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Abstract: This article focuses on an eHealth application, CogniViTra, to support cognitive and
physical training (i.e., dual-task training), which can be done at home with supervision of a health
care provider. CogniViTra was designed and implemented to take advantage of an existing Platform
of Services supporting a Cognitive Health Ecosystem and comprises several components, including
the CogniViTra Box (i.e., the patient terminal equipment), the Virtual Coach to provide assistance, the
Game Presentation for the rehabilitation exercises, and the Pose and Gesture Recognition to quantify
responses during dual-task training. In terms of validation, a functional prototype was exposed in a
highly specialized event related to healthy and active ageing, and key stakeholders were invited to
test it and share their insights. Fifty-seven specialists in information-technology-based applications
to support healthy and active ageing were involved and the results and indicated that the functional
prototype presents good performance in recognizing poses and gestures such as moving the trunk
to the left or to the right, and that most of the participants would use or suggest the utilization of
CogniViTra. In general, participants considered that CogniViTra is a useful tool and may represent
an added value for remote dual-task training.

Keywords: cognitive function; rehabilitation; cognitive training; dual-task training; home care

1. Introduction

Cognitive training is a non-pharmacological therapeutic aiming at the maintenance
(e.g., older adults with neurological diseases) or the improvement (e.g., children in the
school setting, to ameliorate problems associated with learning difficulties) of particu-
lar aspects of cognitive domains [1], such as attention, memory and learning, language,
executive functions and calculation, and constructional and perceptive abilities [2].

A cognitive training program is usually made up of a set of different types of exercises,
such as word searches, letters and numbers, or the recognition of patterns and geometric
figures. The exercises can be performed individually or in groups, although their selection
should comply with an individualized intervention explicitly focusing on a person’s needs,
with the difficulty level of activities adapted to the individual functioning, and must be
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executed under the control of a clinician (e.g., psychologist, neuropsychologist, speech
therapist, occupational therapist, neurologist, or psychiatrist).

Traditionally, cognitive training was based on paper-and-pencil exercises, but with
technological development a diverse set of computerized tools are being used.

The simultaneous performance of cognitive and motor tasks can be difficult and
can lead to worse performance in one of the domains (i.e., the cognitive or the motor
domain) or in both domains. This is known as cognitive-motor interference, which is
usually experienced by individuals with physical and cognitive deficits, such as patients
with stroke, Parkinson’s disease, or Alzheimer’s disease [3]. Cognitive-motor interference
may prevent individuals from allocating appropriate attentional resources, which impacts
their daily living activities, namely in terms of mobility due to the increase of fall risk [3].

Dual-task training comprises the realization of exercises that require the simultaneous
performance of two independent (i.e., with different goals and that can be performed
independently) cognitive and physical tasks, which is different from a single task requiring
cognitive and physical resources [4,5]. Examples of dual-task exercises include the repe-
tition of a digit string while walking or performing different movements in response to
visual, auditory, or olfactory stimuli [6].

Based on the cumulative evidence of cognitive and physical training effectiveness in en-
hancing cognitive functions of older adults with mild cognitive impairment [7–9], the com-
bination of physical and cognitive training is assuming an increasing importance [10–16].
This is known as dual-task training [17,18].

Moreover, the extension of cognitive training from the clinical setup to the home
environment represents a reduction of the burden for caregivers (i.e., formal and informal
caregivers), and might increase the number and the duration of training sessions as well as
overcome restrictions imposed by the availability of care resources, which are exacerbated
by the current global pandemic. Therefore, innovative approaches (e.g., using information
technologies [3,18,19]) are required to surpass the current health care system’s lack of
resources (i.e., human and physical infrastructures) and address the growing number of
patients with neurological disorders requiring interventions.

Although there are technological solutions able to provide multisensory feedback
and modulate exercise complexity according to the patients’ capacity, they rarely provide
exercises validated for neurological rehabilitative interventions [3] as well as appropriate
interoperability mechanisms to support collaborative networks and the integration of
clinical care and home care [20]. For these reasons, a European funded project, Cognitive
Vitality Training (CogniViTra), seeks to develop and validate an eHealth application to
support dual-task training, both in clinical settings and at home.

This article presents the design and development of the CogniViTra application, based
on an already clinically validated set of cognitive training exercises that take the form of
games, which is part of a Cognitive Health Ecosystem [21,22] supported by a Platform of
Services. Furthermore, the article also presents the results of the first stage of the validation
process, which consisted of a conceptual validation based on a peer review, involving a
group of specialists (i.e., health care providers, social care providers, information technolo-
gies developers, and decision-makers) with experience and competence in the development
of eHealth applications to support healthy and active ageing. This was considered fun-
damental for the preparation of a future multicenter clinical trial to assess the adherence,
efficacy, and efficiency of a dual-task rehabilitation program supported by CogniViTra.

Some authors of this article are clinicians experienced in the treatments of neurological
diseases, including cognitive rehabilitation, either face-to-face or remotely, namely using
the Cognitive Health Ecosystem. These clinicians lead the design and development of Cog-
niViTra, and their main motivation was to develop a scalable digital solution to optimize
dual-task training intervention in the daily clinical practice.

CogniViTra presents important advantages when compared with related state-of-the-
art solutions, namely the availability of clinical management tools and the integration with
clinical care workflow.
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Another significant advance over state-of-the-art solutions is CogniViTra’s capacity
to automatically quantify and register the cognitive performance of the patients when
performing dual-task training. For instance, since a dual-task training exercise require the
realization of a physical activity together with a cognitive task such as the repetition of
digit string in reverse order, in the current clinical approach the correctness of the repeated
string must be permanently verified by the practitioner, which is neither practical nor
efficient. Therefore, the automatic quantification and registration of the patients’ cognitive
performance is fundamental to optimize practitioner efficiency and to scale dual-task
cognitive interventions.

This article has the following structure: Section 2 reviews the research work that
influenced this study and presents a summary of the state of the art regarding dual-task
cognitive training. Section 3 introduces the Cognitive Health Ecosystem and the Platform of
Services that supported the development of the CogniViTra application. Section 4 describes
the design and development of the fundamental components of CogniViTra. Section 5
presents the results of the conceptual validation of CogniViTra. Finally, Section 6 details
the conclusions of the study and points out possible future work.

2. Related Work

The individuality of each human being results, to a large extent, from the public
expression of the brain, through cognitive and behavioral functioning. The skills to learn,
evolve and manage all aspects of daily life are dependent on normal brain functioning.
As we get older, the importance of the brain and cognitive health status becomes the
determining factor for quality of life [23].

However, the brain is continuously exposed to all types of damage and disease (e.g.,
trauma, depression, cancer, hypertension, diabetes, smoking, stroke, and Parkinson’s and
Alzheimer’s diseases), each of which has a cumulative effect on the probability to develop a
cognitive problem. Throughout an individual’s life, the cognitive risk due to brain disease
is 1:3 [24]. At the population level, this risk translates into 15–30 new years of life lost
due to disability for every 1000 inhabitants/year [23]. Thus, considering all major groups
of diseases, those of the nervous system represent the greatest contribution to the global
impact on the health of populations worldwide (i.e., 6.3%) and are responsible for the
highest disability rates and global burden of disease [23].

Consequently, neurological diseases are responsible for an increasing demand for
health care services [23]. Regardless of their original causes (e.g., stroke, brain dam-
age, neurodegenerative diseases), cognitive deficits rarely recover spontaneously or com-
pletely [25,26]. Brain damage, once established, is difficult to reverse; in fact, there are no
pharmacological interventions with a confirmed significant positive effect [27–29]. Cur-
rently, cognitive care is largely dependent on traditional methods centered in institutions,
only feasible in the presence of a health care practitioner. These are typically slow processes,
based on the plasticity of the remaining brain tissue, and depend entirely on the implemen-
tation of rehabilitation programs, which are usually complex and intensive [30,31].

Rehabilitation programs have proven to be effective in compensating, improving, and
stabilizing deficits in various diseases and nosological models. Like other rehabilitation
processes, the results obtained always depend on the early start of the rehabilitation
program, its intensity, and the specificity of the therapies used [26,29,32–34]. However,
although neurological rehabilitation programs are accepted as fundamental components in
current treatment models, there are strong restrictions on patient access [10,23,35–37], since
such programs require multidisciplinary teams and are usually carried out in a hospital
context, away from the patient’s home and implying the presence of family members. This
translates into an enormous effort for patients, families, and institutions [33] and generates
great economic burdens, both for families and health care systems [11,12]. In addition,
there are limits to the effectiveness of treatment programs, given the difficulty that health
care systems have in providing rehabilitation sessions in due time (i.e., right after the injury
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or the onset of the disease) and with the intensity, quality, and duration appropriate for the
stimulation of brain tissue plasticity [38].

Bearing in mind the enormous impact associated with neurological diseases, it is
now widely recognized that the services and resources available at the level of health care
systems are disproportionately scarce in this area [23,39]. Moreover, these systems are
unable to cope with the pressure imposed by the increased prevalence of these diseases
associated with the increased average life expectancy and population aging.

Despite the serious problems verified, there have been successive scientific advances
that have resulted in the production of new knowledge in terms of genetic, molecular,
cellular, physiological and behavioral processes, and neural networks that support brain
plasticity and recovery [40,41]. This new knowledge has given rise to new types of therapies,
namely therapies centered on the promotion and modulation of neuroplasticity, on learning
and memory mechanisms or on neurogenesis and axonal regeneration, whether through
pharmacological or non-pharmacological strategies [42–44]. In this context, neurorehabili-
tation is also changing as a result of the practical applicability of research in neurosciences
and, consequently, is largely dependent on the development of more effective technologies
that facilitate the extensive application of all the knowledge produced [45,46]. Training-
based rehabilitation programs, regardless of their modality (e.g., cognitive, behavioral,
or motor), the place of application (e.g., at the patient’s home or at the institution), the
mode of application (e.g., alone or in combination with pharmacological strategies), or
the type of disease to be treated, require specific and controlled interventions, monitoring
of patients, as well as clinical trials supported by direct measures of cognitive and motor
functioning [46–48].

Dual-task training is being included in training-based rehabilitation programs, not
only because the scientific literature reports positive effects [10–18], but also because daily
living requires the ability to perform multiple cognitive and physical tasks simultaneously.
In this respect, dual-task training is seen as an approach to prepare patients for adequately
returning to community living (e.g., household, family, work, or leisure) [18,49]. Moreover,
dual-task training has been proposed as a potentially effective strategy for reducing the
risk of falling in the elderly population [50].

Although dual-task training can be supported in use of paper-and-pencil exercises,
the high intensity required for physical and mental adaptations must be modifiable and
personalized according to the functional status of each patient. In this respect, infor-
mation technologies have brought a broad range of possibilities for smart and adapted
exercises [19]. Different solutions such as virtual reality [18] and mobile apps [3] are being
used to support dual-task training.

Table 1 presents relevant studies [3,51–65] related to the use of digital solutions to
support physical activities or cognitive and physical activities with different purposes
(i.e., postural control and prevention of falls [51,53,54,58,59,65], assistance in physical
exercises [52,56,61], physical activity adherence [55], improvement of physical perfor-
mance [58–60,63,64], and improvement of cognitive performance [3,57,60,62,64]). The
studies are supported in various types of technologies, namely exergames and virtual
reality [51,53,54,57–63,65], robotics [52,56,61], and mobile devices [3]. In turn, some of
these articles report interactions mechanisms based on the recognition of body movements
(e.g., using Kinect [51,52,57,58,65], Nintendo Wii Fit [53], or wearable devices [59,60]),
feet movements using step training platforms [54,63], or leg movements on a training
bicycle [55].
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Table 1. Features of relevant studies related to the use of digital solutions to support physical activities or cognitive and physical activities.

# Title Year
Cognitive Function as

Primary Clinical
Outcome

Interaction
Automatic

Quantification of
Cognitive Performance

Support Tools and
Clinical Information

Integration
Environment

[51] Effects of Kinect adventures games versus conventional physical therapy
on postural control in elderly people: a randomized controlled trial. 2018 No Body

movement No No Clinical setting

[52] Socially assistive robotics: Robot exercise trainer for older adults. 2018 No Body
movement No No At home

[53] Cognitive-motor exergaming for reducing fall risk in people with chronic
stroke: A randomized controlled trial. 2019 No Body

movement No No Clinical setting

[54]
Effect of cognitive-only and cognitive-motor training on preventing falls.

in community-dwelling older people: protocol for the smart±step
randomized controlled trial.

2019 No Feet movement No No Clinical setting and at
home

[55] A social virtual reality-based application for the physical and cognitive
training of the elderly at home. 2019 No Leg movement No No Clinical setting and at

home

[56] Cognitive system framework for brain-training exercise based on
human-robot interaction. 2019 Yes No No No Clinical setting

[3]
Design, development, and testing of an app for dual-task assessment and

Training regarding cognitive-motor interference (CMI-APP) in people
with multiple sclerosis: multicenter pilot study.

2020 Yes No No No Clinical setting

[57]
Cognitive training using fully immersive, enriched environment virtual
reality for patients with mild cognitive impairment and mild dementia:

Feasibility and usability study.
2020 Yes Body

movement No No Clinical setting

[58] Beneficial effects of interactive physical-cognitive game-based training on
fall risk and cognitive performance of older adults. 2020 No Body

movement No No Clinical setting and at
home

[59]
Novel mat exergaming to improve the physical performance, cognitive

function, and dual-task walking and decrease the fall risk of
community-dwelling older adults.

2020 No Body
movement No No At home

[60]
Effects of an in-home multicomponent exergame training on physical
functions, cognition, and brain volume of older adults: A randomized

controlled trial.
2020 No Body

movement No No At home

[61]
Can robotic gait rehabilitation plus virtual reality affect cognitive and
behavioral outcomes in patients with chronic stroke? A randomized

controlled trial involving three different protocols.
2020 Yes No No No Clinical setting

[62] An exergame for cognitive inhibition training. 2021 Yes Body
movement No No At home

[63] The efficacy of exergaming in people with major neurocognitive disorder
residing in long-term care facilities: a pilot randomized controlled trial. 2021 No Feet movement No No Clinical setting

[64] Dual-task exercise to improve cognition and functional capacity of healthy
older adults. 2021 Yes No No No Clinical setting

[65] Effects of virtual reality vs conventional balance training on balance and
falls in people with multiple sclerosis: a randomized controlled trial. 2021 No Body

movement No No At home

CogniViTra Yes Body
movement Yes Yes Clinical setting and at

home
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When compared with stat-of-the-art technological solutions, the study reported by
this article presents two important advantages: (i) support tools and clinical information
integration and (ii) automatic quantification of patient’s cognitive performance during
dual-task training.

CogniViTra presents backend applications that are fundamental to helping practition-
ers with the management of clinical interventions, including the preparation of individ-
ualized intervention plans (e.g., definition of objectives, areas of cognitive intervention,
individual composition of training sessions, and duration and intensity of treatment) and
the monitoring of the intervention results. These features are not present in the identi-
fied studies and are impossible in some of them (e.g., the solution reported by [56] is a
single-exercise solution, and the solution reported by [51] uses four commercial adventure
games). Moreover, CogniViTra is supported in a clinical validated exercise battery, and its
clinical data structures together with security mechanisms promote the integration of the
corresponding interventions with the clinical care workflows. This means, for instance,
that CogniViTra clinical assessments of specific patients might be available, when required,
to the authorized multidisciplinary care team, safeguarding the privacy, integrity, and
confidentiality of the information.

Furthermore, one of the most relevant features of the CogniViTra application is the
automatic quantification and registration of the cognitive performance of the patients. This
is fundamental for the practitioner assessment of the clinical intervention and surpasses
difficulties associated with usual clinical cognitive interventions.

The aforementioned CogniViTra features result from the approach followed for the
definition of its functional requirements. Contrary to other solutions, a major concern to
consider for the development of CogniViTra was to contribute to bridging the gap between
technological advancement and clinical relevance, a problem associated with dual-task
rehabilitation programs, as indicated by [19].

3. Cognitive Health Ecosystem

To respond to the challenges of cognitive rehabilitation, some of the authors of this
article were involved in the development of several eHealth applications that, taken
together, constitute a Cognitive Health Ecosystem [21,22]. This development started in
2005 in a memory clinic that organized and delivered care to a 400,000 inhabitant population
and was anchored in a hospital with clinical and research obligations.

An important contribution of this ecosystem is the minimization of critical sustain-
ability issues for the cognitive health management of the population by increasing the
capacity to identify early and monitor all individuals at risk for cognitive decline and
providing early cognitive interventions with the adequate quality, intensity, and duration
to obtain relevant functional effects. For this purpose, the Cognitive Health Ecosystem aims
to disseminate innovative technological solutions to support different clinical domains:

• Screening—sustainable population-based cognitive screening strategies to allow the
population at risk to be tracked, without requiring physical travel to specialized
clinical centers or expensive radiology, nuclear, or molecular medicine exams;

• Diagnosis—solutions to optimize the global neuropsychological assessment process
of patients and to improve the collection of data on cognitive functioning to reduce
patient fatigue and the duration of assessments;

• Rehabilitation—strategies to allow individual or group cognitive training programs,
using cognitive tasks and others that involve exercises and movement, ideally at home
or in community-based institutions;

• Research—multicentric scientific studies facilitated by a translational network envi-
ronment that promotes large sample sizes, while simultaneously shortening the time
needed to recruit patients and complete the study. These studies carried out within
the ecosystem aim to facilitate the rapid implementation of innovative processes and
the mobility of the knowledge produced;
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• Impact—articulation between the various domains described above to have a sig-
nificant impact in terms of the cognitive health of the population served, measured
by the levels of intellectual performance, social participation, and quality of life of
the citizens.

In strategical terms, Cogweb [21] is the ultimate exponent of the available services,
and approximately 10,000 patients had access to Cogweb-mediated remote cognitive
rehabilitation.

3.1. Platform of Services

The key element of the Cognitive Health Ecosystem is a Platform of Services that sup-
ports different eHealth applications [21,22] and was based on two important requirements:
(i) to increase the productivity and intervention capacity of the professionals and (ii) to
move the clinical decision to the community, to ensure increased adherence and quality of
the services.

Without a common and shared architectural standard for software, data formats,
storage systems, modules, and information resources, development and integration are
difficult and often promote replicated data in diverse data formats and storage systems. To
overcome these difficulties, a service oriented architecture (SOA) [66] was considered. This
architecture presents several advantages since it can optimize flexibility and interoperability
of the components over the longer term. Furthermore, the use of an n-tier SOA allows the
separation of business rules from the applications and the technologies that interpret them,
which maximizes flexibility and minimizes the cost of accommodating changes in business
rules and therefore allows the development of specific applications without significant
development effort.

The generic architecture of the Platform of Services is divided into three layers
(Figure 1): (i) the User Application Layer comprises a set of applications to fulfil the
needs of all those involved in the Cognitive Health Ecosystem; (ii) the Backend Services
Layer is responsible for all logic related to the interactions between the different applica-
tions and the data being persisted; and (iii) the Data Layer ensures the persistence of all
information used in the remaining layers, and it is divided into a set of databases, each
housing specific data about a given goal.
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3.2. User Application Layer

All information collection and communication procedures are processed through the
components of the User Application Layer. This layer is understood in a bidirectional
sense in terms of information communication and admits specialization according to the
characteristics of the users’ profiles and the hardware used for access (e.g., a desktop or
a tablet computer). Concerning users’ profiles, beside the patients and the specialized
practitioners (e.g., neuropsychologists), other types of users include informal caregivers,
physicians, researchers (e.g., data analysts or biostatistics), or those that are responsible
for the ecosystem management. The specificities of the various types of users are omitted
for clarity.

The cognitive interventional approaches are conducted by practitioners that play a
central role in defining the degree of supervision and the type of patient exposure to the
treatment, namely the definition of objectives, areas of cognitive intervention, individual
composition of training sessions, or duration and intensity of treatment. Although the pres-
ence of practitioners is not continuously necessary for the training, they can actively direct
all activities via online interaction and periodic (e.g., daily, weekly, or monthly) meetings.

Concerning the patients, the User Application Layer, in addition to allowing access to
the online training area, contains educational content targeting the general population and a
blog. The aim of the site is to provide scientific and pedagogical information about cognitive
functioning and its changes, and the possibilities and indications for cognitive training.

3.3. Backend Services Layer

The main element of the Backend Services Layer is the Cognitive Games Engine that
comprehends a pool of more than 100 original exercises (i.e., games) that are grouped
according to major cognitive function stimulated (i.e., attention, memory and learning,
language, executive functions and calculation, constructional and perceptive abilities);
cover different degrees of impairment, from normal function to moderate deficits; have se-
quential levels of difficulty, the progression through levels being automatic and determined
by patients’ performance; and are prepared not only for sessions with single patients, but
also for group sessions.

A typical cognitive exercise is the digit span backwards [67], a mental tracking task
that requires sustained attention, working memory, and information processing speed. A
string of digits (e.g., 5-7-1-6-3) is presented at a fixed rate (e.g., one per second), and the
patients are requested to repeat the string in reverse order. Each patient’s digit span length
is determined by the largest sequence length for which the patient scores at least 75%.

Figure 2 presents other four possible exercises: faces and names, match the color,
changing letters, and arrange the words. In the first exercise, faces and names, photos
of several individuals with their corresponding names are presented in the beginning of
the exercise; then, the different photos are individually presented, and the participants
should indicate whether the given name is correct or not, considering the set of photos
initially presented. In the second exercise, match the color, a sequence of two words sets is
presented, and the participants should indicate whether the words have the same color
or not. Concerning the concrete example presented in Figure 2 of the changing the letters
exercise, the participants should replace the letter R with the letter N when the traffic
light is green and, when the traffic light turns red, the participants should replace the
letter Q with the letter P. Finally, in the arrange the words exercise, a sequence of words is
presented, and the participants should classify them. For instance, considering the specific
instance of a sequence of words presented in the arrange the words exercise of Figure 2,
the participants should indicate that the dolphin is a marine animal and not an insect or
a vegetable.
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Some of these exercises are computerized versions of existing paper-and-pencil exer-
cises, and others were created to meet specific requirements expressed by the practitioners
and to exploit computer functionalities that would be particularly difficult to reproduce
with a paper-and-pencil approach. During the dynamic generation of the exercises, the
individual patients’ performance data (e.g., accuracy and number of clues required) are
analyzed to set the appropriate difficulty level. For each exercise and each level, thresholds
are defined to allow difficulty levels to be progressively increased. Therefore, for each
training section different parameters are retrieved, such as type of exercise, difficulty level,
accuracy, and response time, which are used to assess both the overall outcome of a session
and the global trend of the rehabilitation.

Since the Platform of Services supports a collaborative network and can be accessed
by a broad range of users that are distributed, both in geographical terms and in the
administrative terms, privacy, integrity, and confidentiality of the information need to be
ensured in a transparent easy-to-maintain way and supported on a strong granularity in
terms of the definition of different authorization levels. For this purpose, the Backend
Services Layer presents the following services:

• Authentication, to provide the identification of the users;
• Authorization, to regulate access to the information, including the establishment

of access controls to limit personnel access, which is challenged by a diverse set of
policies, complexity of workflows, and high risk of denying access to key information;

• Logging and Auditing, to trace which users look at which records so an auditor can
use this information to detect abuses.

Concerning Authentication, users’ credentials are analyzed, and notifications are
stored by the Logging and Auditing service. Furthermore, for each authentication process,
a JavaScript Object Notation (JSON) Token (JWT) is generated with several identifying
elements of the entity trying to access the Platform of Services to be analyzed by the
Authorization service.

The main purpose of the Authorization service is to provide general mechanisms to
control data access. In terms of the implementation, both role-based access control (RBAC)
and attribute-based access control (ABAC) mechanisms were considered for the access
to the data resources [68]. Each member of the cognitive intervention team has access to
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the clinical information of their patients. However, different types of practitioners (e.g.,
psychologists, neuropsychologists, speech therapists, and neurologists) have different roles
according to their competencies and responsibilities, which is translated into different
privileges (i.e., RBAC mechanisms), mainly in terms of information writing. However,
when required in terms of integration with clinical workflows, subsets of the clinical
information of specific patients should be shared with clinicians that are not members of
the cognitive intervention team, according to established protocols. Conceptually, although
it was not implemented, the patients themselves could authorize the access of parts of their
clinical information to their caregivers (e.g., their general practitioners). Consequently, in
addition to the RBAC mechanisms, ABAC mechanisms were also implemented.

The application of the RBAC and ABAC mechanisms requires the definition of infor-
mation access policies, so that requests related to specific patients, information, or actions
are analyzed through a set of pre-established rules (of a certain policy). In this respect, the
eXtensible Access Control Markup Language (XACML) [69] was used since it is a standard
for handling requests for actions, regarding information access, using ABAC policies, and
with additional application logic it can also be used to implement RBAC mechanisms.
With XACML, policies and their corresponding rules can have different levels of detail,
according to the different number of attributes needed before reaching a decision.

Pre-established rules are divided into different categories. The decision for the access
request is obtained after comparing all the values of the attributes of the appropriate
categories, between the request and the previously defined rules. Depending on how a
specific decision rule was defined, the result of a request might be a denial or a permit.
Once a decision is achieved, it is communicated by the Authorization service to the Logging
and Auditing services, to the entity that requested the information access, and to the logic
that supports the Patient Health Record (Figure 1).

For the Logging and Auditing service, based on a previous work [70], a cryptographic
secure blockchain was proposed to store the events and the blocks (of the blockchain)
in a specific database, which can be assessed for auditing. The implementation of this
blockchain mechanism was not supported in available frameworks such as Hyperledger
due to the intention to avoid external dependency in the long run on a commercial product.
Instead, a custom solution was implemented.

The communication of any ecosystem entity with the Logging and Auditing service
is first initiated with a process that aims to establish a security association. This process
consists of the exchange of public keys, which are stored for the remainder of the time. The
Logging and Auditing service may authorize or reject the association, as configured by
the system administration, so that only authentic entities belonging to the infrastructure
may generate log entries. For an authentic entity, the process culminates in the attribution
of a unique shared cryptographic key, generated by the Logging and Auditing service
for the purposes of encrypting the logs sent for storage. Each log entry is then encrypted
and signed by the entity private key. The keys can be refreshed periodically, and a wide
range of ciphers can be used. In the current implementation we resorted to Advanced
Encryption Standard (AES) in the Galois/Counter Mode (GCM), as it provides encryption
and integrity control. In addition, Hypertext Transfer Protocol Secure may also be used
between the entities, but the cryptographic material will only be used for the establishment
of a secure communication tunnel and will have no impact on the log entries.

Log insertion is triggered when an event occurs, usually as a consequence of an action
executed by a user. The data describing the event are sent as a Hypertext Transfer Protocol
Post to the Logging and Auditing service, where they are inserted in its request body
as a JSON object. Since requests must also have a JWT, the verification of signatures is
made using the algorithm specified in the JWT together with a secret key, which allows the
validation of the requested events. Moreover, the Logging and Auditing service decrypts
the object and processes its contents, indexing different elements involved in the event (e.g.,
date, user identifier, application/service identifier) to construct an appropriate document
and the corresponding metadata. Log integrity is validated locally on block insertion at
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fixed intervals as stated by a timer. Inserting a block requires both validating previous
blocks in the chain, which can be done by the Logging and Auditing service or by an
offloaded service, and then registering pending log entries. This creates an interdependence
between log entries from multiple sources, limiting single source spoofing.

Each block contains the set of event entries that were received since the insertion of
the last block. If there is a period without activity, a block will be also created, but its
contents will be a random nonce, concatenated with the current timestamp. This way,
nobody external to the ecosystem will know if there really was activity or not, since
only the block’s metadata are shown. The block effectively seals the chain, asserting its
state at a given instant. If there are data, a cryptographic hash of the block is calculated,
which also considers the content of the previous block, through its hash value. The
block is then inserted into document-based storage, with multiple indexes, using the
ElasticSearch indexer.

Auditing of log entries is the final process and can be conducted either automatically
or by human observers. Existing tools such as Kibana can be used, and the integrity of
the data observed can be ensured. The integrity of the chain can be verified at any time
to check for any inconsistencies. Since every block of the chain has a clear identification,
with fingerprints of the log data as well as time stamps of the first and last event during
that time period, the hash of all the events that occurred between two checkpoints can
be recalculated to check if it matches the one stored in the block. The next and previous
hash fields on every block can also be used to verify that the block itself has not been
tampered with.

The Backend Services Layer also includes a data analytics framework of unidentified
data generated by the users of the platform. Its main purpose is to analyze the quality
of processes according to the standards established by a board of consulting clinicians.
Long-term monitoring tools were incorporated into the data analytics to supervise clinical
evolution and adjust programs according to the patients’ progression (e.g., alerts, reports,
benchmarking instruments, longitudinal analysis of evolution, prognostic and predictive
models). Moreover, management algorithms were also implemented to guarantee scalabil-
ity, so that some changes occur automatically, according to the results of the data analytics
algorithms, such as evidence for the substitution of a useless exercise, the changing of
system features that lead to errors, setting new automatisms such as alert signs for some
clinical situations, or the preparation of specific educational campaigns for practitioners.

3.4. Data Layer

The Data Layer is divided into a set of databases, each housing specific data about
a given goal. This division is intended to: (i) separate different types of information; (ii)
ensure the autonomy of information that is persisted; (iii) increase security levels; and (iv)
allow different technologies to be adopted for the implementation of different databases.

The main database is the Patient Health Record, where the practitioners may add
patients’ information to the system and manage it later. It includes the medical form (e.g.,
identification data, data on the duration of the license to use the system and patients’
credentials to access it, and clinical data), the neuropsychological assessment (e.g., the
general descriptive data of the evaluation and quantitative results obtained in each neu-
ropsychological test, with the possibility to record several evaluations over time), and the
intervention plan (e.g., treatment plan, including duration, main cognitive domains, and
the expected intensity of training, which can be used for the detailed evaluation of the
quality of the tasks prescribed to the patient in the next session).

In addition to the Patient Health Record, the Data Layer also includes all the databases
required by the ecosystem, namely the users’ database (including the practitioners), the
games database (i.e., information on rehabilitation activities including complementary
information, such as indication of a general-purpose exercise or specific use exercise, type
of pathology, type of user, form of use, versioning, and translations) and the security
database (e.g., credential, profiles, access policies or Logging and Auditing).
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4. CogniViTra

The CogniViTra project seeks to develop and validate an eHealth application to
support dual-task training both in clinical settings and at home. For the CogniViTra
implementation, the flexibility of an SOA architecture of the Platform of Services supporting
the Cognitive Health Ecosystem was utilized.

Therefore, as can be seen in Figure 3, the CogniViTra implementation was based on
the resources already available in the Platform of Services, including the components of
the Backend Services (e.g., the security services, or the Cognitive Games Engine, which is
responsible for the management of the various games, as well as the subsequent storage of
the patients’ results) and the Data Layer (e.g., patient, game, and security mechanism data).
In terms of User Application Layer, the practitioners’ interface is based on the already
existing interface.
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However, concerning the patients, new developments were made for the User Appli-
cation Layer, including the CogniViTra Box, a hardware component to quantify individual
and group responses and interactions during dual-task training (i.e., Pose and Gesture
Recognition).

To take advantage of the CogniViTra Box, the CogniViTra Patient Interaction was
also developed, which is responsible for the management of the data received from the
CogniViTra Box and the presentation of the rehabilitation exercises. Additionally, given
that the inclusion of physical exercises necessarily implies a greater physical distance
from the patient in relation to the terminal equipment, an attempt was made to make
the interaction mechanisms more flexible, namely in terms of availability of multimodal
strategies and of an embodied conversational agent, which aims to provide a unified,
accessible, and easy-to-use interface to ensure that the patients have a seamless interaction
with the CogniViTra application.
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Figure 4 presents a simplified diagram of the CogniViTra Patient Interaction applica-
tion with some of the components of the Platform of Services, the generic architecture of
which is introduced in Figure 1.
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4.1. CogniViTra Box

The concept that supported the design of the CogniViTra Box was the creation of an
aesthetic and functional hub, serving as interface between the user and the CogniViTra
application, without the need for a bulky computer.

As presented in Figure 5, the CogniViTra Box is connected to a TV. Moreover, a
Universal Serial Bus (USB) keyboard and mouse, a Wi-Fi network, and an external speaker
can be added. However, if the TV is connected through High-Definition Multimedia
Interface (HDMI), the speaker will not be necessary.
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Figure 5. CogniViTra Box and peripheral devices at home.

Figures 6 and 7 represent the CogniViTra Box in a higher level of detail, with the com-
ponents that are encased, specifically the single board computer (SBC) (i.e., Intel/Aaeon
Up Squared), the vision processing unit (VPU) (i.e., Intel Movidius Myriad X), the uninter-
ruptible power supply (UPS) and perception devices (i.e., video and audio).



Electronics 2021, 10, 1304 14 of 31
Electronics 2021, 10, 1304 16 of 33 
 

 

 
Figure 6. CogniViTra Box enclosure, 3D render. 

 
Figure 7. Details of the CogniViTra Box. 

The hardware components require specific drivers or operating system versions and 
kernels. Therefore, a specific configuration is required in order to achieve a complete syn-
ergy between the components: 
• With the UPS requiring the latest version of the Ubuntu operating system (18.04 Long 

Term Support) and the VPU requiring at least version 16, the first step is to install 
and activate the Ubuntu operating system on the main board; 

• Having the operating system and kernel installed, all peripheral ports will be availa-
ble, and the remaining drivers can be installed in any order, namely the latest version 
of OpenVINO, OpenCV 3.4.4, Python 3.7, Virtualenv, and also Intel RealSense Soft-
ware Development Kit 2.0. 
For the patient side of the system, it is preferable to have the software start-up as 

automatic as possible, with minimal human interaction or patient training required. To 

Single Board Computer

VPU UPS

Video

Audio

Other 

peripheral

User

CogniViTra Box

Data Processing

Data acquisition

Interaction

Figure 6. CogniViTra Box enclosure, 3D render.

Electronics 2021, 10, 1304 16 of 33 
 

 

 
Figure 6. CogniViTra Box enclosure, 3D render. 

 
Figure 7. Details of the CogniViTra Box. 

The hardware components require specific drivers or operating system versions and 
kernels. Therefore, a specific configuration is required in order to achieve a complete syn-
ergy between the components: 
• With the UPS requiring the latest version of the Ubuntu operating system (18.04 Long 

Term Support) and the VPU requiring at least version 16, the first step is to install 
and activate the Ubuntu operating system on the main board; 

• Having the operating system and kernel installed, all peripheral ports will be availa-
ble, and the remaining drivers can be installed in any order, namely the latest version 
of OpenVINO, OpenCV 3.4.4, Python 3.7, Virtualenv, and also Intel RealSense Soft-
ware Development Kit 2.0. 
For the patient side of the system, it is preferable to have the software start-up as 

automatic as possible, with minimal human interaction or patient training required. To 

Single Board Computer

VPU UPS

Video

Audio

Other 

peripheral

User

CogniViTra Box

Data Processing

Data acquisition

Interaction

Figure 7. Details of the CogniViTra Box.

The hardware components require specific drivers or operating system versions and
kernels. Therefore, a specific configuration is required in order to achieve a complete
synergy between the components:

• With the UPS requiring the latest version of the Ubuntu operating system (18.04 Long
Term Support) and the VPU requiring at least version 16, the first step is to install and
activate the Ubuntu operating system on the main board;

• Having the operating system and kernel installed, all peripheral ports will be available,
and the remaining drivers can be installed in any order, namely the latest version of
OpenVINO, OpenCV 3.4.4, Python 3.7, Virtualenv, and also Intel RealSense Software
Development Kit 2.0.

For the patient side of the system, it is preferable to have the software start-up as
automatic as possible, with minimal human interaction or patient training required. To
achieve this, because the CogniViTra Box is Ubuntu-based, the boot process was simplified
to the minimum, and the only interaction required is the user login.
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The start-up script includes initialization, the use of the correct workspace, the launch-
ing of the required software as a background task, and the activation of a browser with the
CogniViTra website already open.

4.2. Interaction Management

CogniViTra Patient Interaction (Figure 8) comprises three parts: (i) Digital Coach; (ii)
Games Presentation; and (iii) Pose and Gesture Recognition. The first two components
are presented in two iframes, one with fixed content (i) and the other dynamic (ii). The
dynamic content iframe presents all the games as well the web pages from which exercises
can be selected, working as normal of Hypertext Markup Language (HTML) documents.
The third component, Pose and Gesture Recognition, aims to gather feedback from the
patients by recognizing predefined static poses and gestures and is configurable for use in
a home or a clinical setting.
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4.2.1. Digital Coach

The Digital Coach is based on a 3D human embodied conversational agent (named
Rachel) designed to transmit a comfortable feeling and able to communicate using natural
language, with which the patients can interact using a multimodal interface, including au-
tomatic speech recognition and a graphical touch-based user interface. To closely simulate
the human conversational behavior, the Digital Coach includes components for speech
recognition, synthesis of speech, sound and movement, synchronized non-verbal behaviors
such as head nods and facial expressions, and dialogue management. To enable speech
interaction, the microphone and high-definition speakers of the CogniViTra Box are used.

The Digital Coach was developed using SmartBodyJS.js (a JavaScript compiled Library
based on SmartBody [71] that allows quick development of virtual agents). The behavior
and locomotion are manipulated using Behavioral Markup Language (BML) tags. Achiev-
ing poses and gestures is important to strengthen the interaction between the user and the
Digital Coach as this is a form of non-verbal communication. In this respect, SmartBody
has a set of pre-compiled character behaviors such as posture, animations (e.g., jogging,
walking, or playing guitar) and gazes (e.g., staring at an object). Moreover, in terms of
speech synthesis, the SmartBody allows the synchronization of the audio input with the
movements of the embodied conversational agent, namely in terms of mouth movements,
which contributes to the naturalness of the interaction.

4.2.2. Games Presentation

The Games Presentation was developed primarily with web technology, using a
combination of HTML, Hypertext Preprocessor (PHP), and JavaScript. All pages are
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rendered on the Platform of Services side to guarantee that all sensitive and private
information remains safe on the backend. For this reason, PHP is used extensively to
communicate with the Platform of Services, and, in turn, from the Platform of Services
side, JavaScript was used for the implementation of the Cognitive Games Engine, being
in charge of the most dynamic details of the pages and also responsible for control and
operation of all cognitive games available in the system (Figure 9).
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The client-side elements, implemented in HTML and PHP, are:

• Game Canvas Page, where the game is presented on the client side;
• Game Data Loader, the point of access to information related to the game (e.g., game

Id, name, or language);
• Game Results Receiver, the point of reception and storage of game results.
• These three elements are internments united by the PHP session system, which re-

tains all information regarding client authentication and identification during the
operation period.

• Looking at the Cognitive Game Engine from the Platform of Services side, the
JavaScript elements are:

• Game Animation Library, which uses a set of modular libraries and tools that work
together or independently to allow interactive web content called CreateJS;

• Cognitive Game Engine, the central point in our system, being responsible for manag-
ing several important exercise system elements, such as game loading and subsequent
presentation on the canvas;

• Game Script, the file with specific logical instructions (e.g., operation or winning
conditions) from the game, developed and generated in Adobe Animate.

The Cognitive Game Engine provides classes and methods responsible for various
tasks related to the game presentation process, graphic interface around the game (inside
the canvas), and communication with the Platform of Services. These tasks vary over the
different phases of the games’ operation as presented in Figure 10.

During the initial stage, the game canvas is loaded on the page, and the Cognitive
Game Engine commences. Then, the basic game information and the necessary resources for
the game such as images, sounds, and message texts are loaded as well as the game script.

The game starts with the presentation of the title in the display for a few seconds
(e.g., exercise title screen of Figure 10), which is followed by the presentation of the game
instructions on the screen (e.g., exercise instruction screen of Figure 10). Then, the game
enters a standby mode and only starts when user input occurs.
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After the user input occurs, the game script becomes responsible for the game, while
the engine in the background manages the click events of pause and instructive buttons
and responds as expected, displaying a window with a pause or some instructions (e.g.,
Figure 10), monitors the responses given by patients to update the results to define and
adjust game difficulty level between attempts, and determines whether the game will end.
When this occurs, the Cognitive Games Engine is responsible for evaluating whether the
exercise session has ended or not, and, if not, the cycle starts over again for the next game.
Otherwise, the session ends, the backend receives the end of session information, and the
user is sent to the portal of the patient.

4.2.3. Pose and Gesture Recognition

Pose and gesture language such as head nodding, body postures, and hand ges-
tures are effective communication channels in human–human collaboration and can be
categorized into three types with respect to which part of the body is engaged [72]:

• Body—full body poses, actions or motions;
• Hand and arm—arm pose and hand gestures;
• Head and face—nodding or shaking head, winkling lips.

According to the requirements of CogniViTra, the Pose and Gesture Recognition
module was designed to recognize the three types of gesture and poses: full body poses,
actions, or motions (e.g., ‘trunk displacement to the left’ or ‘trunk displacement to the
right’), arm poses and hand gestures (e.g., ‘arms raised’, singular or both) and nodding or
shaking head (e.g., ‘head tilt to the left’ or ‘head tilt to the right’).

The process of Pose and Gesture Recognition can be divided into four essential sections
as follows:

• Sensor data collection—the raw data of poses and gestures are captured by sensors;
• Pose and gesture identification—in each frame, a pose or a gesture is identified from

raw data;
• Pose and gesture tracking—the located skeleton is tracked during body movement;
• Pose and gesture classification—tracked pose or gesture is classified according to

predefined pose and gesture types.

The sensors that can be utilized in Pose and Gesture Recognition can be classified
into two main groups, image-based and non-image-based [73]. In turn, the image-based
technologies can be further categorized into four different classes, depending on the type of
sensor being used. Hence, we can find approaches using markers [72], a single camera [74],
stereo cameras [75], and depth sensors [76–78]. Although image-based methods have been
dominant in recognizing poses and gestures for several decades, recently, the developments
related to sensors have opened new possibilities in terms of non-image-based Pose and
Gesture Recognition methods. Several approaches include wearable sensors such as glove-
based gestural interfaces [79] and band-based sensors relying on a wristband or a similar
wearable device [80–83]. Furthermore, a third type of non-image-based technologies
adopts non-wearable sensors. Non-wearable sensors can detect poses and gestures without
contacting the human body, for example using radio frequency sensors or radar [84–88].
Considering the CogniViTra implementation, the CogniViTra Box provides a single camera
and depth sensors to perform the required data collection.

Identification is the first stage in Pose and Gesture Recognition, after the raw data
acquisition by sensors. In the present implementation, a skeleton model approach was
applied that employs a human skeleton to distinguish human body poses and simplify
pose and gesture classification, as shown in Figure 11 [89].
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Figure 11. Example of skeleton model identification.

Pose and gesture tracking as the process of finding temporal correspondences between
frames and continuous tracking of an identified pose and gesture in the previous frames
with current frame is not required in the current implementation of CogniViTra, since the
focus is static poses and gestures that can be represented by only one frame.

Pose and gesture classification is the last but somehow most determining step in
recognition. It can be resolved by many popular artificial intelligence and machine learning
algorithms including K-nearest neighbors [90,91], hidden Markov model [92,93], support
vector machines [94–97], artificial neural networks [98–100], and deep learning algorithms,
from which currently two methods are popular, namely convolutional neural networks
and recurrent neural networks [101].

In CogniViTra, our approach was to adopt existing open-source frameworks and tools,
in particular, the available implementations based on convolutional neural networks, for
which OpenPose lay the foundations for the part affinity field (PAF) algorithm proposed
by the authors of this tool [102]. In Figure 12, we depict the classes that are used in the
software in order to analyze the patients’ poses and gestures.

The algorithm behind the skeleton output to pose estimation is based on the relative
position of the 18 skeleton key points between each other.

This approach gives the patients more mobility to answer to the cognitive challenges
without restricting them to a very rigid position, since there is an area where each specific
pose is considered valid. For example, by having the wrist key point above the eye key
point at a certain threshold distance, there is a large area to recognize the ‘arm up’ answers.
This minimizes incorrect answers due to the patient’s physical difficulties (e.g., shoulder
impingements).

In the case of the 3D movements such as the punches, the approach is similar; however,
both frames (i.e., red, green, and blue—RGB—and depth frames) are aligned with the data
merged in order to determine the depth of the key point, making it possible to detect, for
instance, a wrist with a depth lower than the neck.
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Hence, the accuracy of the exercises is not measured in terms of very specific pose
patterns but rather is evaluated within an area or a volume in a broader space referenced
in the sensor’s frames. This approach was considered adequate for the specific application
scenario of CogniViTra, since it is acceptable to compromise precision while ensuring
accuracy: It is preferable to identify the pose, even if deviates from the ideal form, instead of
discarding it and breaking the intended aim of the rehabilitation exercise being performed.

5. Assessment
5.1. Methods

A peer review assessment [103] was conducted to gather the opinion of peers about
CogniViTra. A prototype was prepared to be exposed in a highly specialized event related
to healthy and active ageing, and key stakeholders were invited to test it and to share their
opinion. The event chosen was the AAL FORUM 2019 [104], which took place in the city of
Aarhus in Denmark in September 2019. The audience included technological developers
with an interest in healthy and active ageing, health care and social care providers, investors
looking for new solutions and innovations, individuals participating in research projects,
and European, national, and regional decision-makers in the fields of health care, social
issues, and technological innovations [20].

Participants comprised a convenience sample of individuals recruited using the hall-
way technique (i.e., the participants that walked by the CogniViTra stand were invited to
participate). The defined inclusion criteria were being a participant in the AAL Forum and
consequently being a stakeholder for the development of applications based on information
technologies to support healthy and active ageing, understanding the study, accepting to
voluntarily participate in the study, and giving informed consent.

All steps were taken to protect participants’ privacy, and all relevant rules on data
privacy were followed. Information allowing identification of participants was not cap-
tured. The participants were distinguished in the study documents by a unique running
number. The researchers involved in conducting and reporting the study were obliged to
professional secrecy. The principal investigator was responsible for making sure that all
members of the team were aware they must not reveal information obtained by granting
access to research data to anyone outside the scientific research team.
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Prior to the interaction with the application, the participants received all information
about CogniViTra, the assessment objectives, duration, and methods. A member of the
research team explained that participants could request additional information about the
study at any moment and abandon the study at any time without any explanation or
personal prejudice. Moreover, all participants completed and signed informed consent.

Each test followed three stages: (i) pre-test: the participants received all the informa-
tion about CogniViTra and clarified all the questions they had; (ii) test: the participants
interacted freely with CogniViTra for as long as they wanted and performed a dual-task
exercise (i.e., answering to a cognitive set of tasks with a physical movements); and (iii)
post-test: the participants were asked to fill in an opinion questionnaire on a tablet and to
share their insights regarding the CogniViTra prototype.

The questionnaire used to gather the data was specifically created for this study
and included sociodemographic information, namely country, age and gender, opinions
about CogniViTra, expectation of use, perception of its market value, suggestions for
improvement, and other comments.

5.2. Prototype Setup

Different living room configurations were considered for the two testing setups,
resulting in a ‘high setup’ and a ‘low setup’ (Figures 13 and 14). Both configurations only
differ in the height at which the CogniViTra Box is placed in front of the user. In the ‘high
setup’ the height of the box is of about 0.9 m, while in the ‘low setup’ it stands at 0.45 m,
measured from the ground plane. A location of two meters from the CogniViTra Box is
recommended to optimize pose and gesture detection.
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In the exercise selected for the experiment (Figure 15), the participants had to perform
an attention task, comparing the figures in the left and right boards, and choosing between
the ‘equal’ or ‘different’ options by performing two different movements.
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Figure 15. Exercise selected for the experiment.

To prepare the experimental set-up, a set of nine different poses and gestures were
considered: ‘arms raised’ (singular or both), ‘head tilt/twist’ (both sides), ‘punch movement’
(both arms), and ‘trunk displacement’ (to the left and to the right). As an example, Figure 16
presents the pose and gesture ‘arm raised’ (singular and both), where the images represent
the inference output from a pre-trained model with depth expansion, over the RGB stream
with a depth-based background subtraction.
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As a testing procedure, we conducted trials with five different subjects performing
a sequence of pose and gesture combinations. Each pose and gesture combination was
repeated 20 times each in the two different box installation setups. The conditions of the test
sites simulated different living room environments (e.g., cluttered background, different
lighting conditions, or different furniture layout). To consider a positive recognition of
a pose and gesture, the same classification result had to be maintained over five frames,
which a clear result to be identified by the system.

Additionally, as a pre-condition to the testing, the users were instructed on how to
correctly perform a pose and gesture, and they had available a feedback mechanism (e.g.,
visual feedback of their skeleton model as perceived by the system) to avoid errors due
to human factor. We accordingly conducted the trials always being sure that the user was
performing the sequences, holding still for one second (i.e., corresponding to grabbing five
frames) and not being influenced by uncertainty that could be caused by incorrect skeleton
detection).The testing results were different in the two set-ups. While in the ‘low setup’,
CogniViTra was 100% successful for all trials of all participants, for the ‘high setup’ the
same performance was achieved for the poses and gestures ‘arm raised’ (singular and both),
‘look left’, and ‘look right’. For the remaining poses and gestures, the success rate was also
high, being above 90%. According to these results, a comprehensive set of postures and
gestures could be used for the peer review. After brainstorming, it was decided that the
participants in the peer review should move the trunk to the left if they wanted to select
the ‘equal’ option or to the right if they wanted to select the ‘different’ option.

5.3. Results of the Conceptual Validation

In the conceptual validation, the methodological approach of which is presented
in [20], a sample of 57 peers from 16 different countries participated (Figure 17). The
average age was 41.5 years (Standard Deviation = 11.4); the oldest participant was 66 years
old, and the youngest was 24 years old. Regarding the gender, 32 participants (56%) were
male, and 25 (43%) were female.

Most of the participants (n = 53) expressed that they would use or suggest the utiliza-
tion of CogniViTra. Of those, six participants (10%) stated that they would use it themselves
for cognitive and physical training, while 23 (40%) mentioned that they would suggest
this to a family member or a friend. Furthermore, 14 participants (25%) mentioned the
intention to use it in their professional activities, and 10 (18%) would adopt CogniViTra in
their organization so other staff members could use it (Figure 18).



Electronics 2021, 10, 1304 24 of 31

Electronics 2021, 10, 1304 26 of 33 
 

 

5.3. Results of the Conceptual Validation 
In the conceptual validation, the methodological approach of which is presented in 

[20], a sample of 57 peers from 16 different countries participated (Figure 17). The average 
age was 41.5 years (Standard Deviation = 11.4); the oldest participant was 66 years old, 
and the youngest was 24 years old. Regarding the gender, 32 participants (56%) were 
male, and 25 (43%) were female. 

 
Figure 17. Nationality of the participants. 

Most of the participants (n = 53) expressed that they would use or suggest the utili-
zation of CogniViTra. Of those, six participants (10%) stated that they would use it them-
selves for cognitive and physical training, while 23 (40%) mentioned that they would sug-
gest this to a family member or a friend. Furthermore, 14 participants (25%) mentioned 
the intention to use it in their professional activities, and 10 (18%) would adopt Cogni-
ViTra in their organization so other staff members could use it (Figure 18). 

Regarding the aspects that the participants considered to be the topics that Cogni-
ViTra helps to solve (Figure 19), the most valued was the possibility of remote follow-up 
by health care providers (27%), followed by the possibility to extend the clinical setting to 
the home (24%) and increasing the number of training sessions (22%). The less valued 
aspects were the reduction of the costs with transportation to clinical settings (12%) and 
the closer follow-up from family and other informal careers (15%). 

Figure 17. Nationality of the participants.
Electronics 2021, 10, 1304 27 of 33 
 

 

 
Figure 18. Expectation of use. 

 
Figure 19. CogniViTra valued aspects. 

Finally, concerning the price that each participant would be willing to pay to use the 
system, most participants answered up to EUR 25, followed by the range of EUR 25 to 
EUR 50. 

Participants made relevant comments and suggestions about the prototype: (i) inclu-
sion of different levels of difficulties to accompany the entire performance spectrum, from 
very easy levels so that people with cognitive or physical limitations can use it, to levels 
with great difficulty, so that people with high performance are challenged to better them-
selves; (ii) improvement of the performance of the system response; (iii) revision of the 
icons and instructions, making them more appealing and intuitive; (iv) improvement of 
the exercise duration by including the option of doing shorter exercises, with 10 or 20 
trials; and (v) improvement of the user interaction, namely the interaction with the Digital 
Coach, which should be further developed to greet, suggest drinking water, and indicate 
instructions. 

6. Conclusions and Future Work 
To achieve cognitive health benefits in the population, key clinical operations such 

as monitoring and assessment of cognitive functions and cognitive rehabilitation must be 
optimized. In this respect, the use of information technologies is seen as an opportunity 
to incorporate changes in operating processes of health systems. However, this incorpo-
ration currently suffers from a serious implementation problem [105], and there is an enor-
mous difficulty for implementation and dissemination on a sufficient scale to allow the 
translation of value to the health level of the populations. This problem is not exclusive to 

Figure 18. Expectation of use.

Regarding the aspects that the participants considered to be the topics that CogniViTra
helps to solve (Figure 19), the most valued was the possibility of remote follow-up by
health care providers (27%), followed by the possibility to extend the clinical setting to the
home (24%) and increasing the number of training sessions (22%). The less valued aspects
were the reduction of the costs with transportation to clinical settings (12%) and the closer
follow-up from family and other informal careers (15%).
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Finally, concerning the price that each participant would be willing to pay to use the
system, most participants answered up to EUR 25, followed by the range of EUR 25 to
EUR 50.

Participants made relevant comments and suggestions about the prototype: (i) in-
clusion of different levels of difficulties to accompany the entire performance spectrum,
from very easy levels so that people with cognitive or physical limitations can use it, to
levels with great difficulty, so that people with high performance are challenged to better
themselves; (ii) improvement of the performance of the system response; (iii) revision of
the icons and instructions, making them more appealing and intuitive; (iv) improvement
of the exercise duration by including the option of doing shorter exercises, with 10 or
20 trials; and (v) improvement of the user interaction, namely the interaction with the
Digital Coach, which should be further developed to greet, suggest drinking water, and
indicate instructions.

6. Conclusions and Future Work

To achieve cognitive health benefits in the population, key clinical operations such
as monitoring and assessment of cognitive functions and cognitive rehabilitation must be
optimized. In this respect, the use of information technologies is seen as an opportunity to
incorporate changes in operating processes of health systems. However, this incorporation
currently suffers from a serious implementation problem [105], and there is an enormous
difficulty for implementation and dissemination on a sufficient scale to allow the translation
of value to the health level of the populations. This problem is not exclusive to cognitive
health; it occurs in all fields of medicine and research, and for both pharmacological and
non-pharmacological solutions or even innovations in terms of technologies, processes,
and organization.

In this context, the study reported by this article aimed to take advantage of the
flexibility of the existing resources of a Platform of Services, namely backend services,
to optimize the implementation of an application for dual-task training, as well as to
promote the integration of an existing Cognitive Health Ecosystem. This approach not only
allowed the optimization of the quality of the implementation and the minimization of
the associated development costs, but also the availability of a set of clinically validated
cognitive exercises.

The major development efforts were concentrated in the interaction mechanism for
the patients. A new user interface was developed that comprises a Digital Coach and two
additional modules, Game Presentation and Pose and Gesture Recognition. The patients’
interaction is supported by specific hardware, the CogniViTra Box, which replaces the
traditional computer and provides the hardware features to recognize poses and gestures.

An observational study was conducted to verify the viability of the dual-task training
application. For this purpose, a functional prototype was exposed in a highly specialized
event related to healthy and active ageing, and 57 participants were invited to share their
opinion after testing the application. Positive feedback for the CogniViTra application
was obtained From the participants. In general, participants considered that it is a useful
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application and may represent an added value for dual-task training, including cognitive
and physical activities.

The fact that more than 90% of the participants expressed that they would use CogniV-
iTra or suggest its utilization is an important indicator that shows a high level of acceptance
and great potential of this application. Another interesting result is that some of the partici-
pants mentioned that they would use it themselves, which shows a change in mentality
that results in an investment in preventive health and cognitive and physical training
throughout the patient’s lifespan.

Another interesting contribution was the list of problems that CogniViTra helps to
solve. The most valued aspects included the possibility for remote follow-up by health
care providers and the possibility to extend the clinical setting by providing home care, to
increase the number of training sessions, to reduce the costs with transportation, and to
promote a closer follow-up from family and informal carers.

Although the results of this study were very positive and encouraging of further
development, improvements in the system should be implemented before starting tests
with real users. The participants suggestions focused on the difficulty level, the system
response performance, the intuitiveness of icons and instructions, the user interaction, the
exercise duration, and the inclusion of a suggestion to drink water. Most suggestions were
in line with the requirements previously defined for CogniViTra and were already planned
to be implemented in future versions of the prototype.

This article reports the first stage of the CogniViTra assessment to verify the viability
of the application. For the second stage, a study involving users interacting with the
application prototype in a controlled environment is planned to assess its usability. Finally,
in the third stage, a multicentric clinical trial will be conducted in Portugal, Luxembourg,
and Spain to assess the adherence, efficiency, and efficacy (i.e., lifestyles and quality of life
changes) of the dual-task training supported by CogniViTra.

A total number of 180 participants (90 for the experimental group and another 90
for the control group) are estimated to be enrolled. According to the trial design, the
intervention plan will have a duration of 12 weeks and include individual sessions (i.e.,
CogniViTra activities performed by a single participant in a clinical setting or at home) and
group sessions (i.e., CogniViTra activities performed by various participants in a clinical
setting). In terms of exercises, the dual-task training will encompass exercises related
to different cognitive domains and the patients’ interactions will be based on physical
exercises with different complexity levels (e.g., to move the arm towards the opposite hand,
to move an arm towards the floor, or to crouch with hands on the knees and climb up and
opening the arms).

In terms of outcomes, the clinical trial will compare the CogniViTra strategy to stan-
dard of care, in terms of (i) time spent on cognitive training and physical and social
stimulation activities per participant; (ii) access to specialized activities per hour of spe-
cialized human resources; (iii) neuropsychiatric morbidity; (iv) quality of life; (iv) and
compliance with behaviors that reduce the individual risk for a brain disease.

CogniViTra was conceptualized and designed prior to the emergence of the coron-
avirus pandemic situation, which led to the confinement of part of the world population.
This situation made even more imperative the need for integrated solutions that allow con-
tinued care at home with provider support and advanced easy-to-use eHealth applications
as in the case of CogniViTra.
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Abbreviations
The following abbreviations are used in this manuscript:
ABAC Attribute-based access control
AES Advanced Encryption Standard
BML Behavioral markup language
CogniViTra Cognitive Vitality Training
HDMI High-Definition Multimedia Interface
HTML Hypertext Markup Language
GCM Galois/Counter Mode
JSON JavaScript Object Notation
JWT JSON Web Token
PAF Part affinity field
PHP Hypertext Preprocessor
RBAC Role-based access control
RGB Red, green, and blue
SBC Single board computer
SOA Service oriented architecture
USB Universal Serial Bus
UPS Uninterruptible power supply
VPU Vision processing unit
XACML eXtensible Access Control Markup Language
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