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Abstract: A power-law compensator scheme for achieving robust frequency compensation in control
systems including plants with an uncertain pole, is introduced in this work. This is achieved through
an appropriate selection of the compensator parameters, which guarantee that the Nyquist diagram
of the open-loop system compensator-plant crosses a fixed point independent of the plant pole varia-
tions. The implementation of the fractional-order compensator is performed through the utilization
of a curve-fitting-based technique and the derived rational integer-order transfer function is realized
on a Field-Programmable Analog Array device. The experimental results confirm that the the phase
margin is well preserved, even for ±40% variation in the pole location of the plant.

Keywords: fractional-order controllers; fractional-order compensators; phase margin; crossover
frequency; field-programmable analog array

1. Introduction

Fractional-order controllers are useful building blocks for compensating the existence
of uncertainty in the model of a plant, which occurs in real-world control systems, and
thus, many efforts towards the implementation of such blocks have been made [1–3]. The
main feature of this family of controllers, which enables them to deal with uncertainty
in control system loops, is the inherent flexibility of their structures [4], originating from
the use of fractional operators with tunable orders. Robust fractional-order controllers
can be designed based on the use of either time-domain methods [5] or frequency-domain
ones [6]. Compared to time-domain approaches, frequency-domain methods provide
a more powerful framework for optimal tuning of the tunable orders of the fractional
operators in the structures of fractional controllers. For example, such controllers have
been designed with the aim of offering flatness in the open-loop phase response around the
gain crossover frequency [7–15] and have also been introduced to ensure robustness against
variations in the time constant of a plant. In [16] a fractional-order controller was designed
so that the phase margin and gain crossover frequency could have specific desired values.
In [17] a fractional-order controller was proposed for stable minimum-phase plants with
large uncertainty in the location of one of their poles. Following this, the rules introduced
in [17] have been modified in [18] to include plants with fractional-order transfer functions
and uncertain poles. The controller obtained from the method of [18] is able to exactly
satisfy the required frequency-domain objectives, where the uncertain parameters in the
plant model can vary in an infinite range. A further extension was done in [19] for the
case of single-order power-law plant transfer functions. Furthermore, a fixed-structure
fractional-order controller has been designed in [20] to obtain the desired values for the
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phase margins and adjust the crossover frequencies. The method of [20] has been improved
in [21] so that the uniqueness of the crossover frequencies is guaranteed.

In the present work, the tuning rules of [18] are applied in the case of plants with
dynamics described by double-order power-law transfer functions, leading to the need
for power-law compensators. The derived compensator transfer function is approximated
through the utilization of a curve-fitting technique, resulting in a rational integer-order
transfer function. This transfer function is capable of fulfilling the robust compensation
problem of control systems, including plants with an uncertain pole [18] and can be
implemented using conventional filter design techniques. As a design application example,
a control system used in machining is presented and the performance of the introduced
compensator, and also of the whole system, are evaluated through experimental results
using a quad-core Filed-Programmable Analog Array (FPAA) platform.

The paper is organized as follows: the proposed compensator is presented in Section 2,
where both its theoretical analysis and implementation aspects are discussed. A design
example and experimental results are presented in Section 3, certifying the validity of the
presented concept.

2. Power-Law Compensator for Robustness against Plant Uncertainty
2.1. Theory

Consider a compensator-plant system, where the transfer function of the compen-
sator is

C(s) = (k + qsα)p , (1)

with α ∈ (−2, 2), and the transfer function of the plant is given by

Gb(s) =
(

1
bsβ + 1

)p
, (2)

including an unknown parameter (b), possibly with a wide range of variation. The aim is
to design the compensator such that the following objectives are met:

1. In the nominal case (i.e., b = b0), the Nyquist diagram of the open-loop transfer
function T(s) = C(s) · Gb(s) meets the fixed point M · ejφ, where M ∈ (0, ∞) and
φ ∈ [−π, π), at a desired frequency ω = ωc0;

2. Despite the variations of b from its nominal value, the Nyquist diagram of the transfer
function still crosses the fixed point M · ejφ.

The above objectives are simultaneously satisfied by the compensator if designed such
that the following conditions hold:

α = β +
2φ

pπ
− 2n, n : integer (3)

q = M1/p ·

[
b0ω

β
c0 sin

(
βπ
2 + φ

p

)
+ sin

(
φ
p

)]
ωα

c0 sin
(

απ
2
) (4)

and

k = M1/p ·
sin
(

βπ
2

)
sin
(

βπ
2 + φ

p

) . (5)

This can be proved using (3)–(5) and Theorem I in [18], where it is deduced that(
C(jωc0) · Gb(jωc0) |b=b0

)1/p
= M1/p · ejφ/p. Therefore, C(jωc0) · Gb(jωc0) |b=b0= M · ejφ

meets the first objective. In this case, each b, ωc is found, such that (C(jωc) · Gb(jωc))
1/p

= M1/p · ejφ/p, thus confirming that the second objective is also satisfied. An important
remark is that, for M = 1, the variable φ is related to the phase margin (PM) of the system
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according to the formula PM = π + φ, while the characteristic frequency is equal to the
crossover gain frequency, i.e., ωc0 = ωcg.

2.2. Design Example

In order to demonstrate that this concept is robust in stabilizing the PM of a controlled
system in plants with uncertainties, we consider the problem of estimating the heat flux
during machining, described in detail in [22]. The dynamics of the plant are described by a
transfer function of the form

Gb(s) =
1

(bs0.92 + 1)1.49 . (6)

with nominal value b = b0 = 3.448. Using the expressions in (3)–(5), and considering that
φ = −π/2, M = 1 (i.e., PM = 90◦ and that the crossover gain frequency is ωcg = 20 rad/s,
then the transfer function of the required compensator becomes

C (s) =
(

2.5132 + 1.2495s0.2589
)1.49

. (7)

The achieved robustness at the presence of uncertainty in the pole of the plant is
demonstrated by considering a ±40% variation in the nominal value of b. The corre-
sponding open-loop transfer function Nyquist plots, plotted in Figure 1 show that the PM
was 89.97◦ at −40% deviation and 89.98◦ at +40% deviation; both are very close to the
theoretical value of 90◦.
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Figure 1. Nyquist plots of the controlled system (6) at the presence of plant uncertainties (blue:
b = 0.6b0, red: b = b0, green: b = 1.4b0).

The transfer function of the power-law compensator, given in (7), can be approximated
using a curve-fitting technique based on the MATLAB built-in function fitfrd, which approx-
imates the desired function within a pre-defined frequency range [23]. Another potential
tool is the Padé approximation, which actually approximates the transfer function around a
pre-defined center frequency. Here, the curve-fitting-based technique was employed since,
in most cases, it provides improved accuracy over the Padé approximation tool [24,25].
The obtained rational integer-order transfer function which performs the approximation of
its power-paw counterpart within the frequency range ω = [100, 10+2] rad/s, is given by

C (s) ' 3.941 s3 + 302.8 s2 + 2608 s + 2041
s3 + 204.4 s2 + 3836 s + 7708

. (8)
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A possible implementation of the function in (8) is that based on the standard Follow-the-
Leader-Feedback (FLF) multi-feedback structure which is described by the transfer function

HFLF (s) =
G3 s3 + G2

τ1
s2 + G1

τ1τ2
s + G0

τ1τ2τ3

s3 + 1
τ1

s2 + 1
τ1τ2

s + 1
τ1τ2τ3

. (9)

The variables τi , (i = 1, 2, 3) are time constants, while the variables Gj , (j = 0, 1, 2, 3)
are gain factors and both are calculated through the equalization of the coefficients of
the numerator and denominator in the polynomials in (8) and (9). The resulting values
are provided in Table 1. It should be mentioned that (8) can also be implemented by
other well-known structures, such as the Inverse-Follow-the Leader (IFLF) topology or the
parallel filters topology. The IFLF topology is preferable in cases where differential signals
are used while parallel filters are advantageous in the case of current-mode signals.

Table 1. Values of time constants and gain factors of the FLF structure for realizing the transfer
function in (8).

Time Constants Scaling Factors

τ1 τ2 τ3 G0 G1 G2 G3
4.9 ms 53.3 ms 497.7 ms 13.235 33.99 74.085 197.05

3. Experimental Verification

Field-Programmable Analog Arrays (FPAAs) are analog signal processors based on
configurable analog blocks (CABs) that offer design programmability and versatility [26,27].
The functionality of the proposed compensator is evaluated through an experimental FPAA-
based process, using the Anadigm AN231K04 FPAA [28]. The experimental setup is shown
in Figure 2, where an extra interface stage, implemented on the breadboard using discrete
AD844 operational amplifiers, is also used for the single-to-differential conversion of the
input signal and the opposite conversion of the output signal of the FPAA. The power
supply voltage is set as ±15 V, while the chip clock is set as 1 kHz.

Figure 2. Experimental setup for evaluating the performance of the proposed power-law compensator.

3.1. Compensator-Plant System

The transfer function in (9) with the values of Table 1 was realized on the FPAA, as
shown in the Anadigm design of Figure 3. Note that all gain factors were scaled by a
factor equal to 0.02 to achieve reasonable results that avoid saturating the internal FPAA
op-amps. This means that the realized function is 0.02× HFLF (s). The integration stages
of the FLF structure are implemented using Integrator CABs, while for the time constants
of higher values, gain stages are also required. The feedback loop at the input point and
the summation at the output point of the structure are realized through the two Sum/Diff
CABs of the FPAA configuration.
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Figure 3. FLF structure and its realization on the FPAA.

The efficient operation of the realized compensator is evaluated through the obtained
gain and phase frequency responses, depicted in Figure 4a, which are presented along with
those predicted by the ideal compensator function in (7) and the approximated one in (8).
The agreement between the experimental results and the corresponding approximated
and ideal ones is evident and is further verified through the error plots of Figure 4b. The
time-domain operation of the compensator is evaluated through the input and output
waveforms at the crossover gain frequency ωcg = 20 rad/s with the obtained oscilloscope
screenshot provided in Figure 4c. The measured gain and phase are 1.58 dB and 33◦, with
the corresponding theoretically predicted values being 1.56 dB and 33◦, respectively.

Using the same configuration of Figure 3, the open-loop behavior of the system, i.e.,
the transfer function C (s) · Gb(s), can be evaluated. This is done after approximating the
open-loop transfer function using the curve-fitting method in the form

C(s) · Gb(s) '
−0.003221 s3 + 19.78 s2 + 257.4 s + 265.9

s3 + 12.97 s2 + 17.48 s + 4.912
(10)

with the corresponding FLF structure parameters summarized in Table 2.

Table 2. Values of time constants and gain factors of the FLF structure for realizing the transfer
function in (10).

Time Constants Scaling Factors

τ1 τ2 τ3 G0 G1 G2 G3
77.1 ms 742.1 ms 3.558 s 54.14 14.73 1.525 −0.0032
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Figure 4. Experimental results of the realized power-law compensator (a) gain/phase responses and (b) their relative errors,
and (c) input/output voltage waveforms at ωcg = 20 rad/s.

The open-loop frequency experimental behavior of the system is presented by the
gain and phase plots in Figure 5a. The measured crossover gain frequency is 20 rad/s
and the associated phase margin is 91◦, close to the corresponding specification of 90◦,
while the corresponding relative errors are given by the plots of Figure 5b. The correct
operation of the open-loop system is also verified by the time-domain plots in Figure 5c,
where the oscilloscope screenshot (which presents the input and output waveforms at the
characteristic frequency ωcg = 20 rad/s) are demonstrated.

The closed-loop compensator-plant system is implemented using an extra Sum/Diff
CAB, in order to realize the feedback loop. The behavior of the system is evaluated through
the step response (shown in the oscilloscope screenshot of Figure 6) with its efficiency
being verified by the obtained results in the measurement of characteristic parameters.
In particular, the measured values of the rise time, settling time and overshoot are 98 ms,
278 ms, and 0.1%, while the theoretically predicted values are 106.9 ms, 285.5 ms, and
0.1339%, respectively.
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Figure 5. Experimental results of the open-loop system C(s) · Gb(s) (a) gain/phase frequency responses and (b) their
relative errors, and (c) input/output voltage waveforms at the gain cross-over frequency ωgc = 20 rad/s.

Figure 6. Experimental step response the closed-loop system at the nominal value of the pole of
the plant.



Electronics 2021, 10, 1305 8 of 10

3.2. Effect of the Plant Uncertainties

The effect of the uncertainty in the pole of the transfer function of the plant is experi-
mentally studied, assuming that the variable b0 is changed by ±40% of its nominal value.
The behavior of the open-loop system towards these variations is evaluated through the
input and output waveforms at the gain crossover frequency of 20 rad/s (see Figure 7a,b),
where it is confirmed that the phase margin remains unaffected with values very close
to the theoretically predicted value of 90◦. The corresponding closed-loop system results,
which are given by the oscilloscope screenshots of the step responses in Figure 7c,d, also
verify, in this case, that the plant uncertainties do not affect the robustness of the fixed
point. More specifically, the rise time is measured as (94, 100) ms and the settling time
is measured as (288, 326) ms, respectively at −40% and +40% of the nominal pole value,
with the ideal rise time being 98 ms and settling time being 278 ms.

(a) (b)

(c) (d)

Figure 7. Input and output waveforms of the open-loop system at the characteristic frequency ωcg = 20 rad/s in the
presence of the plant’s pole uncertainty and corresponding step responses (a,c) b = 0.6 · b0 and (b,d) b = 1.4 · b0.

4. Conclusions

Robust compensation of the frequency response characteristics of plants described
by power-law dynamics can be achieved through the utilization of compensators, also
described by a power-law transfer function. This is achieved through the establishment
of suitable tuning rules, which perform appropriate shaping of the open-loop Nyquist
plot in such a way that it always crosses a desired point. This is very important from a
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practical perspective because the invariant phase and gain margins can be considered as
special cases of the aforementioned feature, making the derived control system robust in
fractional-order plants with an uncertain pole. A selected design example is experimentally
verified using an FPAA-based implementation, verifying the theoretical results.
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