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Abstract: A method of modeling the time of object transition between given pairs of cameras
based on the Gaussian Mixture Model (GMM) is proposed in this article. Temporal dependencies
modeling is a part of object re-identification based on the multi-camera experimental framework.
The previously utilized Expectation-Maximization (EM) approach, requiring setting the number of
mixtures arbitrarily as an input parameter, was extended with the algorithm that automatically adapts
the model to statistical data. The probabilistic model was obtained by matching to the histogram
of transition times between a particular pair of cameras. The proposed matching procedure uses
a modified particle swarm optimization (mPSO). A way of using models of transition time in
object re-identification is also presented. Experiments with the proposed method of modeling the
transition time were carried out, and a comparison between previous and novel approach results are
also presented, revealing that added swarms approximate normalized histograms very effectively.
Moreover, the proposed swarm-based algorithm allows for modelling the same statistical data with a
lower number of summands in GMM.

Keywords: re-identification; particle swarm optimization; multi-camera surveillance systems

1. Introduction

Currently, the number of video cameras in public places is huge and is still increas-
ing. Operators of surveillance systems cannot concentrate on many fields of view (FOVs)
efficiently for long periods. Browsing through hundreds of hours of video data is time-
consuming and arduous. In general, these are the main reasons that imply the need for au-
tomated tools for video data analysis to facilitate operating with multi-camera surveillance
systems. One such useful tool is a re-identification method whose task is to connect many
observations of one real object from multiple cameras. The issues mentioned above became
the basis and the motivation for the authors’ research to develop re-identification methods.

The re-identification is equal to tracking objects between non-overlapping FOVs. In
this case, the location of an object that has disappeared from a particular camera can be
described with a probability measure. Furthermore, the pair of linked observations from
different cameras are also related to a certain probability. This probability is determined
on the basis of so-called premises such as an appearance (visual features) of the object
in a certain pair of observations, a physical possibility of transition between the pair of
cameras related to these observations, a time of this transition, and statistical patterns of
objects movement on the observed area (called a behavior model). The scope of this paper
considers mainly the issues related to obtaining the model of transition time based on
statistical data. The authors formulate the conception of the modification of particle swarm
optimization that use multiple swarms in order to match the Gaussian Mixture Model to
statistical data with an adaptation of the number of mixtures in the model. Moreover, the
comparison to the non-adaptive Expectation-Maximization method is also provided.

The paper is organized in the following way: Section 2 contains a short description
of the research field and the authors’ previous works. It also provides more details about
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the experimental framework that performs the re-identification method, and explains the
importance of time dependency modeling. In Section 3.5, the concept of transition time
modeling is presented more precisely; Performed experiments and results are included
in Section 5; the paper is concluded with Section 6 in which the two used methods are
compared and the adaptability of the mPSO algorithm is discussed.

2. Related Works

Significant efforts were put into automated video data analysis. Such processing is
performed as a compilation of many algorithms and methods that depend on each other.
In general, video data processing consists of the following phases: background subtraction,
object tracking, event detection and re-identification. The first step refers to distinguishing
a moving object and a still background (also called background subtraction) [1–3]. Thus,
the output of this step is the objects detected in a single FOV. The next phase, while the
detected object is moving, is related to obtaining a connection between the same object
detected in consecutive video frames. Results of this phase of video processing are trackers
of the objects [4]. When object tracking has been performed, the directions of objects’
movement and object trajectories (routes) can be determined within a single FOV. Having
such metadata event detection methods can be applied. They are mostly based on rules
related to the location or movement direction of an object tracker within a given FOV.
Moreover, regions, so-called hot areas, are defined within a camera FOV, and they can be
used as part of rules in the event detection methods [5]. At the output of the previous steps
of video processing, the re-identification (inter-camera object tracking) methods can be
performed. Events of an object entering or an object leaving, given hot areas, are essential
for the re-identification algorithm because they are transformed into observations of objects,
which provide the input meta-data for re-identification methods [6,7].

Many efforts were made to research the possibilities of tracking objects in non-
overlapping video surveillance systems. Starting from a comparison of color histograms
of objects [8], the methods of re-identification were developed for more sophisticated
mechanisms. The main challenge posed with regards to these methods were related to
changes in an object appearing in different cameras, which can be caused by unstable and
changing lighting of the observed scene, as well as various settings of cameras (like the
white balance). In order to cope with these problems, methods for the compensation of
color or making visual descriptors independent to these factors were developed [9–14].
In general, these approaches to re-identification assume, on the one hand, utilizing addi-
tional data such as spatio-temporal dependencies or a kind of behavior model (particle
filters [9], Bayesian networks [10], Markov chains [12], probability dispersion function [13]
etc.), but on the other hand, some methods use the visual feature descriptors resistant
to color changes [6,15]. The issue of discovering the topology of the camera network is
considered in the literature related to tracking objects in multi-camera surveillance systems
with non-overlapping cameras’ FOVs [7,16]. Previous authors’ works were focused on the
methods for modeling the behavior of objects in the whole observed area, with their results
being published earlier. This method is based on Pawlak’s flow graphs and rough set
theory [17,18]. Further works took into account the situation when the spatial dependencies
or behavior of objects are changing. Thus, the adaptation method is proposed [19]. More-
over, the authors considered issues related to computational and memory complexity [20].
Therefore, a better adaptation of the Gaussian mixture model to statistical data related to
the time of transition between adjacent cameras is essential in terms of saving processor
cycles and memory. In this article, the authors focus on the issue of temporal dependencies
between cameras. The proposed method is a modification of the particle swarm optimiza-
tion algorithm [21]. The modification of this algorithm is related to the utilization of a
multiple swarm approach in which the particular swarms compete with each other in order
to find the best match of the Gaussian mixture model to the statistical data. Moreover,
the mPSO algorithm also optimizes the number of summands in the Gaussian mixture
model. As a reference, the EM (Expectation-Maximization) methodology is used [22]. It
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was the previous approach to temporal dependencies modeling, which requires the a priori
assumption of the number of Gaussian Mixture Model summands.

3. Methodology

The proposed approach is a part of a system for re-identification; therefore, a whole
context is delineated. The forms of input and output, as well as data structures, are
also described.

3.1. Re-Identification

As mentioned above, the re-identification algorithm is based on the observations. A
single observation of an object contains elements that are used to obtain the necessary
premises, such as a visual feature descriptor, location of the observation (the camera and
the hot area identifiers) and timestamp. Essential for this method is the determination
of a probability measure corresponding to the situation that a given pair of observations
is related to the same object (also called the identity of the object). It is realized through
computing the weighted sum of probabilities measuring object identity depending on the
above-mentioned premises as is formulated in Equation (1):

Pid(Oin, Oout) = wv · Pv(Oin, Oout) + wt · Pt(Oin, Oout)

+wb · Pb(Oin, Oout), (1)

where Oin and Oout is a pair of observations related to the event of entrance into the FOV
and the event of an exit from another FOV, respectively; Pv(.), Pt(.) and Pb(.) are proba-
bilities of object identity based on visual, temporal and behavioral premises, respectively;
similarly, weights are expressed as wv, wt and wb for visual, temporal and behavioral
premises, respectively.

3.2. Spatio-Temporal Dependencies

At the beginning of the re-identification process, an important part of the algorithm is
a limitation of the number of pairs of observations. It is obtained due to knowledge of the
camera network topology, which is described with a graph. In such a graph, vertices refer
to particular cameras and edges describe physically possible transitions between cameras.
Having the topology graph, it is possible to determine which cameras are adjacent to the
given one. Therefore, during the assessment of observation pairs, only pairs from adjacent
cameras are considered.

The topology graph also contains temporal dependencies (description of times of
transitions between adjacent pairs of cameras) described with weights on the edges. In
order to determine temporal dependencies, statistical data related to transition times
between particular pairs of cameras have to be gained. The creation of the transition time
model is presented more precisely in the following part of the paper (Section 3.5).

3.3. Visual Features

Because of using video input data, visual object features cannot be omitted while
comparing a pair of observations. Therefore, a region containing a silhouette of a detected
object in a camera’s FOV (also called a blob) have to be extracted for both observations. In
order to assess a visual similarity of a certain pair of observations, visual feature descriptors
(mostly color and texture) are calculated. Next, the descriptors are used for comparing the
pair of observations and for determining their similarity, which describes the mentioned
probability of the object identity (Equation (1)) from the point of view of the visual features.

Input data obtained directly from the multi-camera surveillance system have the form
of a vector which contains times of transitions between the given pair of the cameras.
This vector is the input for the EM algorithm, however the input for the modified particle
swarm optimization (mPSO) algorithm is a histogram of transition time. The outcome of
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the processing of both algorithms is the Gaussian Mixture Model, which determines the
probability density function of transition time between a given pair of FOVs.

3.4. Input Data Description

The input for the EM-based algorithm is the vector mentioned above, which is de-
scribed by the following formula:

s = [s1, . . . , si . . . , sn], (2)

where si is the value of i-th transition time in the vector s and n is the size of the vector s.
The input for the (mPSO) algorithm can be described by two vectors t and h presented

in Equations (3) and (5). The vector t determines the time resolution of the histogram as
well as a minimum and maximum transition time:

t = [t1, . . . , ti . . . , tmax], (3)

where the difference between two consecutive elements describes the time resolution,
i = {1, 2, . . . , max}, t1 and tmax are minimal and maximal transition time, respectively.
Moreover, the value max is a number of intervals used to create the histogram. The vector
n contains the numbers of transitions referring to particular times (elements) from the
vector t. Thus, the vector n is formulated as in Equation (4).

n = [n1, . . . , ni . . . , nmax−1], (4)

where ni is a number of transitions that lasted from ti to ti+1. Next, the histogram n is
normalized and in the following calculations this normalized histogram h is taken into
consideration:

h = [h1, . . . , hi . . . , hmax−1], (5)

where hi = ni/∑k=max−1
k=1 ni.

3.5. Output Description—Transition Time Model

The transition time for each edge of the topology graph is described with the Gaussian
Mixture Model. It is determined according to the following formula:

pe(t) =
i=M

∑
i=1

wei · N(t|µei, σei), (6)

where ∑i=M
i=1 wei = 1; pe(t) express the probability of a given time of a transition t through

the edge e; N(t|µei, σei) determines the value of a normal distribution for the given time of
transition; the parameters of the distribution are described with the mean value µei and
standard deviation σei; wei is the weight assigned to a particular gaussian; M is the number
of summands in the Gaussian Mixture Model.

4. Transition time Modeling
4.1. Expectation-Maximization Algorithm

The creation of the transition time model is an optimization task related to finding a
Gaussian Mixture Model that is best fitted to the statistical data (in this case, in the form of
time transition samples). Thus, having the samples of transition time (see Equation (2)),
the parameters of the Gaussian Mixture Model have to be determined. This task can be
realized with the Expectation-Maximization [22] algorithm, which is an iterative algorithm
and consists of a few steps:

1. Initialization: initial values of parameters of the Gaussian Mixture Model are set:

• M: number of summands in GMM (j = 1, . . . , M)

• w(0)
j : initial values of weights:
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w(0)
j = 1/M (7)

• parameters of the Gaussians in the mixture µj, σj:

σ
(0)
j =

1
2 ·M · (tmax − t1) (8)

µ
(0)
j = t1 + (2 · j− 1) · σ(0)

j . (9)

Moreover, the initial value of log-likelihood is obtained:

L(0) =
1
n

i=n

∑
i=1

log

[
j=M

∑
j=1

w(0)
j N

(
si|µ

(0)
j , σ

(0)
j

)]
, (10)

where n is the number of samples in the vector s and si determines the i-th value from
samples vector s (see Equation (2)).

2. Expectation-step: so-called responsibilities ρ
(k)
ij are computed for all samples from s

(see Equation (2)) and for all summands of GMM:

ρ
(k)
ij =

w(k)
j N

(
si|µ

(k)
j , σ

(k)
j

)
∑l=M

l=1 w(k)
l N

(
si|µ

(k)
l , σ

(k)
l

) , (11)

where (k) is the index of iteration of the algorithm; i = {1, . . . , n}; j = {1, . . . , M};
n is the number of samples in the input vector; M is the number of summands in
the GMM and ρ

(k)
ij measures how much each Gaussian in the mixture is responsible

for each sample from the input. Next, the responsibilities of each summand are
also computed:

resp(k)j =
i=n

∑
i=1

ρ
(k)
ij , (12)

where j = {1, . . . , M} and resp(k)j describe the degree of j-th summand responsibility
of values contained in input vector s (See Equation (2)).

3. Maximization-step: new values of Gaussian Mixture Model parameters are calculated
for each of the GMM summands:

w(k+1)
j =

resp(k)j

n
(13)

µ
(k+1)
j =

1

resp(k)j

i=n

∑
i=1

ρ
(k)
ij si (14)

σ
(k+1)
j =

√√√√ 1

resp(k)j

i=n

∑
i=1

ρ
(k)
ij

(
si − µ

(k+1)
j

)2
. (15)

In Equations (13)–(15) j = {1, . . . , M} and k + 1 is an index of the consecutive iteration
of the algorithm.

4. Assessment of the actual Gaussian Mixture Model match: in order to determine how
well the obtained GMM fits the histogram, the new log-likelihood has to be computed:

L(k+1) =
1
n

i=n

∑
i=1

log

[
j=M

∑
j=1

w(k+1)
j N(.)

]
, (16)
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where N(.) = N
(

si|µ
(k+1)
j , σ

(k+1)
j

)
. The ending condition of the algorithm is de-

scribed with the following formula:∣∣∣L(k+1) − L(k)
∣∣∣ > δ, (17)

where the value of δ determines the threshold, which refers to the precision of the
GMM matching the distribution of values contained in the vector s. After the ending
condition is checked, there are two possibilities:

(a) when the condition (17) is true, the algorithm must return to step 2;
(b) otherwise, the algorithm ends.

Thus, the input of this algorithm is the vector of transition times s and fitness threshold
δ and the output is the parameters of the Gaussian Mixture Model. In Section 5, the
experiments and results of using this algorithm are presented.

4.2. Modified Particle Swarm Optimization Algorithm

The second approach to the raised optimization task is the utilization of the swarm
algorithm with some modifications. In PSO methods [23,24], each particle describes one
probable solution of the optimization problem. A set of particles is distributed in the
N-dimensional space and should be considered a swarm, which can realize a kind of
inside communication [25,26]. Therefore, in each iteration of the algorithm, a new position
of each particle (in the solution space) is calculated. In the classical approach, three
vector components determine the direction and distance of the particle movement. These
components are:

• inertia component: it contains information about the actual direction and speed of a
particle movement;

• global component: is it is related to the best solution known in the whole set of
particles; when one of particle finds the best solution the rest of them tend toward
this solution;

• cognitive component: it refers to the experience form the past of a particle; this
component is directed to the best solution known by the particular particle.

The steps of the Particle Swarm Optimization algorithm are presented below:

1. Initialization: an initial position w(0)
i and a velocity v(0)

i of i-th particle is set ran-
domly, where i = {1, . . . , P} and P is the number of particles in the swarm.

2. Assessment of the particles: the assessment function f
(

w(k)
i

)
: Rn → R, as argu-

ments, takes parameters of a possible solution represented by a given particle, the
result of this function is the estimation of the solution correctness in the form of a
real value.

3. Update the global and local best solutions: updating of the best solution known by

the i-th particle l(k)i (needed while calculating the cognitive component of the i-th
particle) and updating the global best solution g(k) (which is used to compute the
global component) is performed as follows:

• for each i-th particle where i = {1, . . . , P},

– the following condition has to be considered: if
(

f
(

l(k−1)
i

)
< f

(
w(k)

i

))
,

then a new local best solution for the i-th particle is assigned: l(k)i = w(k)
i ,

otherwise it is not changed: l(k)i = l(k−1)
i . In the case of a just initialized

algorithm the actual position of the i-th particle is assigned as the best local
solution: l(0)i = w(0)

i ;
– next, in order to determine the best global solution g(k), the following

conditions have to be considered: if
(

f
(

g(k)
)
< f

(
l(k)i

))
, then the new

best global solution is assigned: g(k) = l(k)i , otherwise g(k) = g(k−1). The



Electronics 2021, 10, 1303 7 of 21

solution g(0) is determined as the position of the best-assessed particle
after initialization.

4. Obtaining particles movements: the new translation vectors of particles in the solu-
tion space are obtained as it is formulated in Equations (18):

w(k+1)
i = w(k)

i + v(k+1)
i

v(k+1)
i = v(k)

i + c1r(k)1 ·
(

g(k) −w(k)
i

)
+c2r(k)2 ·

(
l(k)i −w(k)

i

)
,

(18)

where w(k+1)
i is a new position of the i-th particle in the solution space, w(k)

i is a

position of the i-th particle in the previous iteration of the algorithm, v(k)
i is the part

of the actual inertia component of the i-th particle movement (can be considered as
the vector of the speed of the particle), g(k) is the position (in the solution space) of
the best-assessed particle is the whole swarm, l(k)i is the best-assessed solution known

by the i− th particle, values {c1, c2} are certain constants and values {r(k)1 , r(k)2 } are
random variables obtained for the actual iteration of the algorithm.

5. Termination criterion check: two types of termination criteria are used. The first is
the number of iterations of the algorithm, and the second is a difference between
solutions calculated in the consecutive iterations. This difference can be described
with Formula (19).

d(k)rms =

√
∑1=n

i=1

(
w(k)

i −w(k−1)
i

)2

n . (19)

Thus, the two threshold values must be determined as termination criteria that are: the
threshold for difference between consecutive iterations of algorithm δrms and the limit
of iteration number δiter. Furthermore, the following condition has to be considered:
if
(

d(k)rms < δrms ∨ k < δiter

)
, then terminate the algorithm, otherwise return to step 2.

In order to facilitate understanding the idea of the PSO algorithm, a method for
calculating movement of a single particle is suggestively presented in Figure 1 (in this case
a 2-dimensional solution space was considered).

Figure 1. Example components of i-th particle movement used to obtain a location in the consecutive
iteration of the algorithm in two-dimensional solution space.
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In the case of transition time modeling, the solution space is one-dimensional, but
some modifications must be introduced in the PSO algorithm. Each particle represents
a certain transition time as its position w(k)

i . In general, the proposed method assumes
usage of the few particle swarms which will compete with each other in order to obtain
parameters of the Gaussian Mixture Model. Each swarm is used to calculate the parameters
of a single GMM summand. Therefore, there is a set of swarms S = S1, . . . , SL and L is the
number of swarms. The competition of them refers to the two mechanisms:

• the particles from the given swarm avoid being close to the particles of the other
swarms, in order to find different mean values µ of model summands,

• and within a single swarm, the particles also avoid being too close to each other which
allows the obtaining of a standard deviation value for a given summand of a GMM.

The next change is the introduction of the topology (within the swarm), which deter-
mines the adjacency of each particle. For the one-dimensional solution space, as in the case
of the time transition modeling, the topology has the form of a chain, in which a particle
has two neighbors, as is schematically presented in Figure 2. Such an approach modifies
the method of calculation of the global component (in which the two closest particles are
taken into consideration) g(k) when the particles are moving (See Equation (18)).

Figure 2. Swarm topology proposed for the one-dimensional solution space.

The vector t (containing transition times) also has to be modified in the way presented
in Equation (20).

u = [u1, . . . , ui, . . . umax]

ui =
ti−t1

tmax−t1

i = {1, . . . , max},

(20)

where u is a vector of normalized transition time. Moreover, the parameter called particle
satisfaction φ is introduced. This parameter is determined as Equation (21) shows.

φ
(k)
i = ĝ

(
w(k)

i

)
+ αda(w

(k)
i ) + βdo(w

(k)
i ), (21)

where ĝ
(

w(k)
i

)
determines how high values of the histogram h are near the i-th particle, the

value of da describes the average distance between the i-th particle and adjacent particles
from the same swarm, do describes the average distance to the other swarms, and α, β
constant coefficients.

Because the normalized transition times contained in u and the normalized histogram
h contain discrete values, the interpolation needs to be applied. When the location of the
i-th particle is determined as wi, the four bins from the histogram h are chosen (the two
are related to the closest transition times below wi denoted as hlow2, hlow1 and the other
two refer to transition times above wi denoted as hup1, hup2) as values of the function to
interpolate. The arguments of function to interpolate are taken from the vector u. Assuming
that the four chosen values are ĥ0 = hlow2, ĥ1 = hlow1, ĥ2 = hup1 and ĥ3 = hup2, then values
from the vector u are û0 = ulow2, û1 = ulow1, û2 = uup1 and û3 = uup2, respectively. It
is worth mentioning that the value of wi fulfills the condition ulow1 ≤ wi < uup1. In
the proposed mPSO algorithm the Newton interpolation is used, which consists of the
following steps:

1. Determine the points as the input for the interpolation algorithm:
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g(û0) = ĥ0
g(û1) = ĥ1
g(û2) = ĥ2
g(û3) = ĥ3,

(22)

where g(.) is the function to interpolate
2. Estimate the ĝ(û = wi) using the Newton interpolation formula (See Equation (24)).

g[ûj, ûj+1, . . . , ûk−1, ûk] =
g[ûj+1, . . . , ûk]− g[ûj, . . . , ûk−1]

ûk − ûj
(23)

ĝ(û) = g[û0] + g[û0, û1](û− û0) + g[û0, û1, û2](û− û0)(û− û1)+
+g[û0, û1, û2, û3](û− û0)(û− û1)(û− û2) (24)

The second part of the particle satisfaction φ
(k+1)
i (see Equation (21)) is related to its

avoidance of being close to its adjacency (called adjacency distance da). Thus, da can be
formulated as Equation (25) shows.

da(w
(k)
i ) =

√√√√√√√
j=Ξa

∑
j=1
j 6=i

(
w(k)

i − w(k)
j

)2

Ξa
, (25)

where Ξa is the number of particles adjacent to the i-th particle, a describes the adjacency
of the i-th particle (it is a vector containing the indices of adjacent particles).

The last part of the particle satisfaction φ
(k+1)
i (see Equation (21)) denoted as do

(
w(k)

i

)
describes a particle avoidance of the particles from other swarms.

do

(
w(k)

i

)
=

√√√√√√√
j=L
∑

j=1
j 6=i

(
al(k)i − al(k)j

)2

L
, (26)

where L is the number of swarms and al(k)i , al(k)j are calculated in accordance with Equation (30).

The obtained value of φ
(k+1)
i is directly used to assess i-th particle in the algorithm

(see the step “assessment of the particle”) as a value of the assessment function f (w(k)
i ).

Additionally, a swarm satisfaction Φ is determined as Equation (27) presents:

Φ(k)
l =

1
Ξ

ξ=Ξ

∑
ξ=1

φξ

(
w(k)

i

)
, (27)

where Ξ is the number of particles in the l-th swarm, ξ is the particle index, k is the index
of algorithm iteration, φξ determines the ξ-th particle satisfaction and l is the index of
the swarm.

The next modification is adding two components that have an influence on the move-
ment of the particles that are:

• inner reluctance component: is introduced in order to realize the avoidance between

particles within a single swarm (denoted as ir(k)i for i-th particle in k-th iteration);
• external avoidance component: is responsible for the repulsion between whole

swarms (denoted as ea(k)i for i-th particle in k-th iteration).
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Thus, the step of the algorithm called “Obtaining particles movements” (See Equation (18))
have to be changed in the following way:

w(k+1)
i = w(k)

i + v(k+1)
i

v(k+1)
i = v(k)i + c1r(k)1 ·

(
g(k) − w(k)

i

)
+c2r(k)2 ·

(
l(k)i − w(k)

i

)
− ir(k)i − ea(k)i .

(28)

The value of ir(k)i is calculated according to the following formula:

ir(k)i =
1
A

a=A

∑
a=1
a 6=i

φ
(k)
i − φ

(k)
a∣∣∣w(k)

i − w(k)
a

∣∣∣ , (29)

where A is the number of particles adjacent to i-th particle, a is the index of adjacent
particles, φ

(k)
i is the satisfaction of i-th particle, φ

(k)
a is the satisfaction of an adjacent particle

and
∣∣∣w(k)

i − w(k)
a

∣∣∣ determined a distance between i-th particle and the adjacent one. In

order to calculate the value of ea(k)i , the average location of the particular swarm al(k)l has
to be described:

al(k)l =
1
Ξ

ξ=Ξ

∑
ξ=1

w(k)
ξ , (30)

where Ξ is the number of particles in the l-th swarm, ξ is the particle index, k is the index
of algorithm iteration, w(k)

ξ determines the ξ-th particle location and l is the index of the

swarm. Therefore, the value of external avoidance component ea(k)i is calculated in the way
shown in Equation (31):

ea(k)i =
l=L

∑
l=1
l 6=i

(
al(k)i − al(k)l

)
·Φ(k)

l

∑
j=L
j=1 Φ(k)

j

, (31)

where L is the number of swarms, al(k)i is the average location of the swarm, which the i-th
particle belongs to.

Generally, the modified Particle Swarm Optimization algorithm is performed as it is
presented in Figures 3 and 4.

The algorithm is described below in detail:

1. Initialize vectors h, u (according to Equations (5) and (20)) and set the number of
swarms L.

2. While the index of the swarm l is lower than L:

(a) initialize a new swarm Sl ;
(b) perform the modified Particle Swarm Optimization algorithm for the swarm

Sl (the rest of previously added swarms remains unchanged);
(c) increase the index l

3. Obtain the parameters of Gaussian Mixture Model basing on the distributions of
particles in particular swarms (see Equation (33)).

The last step will be described below. The particular swarm is a distribution of
particles on the axis of normalized transition time (See Equation (20)). The input vector u
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was normalized (see Equation (20)), therefore, inverse operation (See Equation (32)) needs
to be performed before the whole algorithm output.

T[u] = u(tmax − t1) + t1. (32)

Thus, the parameters of a given GMM summand can be determined as follows:

µl = T[all ]

σl = η · {T[max(Sl)]− T[min(Sl)]}

wl =
Φl

j=L
∑

j=1
Φj

,

(33)

where min(Sl), max(Sl) are minimum and maximum a particle location within the whole
Sl swarm, respectively, and L is a number of swarms.Title Suppressed Due to Excessive Length 13

Fig. 4: Flowchart of the whole mPSO algorith for all swarms. Operation ‘mPSO(Sl)’
executes the algorithm presented in Fig. 5.

(b) perform the mPSO algorithm for the swarm Sl (the rest of previously added
swarms remains unchanged);

(c) increase the index l

3. obtain the parameters of GMM based on the distributions of particles in particular
swarms (See Eq. 34).

The last step will be described below. The particular swarm is a distribution of particles
on the axis of normalized transition time (See Eq. 20). The input vector u was normal-
ized (See Eq. 20), therefore an inverse operation (See Eq. 33) needs to be performed
before obtaining the whole algorithm output.

T [u] = u(tmax − t1) + t1 (33)

Thus, the parameters of a given GMM summand can be determined as follows:

µl = T [all]

σl = η · {T [max (Sl)]− T [min (Sl)]}

wl =
Φl

j=L∑
j=1

Φj

(34)

where: min (Sl), max (Sl) are minimum and maximum of the particle location (which
determines the transition time) within the whole Sl swarm, respectively, and L is the
number of swarms taken into consideration.
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Figure 3. Flowchart of the whole modified Particle Swarm Optimization algoritm for all swarms.
Operation ‘mPSO(Sl)’ executes the algorithm presented in Figure 4.
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14 Karol Lisowski, Andrzej Czyżewski

Fig. 5: The flowchart presenting the algorithm of mPSO for a single swarm

4 Experiments and Results

In order to test the both proposed algorithms, the two adjacent cameras from the video
surveillance system were chosen. Their FOVs and regions used are presented in Fig. 6.

Next, 1028 samples of transition times s were obtained manually. The histogram n

and transition times vector t were also created. Based on n and t the vectors containing
normalized values are obtained too. The both histograms are shown in Fig. 7. Next,
these data were used to create the transition time model (based on GMM).

The EM method was tested with the following parameters: M = 3, δ = 0.0001.
The results provided by the EM algorithm is presented in Fig. 8.

The proposed mPSO is performed with the following parameters: δrms = 0.0005,
δk = 1000, L = 3, Ξ = 150, α = 0.015, β = 0.25, η = 0.7, c1 = 0.15, c2 = 0.15. Also
these results are shown (See Fig. 9).
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Figure 4. The flowchart presenting the algorithm of modified Particle Swarm Optimization for a single swarm.

5. Experiments and Results

Video data were recorded with the cameras (AXIS P1377) which were observing the
road and the parking lot. The described optimization algorithms are implemented as
modules of a video processing framework in C++ and run on a workstation computer. In
reference to the mentioned re-identification method, the temporal dependency modeling
has to be carried out as an initialization of the re-identification method. Thus, transition
time models in the form of the Gaussian Mixture Model are used to determine the proba-
bility of object identity based on temporal premise Pt(Oin, Oout) (see Equation (1)). In the
case of the EM algorithm, the number of summands in GMM has to be set a priori and
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the results of Equations (13)–(15) from the last step of the algorithm are used to create the
transition time model, whereas the mPSO algorithm can adapt the number of mixtures
to the histogram data. Each swarm added by the modified Particle Swarm Optimization
algorithm determines the parameters of a single Gaussian from the output GMM model
(see Equations (33)).

In order to test both proposed algorithms, the two adjacent cameras from the video
surveillance systems were chosen. Their FOVs are presented in Figures 5 and 6.

Figure 5. Field of vision of Camera A used in the experiments.

Figure 6. Field of vision of Camera b used in the experiments.

The transition time for each observation was determined as the time between the
object’s disappearance in the field of vision of the first camera and the moment of the object
reappearance in the area observed by the second camera (see Figure 7). Next, 1028 samples
of transition times s were obtained manually from 13.4 h of video data. These transition
times were the input data for the presented algorithms (see Equation (2)). The histogram
n and transition times vector t were also created (see Figure 8). Based on n and t vectors
containing normalized values are obtained too (see Figure 9). Both histograms are shown
in Figures 15 and 18.
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Figure 7. The transition time measurement.
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Figure 8. Histogram n of transition time.
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Figure 9. Normalized histogram h of transition time.

In order to use the normalized histogram in the modified particle swarm optimization,
its values should be interpolated (see Figure 10). Interpolation operation is described
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with the Equations (22)–(24). The interpolation error is determined as RMSE and is equal
to 4.75%.
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Figure 10. Interpolated values of normalized histogram h.

The EM method was tested with the following parameters: M = 3, δ = 0.0001. Results
provided by the EM algorithm in the consecutive steps is presented in Figures 11–15.
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Figure 11. Just initialized GMM for the EM algorithm (iteration k = 0) of the EM algorithm.
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Figure 12. GMM after iteration k = 5 of the EM algorithm.
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Figure 13. GMM after iteration k = 10 of the EM algorithm.
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Figure 15. GMM after iteration k = 17 the EM algorithm ends because of termination criterion.

The proposed mPSO is performed with the following parameters: δrms = 0.0005,
δk = 1000, L = 3, Ξ = 150, α = 0.015, β = 0.25, η = 0.7, c1 = 0.15, c2 = 0.15. These results
are also shown (See Figures 16–18). The output GMM parameters are tabulated in Table 1.

Table 1. Output GMM from EM and mPSO methods.

EM mPSO

j wj µj σj wj µj σj

1 0.7012 2.4231 0.7429 0.7176 2.1304 0.76100

2 0.0022 5.0671 5.8210 0.1759 6.4303 1.2378

3 0.2966 5.8014 1.5019 0.1065 5.0610 5.9013
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Figure 16. Example of just initialized swarm is distributed evenly.
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Figure 17. Normalized histogram and distribution of three different swarms when termination
criterion for the last swarm S3 is fulfilled.
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Figure 18. GMM obtained on the basis of swarms distributions.

6. Conclusions

Two approaches to object transition time modeling in multi-camera surveillance
systems were developed and tested. The EM algorithm is based on iterative searching
for the best fitness of the Gaussian Mixture Model to the transition time histogram. Both
methods allow for conversion from statistically abundant data into a form of a Gaussian
Mixture Model that is a quite compact representation of the probability density function.
Moreover, an approximation histogram with the Gaussian Mixture Model enables the
determination of probability for the continuous variable as an argument. However, in the
EM method, the number of Gaussian Mixture Model summands has to be determined
at the start of the algorithm. On the one hand, more mixtures should result in a better
match to histogram data. On the other hand, additional mixtures cause an increment in
computation consumption. This increment is related to the creation of the model as well
as the usage of it. In the case of the modified Particle Swarm Optimization algorithm, the
consecutive swarm can be added but this swarm will not change the Gaussian Mixture
Model significantly, because previously added swarms took the most satisfying places of
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the normalized histogram. Therefore, the swarm S3 was insignificant in the experiment
since it adds very little to the Gaussian Mixture Model. The proposed modified Particle
Swarm Optimization algorithm allows not only for the match of Gaussian Mixture Model
parameters to the histogram but at the same time it adjusts the number of mixtures in the
Gaussian Mixture Model.

The future development of the proposed methods is related to testing the modified
Particle Swarm Optimization in multi-dimensional solution space and checking other more
complex topologies of the swarms. Moreover, computation complexity analysis of the
modified Particle Swarm Optimization algorithm is also an interesting issue to pursue.
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Abbreviations
The following abbreviations are used in this manuscript:

GMM Gaussian Mixture Model
EM Expectation-Maximization
mPSO modified particle swarm optimization
FOV fields of view
List of Symbols
Pi probability of object identity

Oin
observation event related to entrance into area observed by
camera

Oout
observation event related to disappearance of camera field of
vision

Pv, Pt, Pb
component of the probability of object identity based on visual,
temporal, and behavioral premises, respectively

wv, wt, wb
weights used to determine the importance of given type of
premises (visual, temporal, and behavioral, respectively)

s
vector containing raw input data, that are transition times for all
observed objects

si time of the i-th observed transition
t vector of bin boundaries for the histogram of transition times
ti i-th bin boundary for the histogram of transition times

n
vector containing number of transitions that are assigned to
particular bins of the histogram of transition times
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ni
number of transitions that are assigned to i-th bin of the histogram of
transition times

h
vector containing number of transitions that are assigned to
particular bins of the normalized histogram of transition times

hi
number of transitions that are assigned to i-th bin of the
normalized histogram of transition times

pe(t)
probability density function (expressed as GMM) that estimate
how probable
is the object identity based on the time of transition between
given pair of adjacent cameras e

wei
weight related to the i-th mixture and given pair of adjacent
cameras e

N() normal distribution
µi mean value related to the i-th GMM mixture
σi standard deviation related to the i-th GMM mixture
M number of summands in the Gaussian Mixture Model

.(k)
value of variable in k-th iteration of the algorithm (‘.’ can be
substituted by any variable)

respj
degree of the j-th GMM summand responsibility of values
contained in input vector s

L log-likelihood used in EM algorithm
δ fitness threshold used in EM algorithm
wi position of the i-th particle in the solution space
wi velocity of the i-th particle in the solution space
P is the number of the particles in the swarm
f (w) the assessment function for the position in the solution space
li the best solution known by the i-th particle
g the best global solution
u vector of normalized transition time
φ particle satisfaction

ĝ(wi)
interpolated value of the histogram h for the position w of the
i-th particle

da(wi)
average distance between the i-th particle and adjacent particles
from the same swarm

do average distance to the other swarms for the i-th particle
Φ swarm satisfaction
ir inner reluctance
al average swarm location
ea external avoidance
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