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Abstract: Herein, we investigated the effects of active layer thickness (tS) on the electrical characteristics
and stability of high-mobility indium–gallium–tin oxide (IGTO) thin-film transistors (TFTs). IGTO TFTs,
with tS values of 7 nm, 15 nm, 25 nm, 35 nm, and 50 nm, were prepared for this analysis. The drain
current was only slightly modulated by the gate-to-source voltage, in the case of the IGTO TFT with
tS = 50 nm. Under positive bias stress (PBS), the electrical stability of the IGTO TFTs with a tS less than
35 nm improved as the tS increased. However, the negative bias illumination stress (NBIS) stability of
these IGTO TFTs deteriorated as the tS increased. To explain these phenomena, we compared the O1s
spectra of IGTO thin films with different tS values, acquired using X-ray photoelectron spectroscopy.
The characterization results revealed that the better PBS stability, and the low NBIS stability, of the IGTO
TFTs with thicker active layers were mainly due to a decrease in the number of hydroxyl groups and an
increase in the number of oxygen vacancies in the IGTO thin films with an increase in tS, respectively.
Among the IGTO TFTs with different tS, the IGTO TFT with a 15-nm thick active layer exhibited the best
electrical characteristics with a field-effect mobility (µFE) of 26.5 cm2/V·s, a subthreshold swing (SS)
of 0.16 V/dec, and a threshold voltage (VTH) of 0.3 V. Moreover, the device exhibited robust stability
under PBS (∆VTH = 0.9 V) and NBIS (∆VTH = −1.87 V).

Keywords: IGTO TFT; active layer thickness; positive bias stress stability; negative bias illumination
stress stability

1. Introduction

Amorphous indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) were
reported for the first time by Nomura et al. in 2004; since, they have attracted significant
attention because of their excellent electrical properties, low process temperature, large-area
uniformity, and low fabrication cost [1–5]. Currently, IGZO TFTs are being widely used as
a backplane for large-area active-matrix flat-panel displays, such as organic light-emitting
diode (OLED) displays and liquid-crystal displays (LCD) [6–8]. The recent development of
low-temperature polysilicon oxide technology is expected to further expand the application
range of IGZO TFTs in the field of displays [7,8]. However, the relatively low field-effect
mobility of IGZO TFTs (µFE = ~10 cm2/V·s) still hinders their application in the backplane
of ultra-high-resolution and high-frame-rate displays [9,10]. This is because the OLED
pixels require a high current to emit light. Therefore, the study presents a new low-
voltage driving OLED pixel circuit with high-mobility amorphous oxide TFTs as the
driving device with high resolution [11]. To date, various oxide semiconductors have
been studied as active materials for high-mobility oxide TFTs [12–14]. Among them,
IGTO has recently attracted considerable attention as a promising active material for next-
generation high-mobility oxide TFTs. The In3+ and Sn4+ ions have almost similar electronic
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structures. They have a small effective electron mass due to the 5 s orbital overlapping
structure, leading to a highly conductive path for electron carriers, and remarkably high
mobility [15,16]. Furthermore, the IGTO TFTs exhibit excellent electrical characteristics,
even at low annealing temperatures (below 200 ◦C) [17–19].

For oxide TFTs, active layer thickness (tS) is an important parameter that strongly
affects the electrical performance and stability of these TFTs. To date, extensive research has
been performed to determine the effects of tS on the electrical characteristics and stability
of oxide TFTs comprising different active materials. However, previous studies have
reported different results for the effects of tS on the electrical characteristics and stability
of oxide TFTs according to the type of active material and fabrication process conditions.
For example, Cho et al. [20] and Yang et al. [21] reported that the positive bias stress
(PBS) stability of indium–zinc-oxide and IGZO TFTs deteriorated with an increase in tS,
respectively. Nevertheless, Lee et al. [22] and Li et al. [23] observed an improvement in the
PBS stability of IGZO TFTs with an increase in tS. These results imply that investigating the
effects of tS on the electrical performance and stability of IGTO TFTs is extremely necessary
to determine the optimal tS for IGTO TFTs. In this study, we examined the effects of tS on
the electrical characteristics and stability of IGTO TFTs. IGTO TFTs, with the tS values of
7 nm, 15 nm, 25 nm, 35 nm, and 50 nm, were prepared for this analysis. A systematic study
was conducted to investigate the physical mechanisms responsible for the observed effects
of tS on the electrical performance and PBS/NBIS stability of IGTO TFTs.

2. Materials and Methods

Figure 1a,b shows the schematic and top-view optical image of the fabricated IGTO
TFTs, respectively. The IGTO TFTs were constructed on a heavily doped p-type Si wafer
(resistivity < 0.005 Ω·cm) covered by 100-nm thick thermally grown SiO2. The heavily
doped p-type Si wafer was used as a substrate and a gate electrode. Thermally grown SiO2
was used as a gate dielectric. IGTO active layers with the thicknesses of 7 nm, 15 nm, 25 nm,
35 nm, and 52 nm were deposited on the substrate by direct current magnetron sputtering
under the following conditions: working pressure, 3.0 mTorr, Ar/O2; gas mixing ratio,
21/9 sccm; sputtering power, 150 W; and chuck temperature, room temperature (RT). Then,
a 100-nm thick indium–tin-oxide layer was deposited on the IGTO active layer-coated
substrate to prepare source and drain electrodes of the TFTs. Subsequently, a 30-nm thick
Al2O3 thin film was deposited as a passivation layer on top of the resulting substrate
using radio frequency magnetron sputtering at RT. Finally, the IGTO TFTs were thermally
annealed on a hot plate at 200 ◦C for 2 h in ambient air.
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Figure 1. (a) Schematic and (b) top-view optical image of the fabricated IGTO TFTs.

The active, source/drain electrodes, and passivation layers were patterned using pho-
tolithography and a lift-off process. Electrical characteristics and stability of the IGTO TFTs
were measured using a semiconductor parameter analyzer (4156C, Agilent Technologies,
Santa Clara, CA, USA) at RT in ambient air. Crystalline structure of the IGTO thin films
was analyzed using X-ray diffraction (XRD, New D8-Advance, Bruker-AXS, Wisconsin,
USA) with CuKα radiation (λ = 0.15406 nm). Chemical properties of the IGTO thin films
with different tS were examined using X-ray photoelectron spectroscopy (XPS, K-alpha+,
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Thermo Fisher Scientific-KR, Seoul, Korea). An Ar ion beam was employed to sputter the
Al2O3 and IGTO thin films before XPS characterization.

3. Results and Discussion

Figure 2 shows the XRD patterns of a 35-nm thick IGTO thin film fabricated on
an aluminosilicate glass substrate. The XRD pattern demonstrates only halo peaks at
approximately 23◦ and 45◦, originating from the glass substrate [24]. The results shown in
Figure 2 indicate that the IGTO thin film has an amorphous phase, which is consistent with
the results of previous studies [17].
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Figure 2. XRD pattern of the 35-nm thick IGTO thin film formed on the aluminosilicate glass sub-
strate. 
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Figure 2. XRD pattern of the 35-nm thick IGTO thin film formed on the aluminosilicate
glass substrate.

Figure 3 shows a semi-logarithmic scale plot of transfer curves for the IGTO TFTs
(width/length (W/L) = 500 µm/500 µm), with the tS of 7, 15, 25, 35, and 50 nm. Herein,
the drain current (ID) of all of the IGTO TFTs was evaluated by varying the gate-to-
source voltage (VGS) from −20 to 20 V at a fixed drain-to-source voltage (VDS) of 1 V.
Figure 3 shows that the ID of the IGTO TFT with a tS of 50 nm is slightly modulated by VGS;
therefore, the electrical characteristics and stability of only the IGTO TFTs with the tS of 7,
15, 25, and 35 nm were examined in this study. Table 1 presents the electrical parameters
of the IGTO TFTs with the tS of 7, 15, 25, and 35 nm. The µFE was calculated using the
maximum value of transconductance, and the VTH was determined as the VGS value
causing ID = W/L × 10−8 (A) at a VDS of 1 V. The subthreshold swing (SS) was extracted as
the d(VGS)/d(logID) value in the range of 10−10 A < ID < 10−9 A. The VTH decreased and
the SS and the off-current (IOFF) increased with an increase in tS (Figure 3 and Table 1). The
IGTO TFT with the tS of 7 nm exhibited a significantly smaller µFE than those of the IGTO
TFTs with thicker active layers. However, the µFE of the IGTO TFTs with a tS larger than 15
nm only slightly increased with an increase in tS. The results shown in Figure 3 and Table 1
are consistent with those reported in previous studies for oxide TFTs, and they demonstrate
that tS significantly affects the transfer characteristics of IGTO TFTs [25]. The negatively
shifted VTH and the large SS for the thick active oxide TFTs have been mainly attributed to
the large number of free electrons within the oxide semiconductor and the higher sheet trap
density in the active layer, respectively [26–28]. The increase in IOFF with an increase in tS
was considered to be due to enhanced bulk conduction through the back-active layer [27].
The increase in µFE with an increase in tS has been primarily ascribed to the reduced surface
roughness scattering in the oxide semiconductor. As the carrier transport layer is farther
from the surface of the thick film, the effect of the surface roughness on the carrier mobility
is weaker in the thick film, compared with the thin film [29,30].
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Table 1. Electrical parameters of IGTO TFTs with the tS of 7, 15, 25, and 35 nm.

tS [nm] VTH [V] µFE [cm2·V−1·S−1] SS [V/decade] IOFF [A]

7 1.3 6.5 0.16 5.75 × 10−14

15 0.3 26.5 0.16 2.16 × 10−13

25 −0.7 26.9 0.20 1.94 × 10−13

35 −3.1 27.8 0.31 2.91 × 10−12

Figure 4a–d shows the time dependence of the transfer curves for the IGTO TFTs with
the tS of 7, 15, 25, and 35 nm, respectively, at a VOV (VOV = VGS − VTH) of 20 V and a VDS
of 0 V. For every IGTO TFT, the transfer curves shifted in the positive direction with an
increase in the stress time. The largest shift in VTH (∆VTH) was observed for the IGTO
TFT with the tS of 7 nm (∆VTH = 3.1 V after stress for 3000 s), whereas the smallest ∆VTH
was noticed for the IGTO TFT with the tS of 35 nm (∆VTH = 0.5 V after stress for 3000 s).
Figure 4e depicts the ∆VTH for the IGTO TFTs with different tS under PBS at different stress
times. Clearly, the magnitude of ∆VTH for the fabricated IGTO TFTs decreased with an
increase in tS under PBS (Figure 4).

Figure 5a–d shows the time dependence of the transfer curves for the IGTO TFTs with
the tS of 7, 15, 25, and 35 nm, respectively, at a VOV of −20 V and a VDS of 0 V, under
illumination using a white light-emitting diode (LED, wavelength 420–780 nm) backplane
unit with a luminance of 2000 lux. For every IGTO TFT, the transfer curves shifted in the
negative direction with an increase in the stress time. The largest magnitude of ∆VTH was
obtained for the IGTO TFT with the tS of 35 nm (∆VTH = −11.2 V after stress for 3000 s),
whereas the smallest magnitude of ∆VTH was achieved for the IGTO TFT with the tS of
7 nm (∆VTH = −0.6 V after stress for 3000 s). Figure 5e depicts the ∆VTH for the IGTO TFTs
with different tS under negative bias illumination stress (NBIS) at different stress times. The
magnitude of ∆VTH for the fabricated IGTO TFTs increased with an increase in tS under
NBIS (Figure 5).
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 Figure 4. Time dependence of the transfer curves for IGTO TFTs with the tS of (a) 7 nm, (b) 15 nm, (c) 25 nm, and (d) 35 nm
at a constant VOV of 20 V; (e) ∆VTH for the IGTO TFTs with different tS under PBS at different stress times.
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 Figure 5. Time dependence of the transfer curves for the IGTO TFTs with the tS of (a) 7 nm, (b) 15 nm, (c) 25 nm, and
(d) 35 nm at a constant VOV of −20 V under illumination using a light-emitting diode backplane unit with a luminance of
2000 lux; (e) ∆VTH for the IGTO TFTs with different tS under NBIS at different stress times.
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To investigate the physical mechanisms responsible for the effects of tS on the PBS and
NBIS stability of IGTO TFTs (Figures 4 and 5), we characterized the O1s spectra of the IGTO
thin films with different tS obtained using XPS. Figure 6a–d shows the XPS O1s spectra of 7,
15, 25, and 35-nm thick IGTO thin films located near the IGTO/SiO2 interface. The XPS O1s
spectra were resolved into three sub-peaks originating from fully coordinated metal ions
(metal–oxygen lattice (OLatt)), oxygen vacancies (OVac), and impurity-related oxygen (OImp).
The XPS peak positions assigned to these sub-peaks were 530.0 eV (OLatt), 531.0 eV (OVac),
and 532.5 eV (OImp), respectively [14,17]. Figure 7 shows the relative peak area ratios of
OLatt, OVac, and OImp for the IGTO thin films with different tS, located near the IGTO/SiO2
interface. The relative peak area ratio of OImp was highest for the 7-nm thick IGTO thin film,
and decreased with an increase in tS (Figure 7). In previously reported studies on IGZO or
IGTO TFTs, OImp was mainly ascribed to the O bond in the hydroxyl group (OH) [17]. The
OH creates acceptor-like trap states close to the conduction band (CB) edge and accelerates
the electron trapping process under PBS because of its polar nature [17,31–34]. Considering
this, the lower PBS stability of the IGTO TFTs with thinner active layers can be ascribed
to the high concentration of OH in the channel layer. It has been reported that a thicker
active layer can isolate the channel from ambient factors, including H2O molecules, even
after the passivation layer is deposited on the active layer [35]. Effective self-passivation
from H2O molecules in the air is the most probable reason for the better PBS stability of the
IGTO TFTs with thicker active layers (Figure 7).
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Figure 7 also shows that the relative peak area ratio of OVac is the smallest for the
7-nm thick IGTO thin film, and it increases with an increase in tS. OVac are easily created
by sputtering-induced damage in oxide semiconductors [27,36]. Therefore, the concen-
tration of OVac in IGTO increases with an increase in tS because of the longer sputtering
time. OVac generates shallow and deep donor states in oxide semiconductors such as
IGZO and IGTO [37,38]. Under NBIS, OVac is ionized to OVac

2+, and OVac
2+ drifts to-

ward the oxide semiconductor/gate dielectric interface in oxide TFTs [39]. The increased
concentration of electrons, and the formation of an OVac

2+ accumulation layer near the
gate, dielectric shifts the transfer curves of the TFTs in the negative direction [40]. The
obtained results show that the lower NBIS stability of the IGTO TFTs with thicker active
layers can possibly be attributed to the higher concentration of OVac in the IGTO thin film,
caused by the more severe sputtering-induced damage. The experimental results shown
in Figures 4 and 5 indicate that it is necessary to consider the trade-off between the PBS
and NBIS stability of the devices, while determining the optimum tS for IGTO TFTs. From
the transfer characteristics and PBS/NBIS stability of the IGTO TFTs with different tS, it
can be concluded that 15 nm is the optimal tS for IGTO TFTs, leading to the best electrical
characteristics (µFE: 26.5 cm2/V·s; SS: 0.16 V/dec; and VTH: 0.3 V), and decent PBS and
NBIS stability of IGTO TFTs.

4. Conclusions

In this study, we examined the effects of tS on the transfer characteristics and stability
of high-mobility amorphous IGTO TFTs with tS values of 7, 15, 25, 35, and 50 nm. The
obtained results showed that with an increase in tS, VTH shifted in the negative direction,
and the SS and µFE of the fabricated IGTO TFTs increased. Clearly, the PBS stability of the
IGTO TFTs improved as the tS increased. However, the NBIS stability of the IGTO TFTs
deteriorated with an increase in tS. The XPS characterization results revealed that the better
PBS stability and the low NBIS stability of the IGTO TFTs with thicker active layers were
mainly owing to the decrease in the concentration of OH and the increase in the number
of OVac in the IGTO, with an increase in tS. We found that the optimum thickness of the
active layer for the IGTO TFTs is approximately 15 nm, which results in a positive VTH, an
acceptably high µFE, and decent PBS and NBIS stability of the IGTO TFTs.
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