1, θ2 and θ3 are the electrical lengths.

The odd- and even-mode equivalent circuits are illustrated in Figure 1c,d, respectively,
the input admittances of the odd- and even- mode can be derived by the following equations:

Yodd1 = −jY1cotθ1 × 2πfC1/(−Y1cotθ1 + 2πfC1) (1)

Yodd = −jY3cotθ3 + Yodd1 (2)

Yeven1 = Y3(Yodd1 + jY3tanθ3)/(Y3 + jYodd1tanθ3) (3)

Yeven2 = (Y1/2)(j2πfC2 + jY2tanθ2)/(Y2 − 2πfC2tanθ2) (4)

Yeven = Yeven1 + Yeven2 (5)



Electronics 2021, 10, 1318 3 of 8

Under the resonance condition (Im (Yodd) = 0 and Im (Yeven) = 0), the resonant
frequencies can be extracted by Equations (1)–(5). It can be observed that odd-mode
resonant frequency f odd is only controlled by C1, and the even mode resonant frequency
f even is determined by C1 and C2 at the same time. Moreover, the transmission zero
produced by the shunt stub taped with C2 can be used not only to improve the selectivity of
bandpass filter as the normal way but also to switch off the passband. The input admittance
of the shunt stub taped with the varactor C2 can be derived by:

Yzero = Y2 (j2πfC2 + jY2tanθ2)/(Y2 − 2πfC2tanθ2) (6)

From Equation (6), it is observed that the frequency of transmission zero f zero can
be deduced under the condition (Y2 − 2πfC2tanθ2 = 0), which indicates that f zero can be
adjusted by C2.

Table 1 shows the tuning ranges of f even and f odd with variation of C1 and C2. f odd is
independently decided by C1, but f even is controlled by C1 and C2 simultaneously. With
f odd fixed by C1, f even varies around f odd by tuning C2. As shown in Figure 2, by tuning
C1 and C2, the specified frequency space between f even and f odd can be obtained. If f odd is
fixed by C1, f even can be changed from greater than to less than f odd by adjusting C2, and
f zero is changed in the same way. Therefore, there is a C2 such that f odd = f even = f zero for
different C1 (f odd), as the point A shown in Figure 2, and the passband can be intrinsically
switched off at 0.994 GHz when C1 = 1.1 pF and C2 = 6.9 pF.

Table 1. Tuning range of f even and f odd as C1 and C2 vary. Y1 = 0.01 S, Y2 = Y3 = 0.02 S, θ1 = 55◦,
θ2 = 25◦ and θ3 = 5◦ at 1 GHz.

C1 & C2 (pF) C1 = 0.6
C2 = 2–12

C1 = 1.1
C2 = 2–12

C1 = 1.6
C2 = 2–12

C1 = 2.2
C2 = 2–12

f odd (GHz) 1.188 0.994 0.870 0.754
f even (GHz) 1.234–1.146 1.097–0.958 1.021–0.850 0.957–0.764
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θ3 = 5◦ at 1 GHz.

2.2. Analysis of fC, BW and Qe

According to the filter synthesis method in [25,26], the center frequency f C and band-
width BW of the passband are estimated by Equations (7) and (8):

f C = (f odd + f even)/2 (7)

BW = f even − f odd (8)
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In Figure 3, the weak coupling transmission line responses are investigated. As
indicated above, through tuning C1 and C2, the separation between f odd and f even can be
suitable for 74 MHz CABW and 8.5% CFBW, respectively.
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CFBW case).

The external quality factor Qe of the proposed filter can be extracted by using [26]

Qeo/ee = f ce/co/∆f e/o±90◦ (9)

Qe = (Qee + Qee)/2 (10)

where Qee/eo, f ce/co and ∆f e/o±90◦ are the even/odd mode external quality factors, resonant
frequencies and bandwidths, respectively. In Figure 4, Qe,CABW,min/max and Qe,CFBW,min/max
mean the minimum/maximum curves of Qe to realize 74 MHz CABW and 8.5% CFBW
with <12 dB return loss, respectively [26].
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2.3. Current Density Distribution Analysis

Current density distribution is employed to investigate the effect of being intrinsically
switched off [27]. By utilizing the parameters of point A depicted in Figure 2, the filter is
switched at 0.994 GHz, and the current density distribution is plotted in Figure 5. As seen,
the T-shaped resonator does not allow flowing strong current, representing that the filter’
passband is switched off.
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2.4. Designing Produce

The designing produces are as follows:
Step (1) Based on the analysis of even–odd mode and transmission zero, choose the

appropriated admittances (Y1, Y2 and Y3), electrical lengths (θ1, θ2 and θ3), and varactors
(C1 and C2) and calculate the f C and BW to make sure that the tuning range of f odd, f even
and f zero can meet the design requirements of the filter.

Step (2) Calculate the Qe in the tuning range needed for specified return loss
and bandwidth.

Step (3) Simulate and extract the Qe in the whole tuning under different space s
between the resonant and the feedline.

Step (4) Choose the proper s.

3. Experimental Verification

An intrinsically switched tunable filter is designed based on a 0.508 mm thick Rogers
RO4350B substrate with a relative dielectric constant of 3.48 and a loss tangent of 0.0037,
where the f C is tuned in the range of 0.8–1.1 GHz and the bandwidth satisfies 74 MHz
CABW or 8.5% CFBW. The design parameters of the T-shaped resonant are chosen as
Y1 = 0.01 S, Y2 = 0.02 S, Y3 = 0.02 S, θ1 = 60◦, θ2 = 22◦ and θ3 = 5◦ at 1 GHz. By Equations
(9) and (10), the filter’s Qe versus f C with different s are extracted in Figure 6, where s is the
spacing between resonant and feed line in Figure 1a. It is noteworthy that, with s in range
of 0.2–0.25 mm, the values of Qe basically meet the requirements for 74 MHz CABW and
8.5% CFBW shown in Figure 4 at the same time.
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The simulations are conducted by using SONNET software. After optimization, the
physical parameters of the filter are determined as in Table 2. The varactors MA46H201
(the capacitance tuning range is about 0.4–2.2 pF) and MA46H204 (the capacitance tuning
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range is about 1.8–20 pF) from M/A COM are employed as C1 and C2, which are controlled
by voltages V1 and V2, respectively. Cb = 30 pF and Rb = 10 kΩ are used as dc block
and dc bias, respectively. The photograph of the proposed intrinsically switched tunable
filter is displayed in Figure 7. The prototype circuit size of the proposed filter is about
0.31 λg × 0.11 λg, where λg is the guided wavelength at the lowest operating frequency
(i.e., 0.8 GHz). The measurements are carried out by the ROHDE&SCHWARZ ZVA24
network analyzer.

Table 2. Physical parameters of the proposed filter.

Parameter Value (mm) Parameter Value (mm)

l1 18.4 w1 0.5
l2 29.8 w2 0.3
l3 2.5 w3 1.1
l4 7.6 w4 1.1
s 0.22 – –
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The simulated and measured frequency responses of the proposed prototype with
three reconfigurable states are shown in Figure 8. Figure 8a,b depicts the tuning of the
center frequency from 0.8–1.1 GHz with 74 MHz CABW and 8.5% CFBW, respectively. It
also can be seen that a transmission zero on the upper band edge increases as the center
frequency increases in both Figure 8a,b. The measured 3 dB bandwidth of the CABW
filter and 3 dB fractional bandwidth of the CFBW filter are 74 ± 1 MHz and 8.5 ± 0.1%,
respectively. The measured insertion losses of the CABW filter and the CFBW filter are
better than 3.3 dB and 3 dB, respectively, with measured return losses better than 10 dB.
Figure 8c presents the responses of passband in intrinsic switch-off state. As shown, the
passband can be switched off at 0.8–1.1 GHz by tuning C1 and C2, and the measured
isolations are all better than 20 dB. Comparisons with the previously reported switched
tunable filter are listed in Table 3. As can be seen, the proposed filer has all the functions of
tuning the center frequency, controlling the bandwidth (CABW and CFBW) and switching
off the passband, simultaneously. Moreover, it is worth noting that the number of control
voltages used in this work is equal to the order of the filter, which can reduce the control
complexity of the design.

Table 3. Comparisons with previously reported switched tunable filter.

Ref No. Filter
Order

Number of
Control
Voltages

Intrinsic
Switching

Center-
Frequency

Control

Bandwidth
Control

IL in
Passband

(dB)

Isolation in
Off-State

(dB)

Size
(λ2

g)

[15] 2 3 No Yes CABW 2.52–4.08 >43 N.A.
[17] 3 3 Yes Yes CABW <5 >50 0.090
[19] 4 5 Yes Yes Tunable 3.5–8.5 >33 0.082
[22] - 4 Yes Yes Tunable 0.96 >20 N.A.

This work 2 2 Yes Yes CABW/CFBW <3.3 >20 0.035
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Figure 8. Simulated and measured S parameters for the proposed filter (solid line: measurement; dash line: simulation).
(a) Center-frequency tuning with 74 MHz CABW; (b) center-frequency tuning with 8.5% CFBW; and (c) intrinsic switch-off state.

4. Conclusions

A novel intrinsically switched tunable filter based on dual-mode T-shaped resonator
embedded with varactors is proposed in this paper. The theoretical basis and character-
ization of proof-of-concept microstrip prototype have been shown. The proposed filter
controlled by only two voltages has the reconfigurable ability of center-frequency tun-
ing, bandwidth controlling and passband intrinsically switching. The proposed filter
has the potentiality to be applied in multiband communication systems and reduce its
control complexity.
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