
electronics

Article

Reducing Complexity of Server Configuration through Public
Cloud Storage

Sihyung Lee

����������
�������

Citation: Lee, S. Reducing

Complexity of Server Configuration

through Public Cloud Storage.

Electronics 2021, 10, 1277.

https://doi.org/10.3390/

electronics10111277

Academic Editor: George

Angelos Papadopoulos

Received: 12 May 2021

Accepted: 26 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea;
sihyunglee@knu.ac.kr; Tel.: +82-53-950-7284

Abstract: Hosting networking applications typically involves a server publicly accessible over the
Internet. However, preparing a server requires excessive time and effort, particularly for non-expert
users. This is because users configure multiple elements including the server, host firewalls, and
network firewalls, while considering their interactions. To address this problem, we propose a
method that uses public cloud storage, such that all messages are communicated through the storage
between the server and clients. As the storage is public and accessible over the Internet, users
need not consider firewalls and can focus on configuring the server. We implemented the proposed
method for web applications and evaluated its performance by accessing applications from 90 hosts
in diverse locations. The evaluation showed that the proposed method does not incur extra delays
and clients can access the applications as reliably as the current practice of configuring servers.
We also recruited 54 participants and examined the time required to configure a server with the
proposed method compared to configuration using current practice. This study demonstrated that
the proposed method reduces configuration time from 40−60 to nearly 30 min. We believe that the
proposed method provides a basis for improving the manageability of server configuration.

Keywords: server configuration; network configuration; public cloud storage; networking applications

1. Introduction

Many networking applications require servers visible over the Internet. For example,
web, mail, chatting, and file-sharing services are provided on servers, such that the services
can be accessed from diverse locations. Such publicly accessible servers are often hosted on
a temporary basis, for a variety of reasons. Software developers set up servers to validate
that mobile applications operate correctly during development phases. Hobbyists run web
sites to meet and quickly share photos and files. Gamers launch servers to play online
games. Teachers of real-time, online classes set up servers to provide a virtual laboratory
for students, such that they can perform experiments and competitions during lectures.

In these temporary settings, it is desirable that a server can be set up with the least
amount of delay and complexity, so that it can be accessed immediately on demand.
However, for many, non-expert users (In this section, a user refers to the person who hosts
a networking application and thus needs to configure a server and firewalls), hosting a
publicly accessible server takes significant time and effort [1,2]. This is largely because
users must configure a combination of devices, i.e., a server, host firewall, and network
firewall, and configuring all of them correctly and consistently requires a high level of
knowledge and experience [3,4]. Moreover, network firewalls are often not accessible for
configuration, when users connect to networks outside their organizations or when they
use public Wi-Fi.

Alternatively, users can rent a server managed by a server-hosting company. However,
renting a server accompanies payments, which can be a burden as they accumulate over
time [5]. In addition, this type of server typically provides configuration environments
different from users’ local machines (e.g., Linux vs. Windows), therefore, users must
learn these environments before they can fully use the service. The servers also allow a

Electronics 2021, 10, 1277. https://doi.org/10.3390/electronics10111277 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/electronics10111277?type=check_update&version=1
https://doi.org/10.3390/electronics10111277
https://doi.org/10.3390/electronics10111277
https://doi.org/10.3390/electronics10111277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111277
https://www.mdpi.com/journal/electronics


Electronics 2021, 10, 1277 2 of 19

template of predefined functions (e.g., particular types and versions of server languages
and database programs), which are not always customizable to user preferences nor can
they be easily ported to other servers [6].

This work concentrates on reducing the complexity of hosting a server. In particular,
we propose a method that requires the configuration of a single device—the user’s own
machine, such that the user can fully customize it and work in familiar settings without
the need to consider remote devices and their heterogeneous environments. The method
uses public, unpaid cloud storage and transmits messages and data through this storage
(Figure 1). As the storage is free of charge and publicly accessible, no cost is incurred, and
the user is not required to configure firewalls.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 20 
 

 

Alternatively, users can rent a server managed by a server-hosting company. How-
ever, renting a server accompanies payments, which can be a burden as they accumulate 
over time [5]. In addition, this type of server typically provides configuration environ-
ments different from users’ local machines (e.g., Linux vs. Windows), therefore, users 
must learn these environments before they can fully use the service. The servers also allow 
a template of predefined functions (e.g., particular types and versions of server languages 
and database programs), which are not always customizable to user preferences nor can 
they be easily ported to other servers [6]. 

This work concentrates on reducing the complexity of hosting a server. In particular, 
we propose a method that requires the configuration of a single device—the user’s own 
machine, such that the user can fully customize it and work in familiar settings without 
the need to consider remote devices and their heterogeneous environments. The method 
uses public, unpaid cloud storage and transmits messages and data through this storage 
(Figure 1). As the storage is free of charge and publicly accessible, no cost is incurred, and 
the user is not required to configure firewalls. 

 
Figure 1. Overview of proposed method. 

We implemented the proposed method for web applications, such that web messages 
and contents are transmitted through public storage. We then made the applications ac-
cessible over the Internet and measured its performance when accessed by 90 hosts in 
geographically diverse locations. We demonstrated that the services can be accessed as 
quickly and reliably as with the existing methods for hosting servers. We also evaluated 
the manageability of the proposed method with a user study. A total of 54 participants 
configured web applications either using the proposed method or the existing methods, 
and we measured the times required to complete the configurations. The results showed 
that the proposed method can reduce configuration time from 40−60 to nearly 30 min, and 
such reduction was greater than 50% for non-expert users. The participants pointed out 
that the proposed method is simpler, as only a single local device requires configuration. 

We summarize our contributions as follows: 
• We propose a method that reduces the complexity as well as costs involved in hosting 

a server for various networking applications. The current practice either requires con-
figuring firewalls [3,4] or paying for renting a server [5,6]. Our proposed method 
eliminates the need to configure firewalls and incurs no cost, as it uses unpaid storage 
that is publicly accessible. There exist other studies that relieve the difficulties of 
server-hosting, and most of them propose user-friendly and centralized configura-
tion interface [1,3,7]. Our work complements these studies; it further relieves the dif-
ficulties by reducing the number of devices to configure, as a user needs to configure 
a single local device but no firewall or remote device. Table 1 compares the different 
methods. 

• We equip the proposed method with techniques that reduce access times, since the 
method relays messages through public storage and thus may incur delay. We eval-
uated the techniques by implementing the proposed method for web applications 

User configures server functions 
in own, local machine

Communications made through public storage, 
accessible over the Internet

Services are accessed 
from anywhere

Figure 1. Overview of proposed method.

We implemented the proposed method for web applications, such that web messages
and contents are transmitted through public storage. We then made the applications
accessible over the Internet and measured its performance when accessed by 90 hosts in
geographically diverse locations. We demonstrated that the services can be accessed as
quickly and reliably as with the existing methods for hosting servers. We also evaluated
the manageability of the proposed method with a user study. A total of 54 participants
configured web applications either using the proposed method or the existing methods,
and we measured the times required to complete the configurations. The results showed
that the proposed method can reduce configuration time from 40−60 to nearly 30 min, and
such reduction was greater than 50% for non-expert users. The participants pointed out
that the proposed method is simpler, as only a single local device requires configuration.

We summarize our contributions as follows:

• We propose a method that reduces the complexity as well as costs involved in hosting
a server for various networking applications. The current practice either requires
configuring firewalls [3,4] or paying for renting a server [5,6]. Our proposed method
eliminates the need to configure firewalls and incurs no cost, as it uses unpaid storage
that is publicly accessible. There exist other studies that relieve the difficulties of
server-hosting, and most of them propose user-friendly and centralized configuration
interface [1,3,7]. Our work complements these studies; it further relieves the difficulties
by reducing the number of devices to configure, as a user needs to configure a single
local device but no firewall or remote device. Table 1 compares the different methods.

• We equip the proposed method with techniques that reduce access times, since the
method relays messages through public storage and thus may incur delay. We evalu-
ated the techniques by implementing the proposed method for web applications and
then by measuring its performance when accessed from 90 hosts that are geographi-
cally dispersed. We observed that the applications can be accessed as quickly as with
the current practice of hosting servers.

• We performed a user study to demonstrate the effectiveness of the proposed method
in reducing the complexity of server-hosting. We recruited 54 participants and asked
them to configure web applications either using the proposed method or the exist-
ing methods. The study showed that the proposed method reduced configurations



Electronics 2021, 10, 1277 3 of 19

times from 40−60 to nearly 30 min. We also identified reasons why the participants
experienced less difficulties with the proposed methods.

Table 1. Comparisons among different methods of server-hosting.

No Firewall Configuration No Remote
Device Configuration No Cost for Server Rent Functions Fully Customizable

1© Use own machine for server [3,4] × × # #

2© Rent server in server-hosting
company [5,6] # × × ×

3© User-friendly interface [1,7] 1 4 4 4 4
4© Proposed method (this paper) # # # #

1 3© User-friendly interface supplements other methods—it can work on top of 1©, 2©, and 4©, thus its property can be either × or #,
depending on which method it operates on.

The remainder of this paper is organized as follows. In Section 2, we present previous
work and how this relates to the proposed method. In Section 3, we describe the proposed
method in detail. In Section 4, we demonstrate the performance of the proposed method,
and subsequently evaluate its manageability in Section 5. Finally, we conclude with an
outline of future work in Section 6.

2. Related Work
2.1. Difficulties in Network Configuration for Non-Expert Users

Several studies show that non-expert users continue to experience difficulty config-
uring networking devices and technologies, such as servers, firewalls, and routers. More
than 20% of home networking gear is returned, not because the equipment has technical
deficiencies, but because users experience difficulty installing and configuring them cor-
rectly [2]. Even after successful installation, devices require configuration changes and
ongoing maintenance, which often leads to connectivity failures [1] and privacy viola-
tions [8]. Troubleshooting tools exist, but are not always user-friendly; and looking up
solutions and asking questions on online forums is difficult as many users are unfamiliar
with technical terms [9]. The situation becomes aggravated as more wireless devices are
connected to home networks; multiple different devices must be configured, their inter-
actions considered, and users must quickly learn complex heterogeneous configuration
environments [3].

2.2. More Usable and Manageable Network-Configuration Interfaces

To address the aforementioned difficulties, Jakobi et al. [3] suggest developing visual-
ized systems that non-expert users can better learn and understand. In fact, GUI-based
firewall configuration systems have largely replaced command-line-based systems in pro-
duction networks [10]. These systems can also be centralized, such that users can monitor
multiple devices and their interactions in a single screen [7]. Grinter et al. [1] points out that
future networking protocols must consider usability and understandability as major design
principles, because these principles have been neglected since the inception of the Internet.
Overall, previous studies propose user-friendly and centralized networking devices and
protocols. Our proposed method further relieves users from complicated configuration
tasks; it enables users to configure a single device without considering complex interac-
tions among multiple devices; furthermore, this single device is the user’s local machine,
so there is no requirement to connect to and configure remote machines, or to work in
heterogeneous, unfamiliar environments.

2.3. Various Uses of Public Storage

Public cloud storage is used for various purposes, the most frequent of which is
to backup and share data. In particular, the same data are often replicated in multiple
storage devices in different locations, so that the data can be quickly accessed from diverse
locations; furthermore, failures in one device do not affect the availability of the data. Such



Electronics 2021, 10, 1277 4 of 19

replication of data does not incur much delay, as popular storage networks are highly
optimized [11,12]. Our proposed method uses this fact to quickly deliver data from a sender
to a receiver; a sender writes data to the nearest machine in a storage network, which is
quickly synchronized with the machine nearest to the receiver, from which the receiver
reads data. Cloud storage can also save space and network bandwidth by informing a
client that a file does not have to be uploaded if it has already been received by the same or
different clients; this process may leak information about files in storage to arbitrary users,
so protection mechanisms can be implemented to prevent such leakage [13]. Our proposed
method can also benefit from these improved savings and protection.

The types of data shared in public storage differ. Hu et al. [14] propose to store
short video clips in adjacent, free storage, therefore consuming less storage and network
bandwidth of online social networks (e.g., Facebook, Twitter, and Instagram). The work by
Zhu et al. [15] uses public storage to store sensor data collected from multiple locations,
so that these data can be gathered in one place and processed together. In contrast to
previous work, our proposed method uses public storage to share data and transmit
messages between servers and clients. By doing so, we aim to simplify the configuration of
interactive applications that require publicly available servers.

Certain applications can be easily configured in cloud storage without using the
proposed method. For example, static web applications can be hosted by dragging and
dropping contents into storage and then by sharing the URL [16]. The proposed method is
not specific to static web applications but is developed for various networking applications
that require servers (more details are shown in Section 3.3); these applications perform
a wide range of functions, such as server-side code execution, corresponding access to
databases, dynamic content generation, authentication, and user-defined functions in
development phase. Configuration of these functions in not always supported in drag-and-
drop manner. Furthermore, the drag-and-drop type configuration uses cloud storage to
store files, whereas the proposed method uses cloud storage to relay messages between a
server and clients. As such, a user does not need to configure firewalls and can equip its
own machine with arbitrary server functions.

2.4. Relationships with Network Proxies

The proposed method can be considered to be using public cloud storage as a proxy.
A proxy is a machine that acts as an intermediary between a client and a server, such
that messages are delivered through the proxy, and it performs useful functions on behalf
of the server and client. One common function of proxy is to improve the performance
of networking applications; for example, a proxy caches static contents that are recently
accessed, so that subsequent accesses can quickly fetch the contents [17]; as another ex-
ample, a proxy distributes client requests to multiple servers, to balance load across the
servers [18]. Proxies are also used to secure a network; for example, a proxy authenticates
connections to a server and encrypts/decrypts messages for SSL (Secure Socket Layer)
sessions [19]; a proxy may also monitor each session and log important events [20].

Our proposed method has different objectives of using a proxy; it uses public cloud
storage to (i) simplify the complexity of server-hosting, since the storage is publicly acces-
sible and does not require firewall configuration; the proposed method also uses unpaid
storage to (ii) reduce costs involved in server-hosting. When doing so, the method caches
contents to improve performance, similarly to the previous uses of proxies.

3. Method of Communication via Public Storage

We first present an overview of the proposed method in comparison with previous
methods (Section 3.1). We then describe details of the method regarding how communica-
tion occurs through public storage services (Section 3.2). We also show that the proposed
method applies to various applications (Section 3.3).

Throughout Sections 3–5, we use the terms in Table 2. A provider refers to the person
who provides other people with a networking application, and a consumer refers to the



Electronics 2021, 10, 1277 5 of 19

person who uses such an application. A server refers to a publicly accessible server, operated
by a server-hosting company. Such a server can be used by a provider to make a networking
application accessible to consumers. Storage refers to a publicly accessible, unpaid storage
facility on the Internet, such as the free space provided by DropBox, Google Drive, and
Baidu Cloud. We use the storage facility to replace servers.

Table 2. Description of terms.

Term Description

Provider Person who hosts a networking application that is accessible by other people
Consumer Person who uses the networking application arranged by a provider

Server Publicly accessible server, operated by server-hosting companies
Storage Publicly accessible, unpaid network storage

3.1. Overview of Proposed Method

We begin by describing two common methods of hosting a networking application
visible over the Internet. We then present the proposed method and contrast it with
existing methods. Figure 2 illustrates the two existing methods (Figure 2a,b, respectively)
along with the proposed method (Figure 2c). A cylinder represents a machine used by a
provider, consumer, server, or storage. An arrow represents data communicated between
machines. Word balloons show a sequence of operations required for consumers to access
the provider’s application; in addition to launching the application, the provider must
perform the operations in blue balloons; then the rest of the operations in white balloons
are automatically performed by the application. Please note that the provider’s work in
blue balloons is not necessary in the proposed method, as shown in Figure 2c. Each of the
three methods in Figure 2a–c are explained in the following paragraphs.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 20 
 

 

 
 

(a) Existing method #1 (b) Existing method #2 

 

 
(c) Proposed method (d) Legend 

Figure 2. Comparison of previous methods with proposed method. 

To address the shortcomings of the existing methods, we propose a method that uses 
storage, as shown in Figure 2c. We assume that the provider already has an account for 
the storage, as free storage services are popular, and many users have accounts for one or 
more such services [21]. In the proposed method, all messages are sent via storage—the 
sender first writes a message on the storage, which is then read by the receiver. As com-
pared to existing method #1 (Figure 2a), the provider does not need to configure firewalls 
because the storage is publicly accessible. (Although firewalls do not prevent connection 
to storage, each directory in the storage, by default, is accessible only by the owner. How-
ever, the owner can choose to allow or disallow a particular set of consumers [21]. For 
example, an arbitrary consumer is allowed to write a request in the directory configured 
to be writable by every user; then the corresponding response is written to a directory 
accessible only by the request’s sender). Compared to existing method #2 (Figure 2b), no 
payment is required as the proposed method uses free storage space; furthermore, the 
provider has full control of functionality because this is chosen and configured on the 
provider’s own machine. 

One concern about the proposed method is potential delay—messages are sent via 
storage, rather than being directly sent between consumer and provider. To reduce the 
delay, we use the following techniques: 
• Caching. We cache recently accessed data in storage, so that subsequent access to the 

same data reads them directly from storage, rather than re-fetching the data from the 
provider’s machine. This process is illustrated in Figure 3. We assume that the stor-
age is initially empty. ① Consumer C1 requires item i, and because i does not exist 
in storage, C1 requests i via storage; ② then i is returned via storage; ③ neither C1 
nor the provider delete i, therefore, it remains in storage; ④ another consumer C2 
requires the same item i, and because i is already in storage, C2 reads it directly from 
storage, saving time to send a request and receive the item. Cached data can be de-
leted according to various policies, e.g., remove data that have not been accessed in 
the past h hours. 

• Packaging. If a set of items are requested together most of the time, we package these 
items into a single file (e.g., tar or zip) and send it in the first response, therefore 

Provider

② configure network firewall  

① configure host firewall

Consumer

FW

③ send request

④ send response

Server

ProviderConsumer

② push updates when needed

① register, pay, configure for use of server

③ send request

④ send response

ProviderConsumer

① send request via storage

② send response via storage

Storage

machine for 
provider/consumer/server/storage

FW
firewall

data sent over networks

work performed by provider

work performed by application

Figure 2. Comparison of previous methods with proposed method.

Figure 2a shows the first common method of hosting a networking application. The
provider’s own machine is used to host the application. To allow customers access to the
application, the provider must configure policies at 1© the host firewall in the provider’s



Electronics 2021, 10, 1277 6 of 19

machine and 2© the network firewall in the access router. However, configuring a firewall
requires knowledge in networking and hence can be time-consuming and error-prone for
non-expert users [1–3,8,9]. Moreover, the provider cannot always gain access privileges to
network firewalls, e.g., when the provider is working outside the office and does not own
the router.

An alternative method is shown in Figure 2b. It uses an external server in a server-
hosting company, so the company is responsible for the configuration of firewalls. The
provider’s tasks are 1© to register for the server and then 2© to push application contents
to the server whenever updates are necessary. However, this often requires a monthly
payment; otherwise, functionality can be limited [5]. Even with a payment, the server
may support particular applications and options, and the provider is not always given full
control and freedom over the server, e.g., a web-server is provided with a set of templates
where certain scripts are disabled [6].

To address the shortcomings of the existing methods, we propose a method that uses
storage, as shown in Figure 2c. We assume that the provider already has an account for the
storage, as free storage services are popular, and many users have accounts for one or more
such services [21]. In the proposed method, all messages are sent via storage—the sender
first writes a message on the storage, which is then read by the receiver. As compared to
existing method #1 (Figure 2a), the provider does not need to configure firewalls because
the storage is publicly accessible. (Although firewalls do not prevent connection to storage,
each directory in the storage, by default, is accessible only by the owner. However, the
owner can choose to allow or disallow a particular set of consumers [21]. For example, an
arbitrary consumer is allowed to write a request in the directory configured to be writable
by every user; then the corresponding response is written to a directory accessible only by
the request’s sender). Compared to existing method #2 (Figure 2b), no payment is required
as the proposed method uses free storage space; furthermore, the provider has full control
of functionality because this is chosen and configured on the provider’s own machine.

One concern about the proposed method is potential delay—messages are sent via
storage, rather than being directly sent between consumer and provider. To reduce the
delay, we use the following techniques:

• Caching. We cache recently accessed data in storage, so that subsequent access to
the same data reads them directly from storage, rather than re-fetching the data from
the provider’s machine. This process is illustrated in Figure 3. We assume that the
storage is initially empty. 1© Consumer C1 requires item i, and because i does not
exist in storage, C1 requests i via storage; 2© then i is returned via storage; 3© neither
C1 nor the provider delete i, therefore, it remains in storage; 4© another consumer
C2 requires the same item i, and because i is already in storage, C2 reads it directly
from storage, saving time to send a request and receive the item. Cached data can be
deleted according to various policies, e.g., remove data that have not been accessed in
the past h hours.

• Packaging. If a set of items are requested together most of the time, we package
these items into a single file (e.g., tar or zip) and send it in the first response, therefore
removing the need for exchanging multiple pairs of request and response. For example,
in web applications, a request for an HTML document often leads to requests for
CSS (Cascading Style Sheets), JavaScript, and image files, all of which collectively
comprise the same web page; such items can be packaged and sent in a single response.
To further reduce delay, we package frequently accessed sets before launching the
application and pre-cache them in storage.



Electronics 2021, 10, 1277 7 of 19

Electronics 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

removing the need for exchanging multiple pairs of request and response. For exam-
ple, in web applications, a request for an HTML document often leads to requests for 
CSS (Cascading Style Sheets), JavaScript, and image files, all of which collectively 
comprise the same web page; such items can be packaged and sent in a single re-
sponse. To further reduce delay, we package frequently accessed sets before launch-
ing the application and pre-cache them in storage. 
Our evaluation demonstrates that these techniques significantly reduce delay, such 

that consumers perceive only a minor delay, tolerable in comparison to existing methods 
(Section 4). 

 
Figure 3. Overview of caching method. 

3.2. Requesting and Receiving Data via Storage 
We define two types of contents that a networking application provides to consum-

ers: static items and dynamic items. Using these definitions, we describe the details of the 
proposed method. Static items are data that do not change on user input and thus can be 
prepared before a consumer requests them; whereas dynamic items are those that are made 
upon request and cannot be prepared in advance. Table 3 presents examples of static and 
dynamic items in three networking applications. In file-sharing applications, most files 
are static because file contents do not typically change upon user input. In web and game 
applications, both static and dynamic items exist. We package and cache static items but 
not dynamic items, because dynamic items are not predetermined and are generated ac-
cording to user input upon request. 

Table 3. Example of static and dynamic items in popular networking applications. 

Application Static Items Dynamic Items 
File sharing Most files being shared  

Web CSS, JavaScript, image, and HTML files not 
generated on user input 

User authentication result, contents retrieved 
by database query 

Game Maps, images, audio/video clips User status updates, chatting messages 

Figure 4 illustrates each step of the proposed method in detail. The first step is shown 
in Figure 4a, with the following steps then illustrated for each of three different cases, 
when the desired item is cached in storage (Figure 4b), when a static item is requested 
(Figure 4c), and when a dynamic item is requested (Figure 4d). 

  

ProviderC1

① send request of item i via storage

consumer machineC*

C2

④ read i directly from storage

Storage

② send response containing i via storage

③ i remains in storage 

Figure 3. Overview of caching method.

Our evaluation demonstrates that these techniques significantly reduce delay, such
that consumers perceive only a minor delay, tolerable in comparison to existing methods
(Section 4).

3.2. Requesting and Receiving Data via Storage

We define two types of contents that a networking application provides to consumers:
static items and dynamic items. Using these definitions, we describe the details of the
proposed method. Static items are data that do not change on user input and thus can
be prepared before a consumer requests them; whereas dynamic items are those that are
made upon request and cannot be prepared in advance. Table 3 presents examples of static
and dynamic items in three networking applications. In file-sharing applications, most
files are static because file contents do not typically change upon user input. In web and
game applications, both static and dynamic items exist. We package and cache static items
but not dynamic items, because dynamic items are not predetermined and are generated
according to user input upon request.

Table 3. Example of static and dynamic items in popular networking applications.

Application Static Items Dynamic Items

File sharing Most files being shared

Web CSS, JavaScript, image, and HTML
files not generated on user input

User authentication result, contents
retrieved by database query

Game Maps, images, audio/video clips User status updates,
chatting messages

Figure 4 illustrates each step of the proposed method in detail. The first step is shown
in Figure 4a, with the following steps then illustrated for each of three different cases, when
the desired item is cached in storage (Figure 4b), when a static item is requested (Figure 4c),
and when a dynamic item is requested (Figure 4d).

• Step 1©. The provider initiates the networking application and prepares to serve
consumer requests (Figure 4a). Then the following steps 2©− 4© repeat until the
provider terminates the application.

• Step 2©. A consumer peeks at storage to see whether the desired item is cached
(Consumers can learn which files exist in the storage by subscribing to changes
in the storage. For example, when we use the DropBox desktop application, we
can immediately see updates on a shared DropBox folder, because the application
subscribes to changes in the folder [21]). If so, the consumer reads the cached item
from storage (Figure 4b). Otherwise, the consumer sends a request to the provider via
storage (Figure 4c,d). Please note that multiple consumers can exist and perform these
functions simultaneously.



Electronics 2021, 10, 1277 8 of 19

• Step 3©. The provider processes received requests. If multiple requests exist in the
queue, they are processed in order of arrival—the earliest request is processed first.
If a request requires a static item, the provider returns it immediately via storage
(Figure 4c). If the request requires a dynamic item, the provider generates this item
and returns it as soon as possible (Figure 4d). When waiting for dynamic items to be
generated, the provider can process the next request.

• Step 4©. After receiving the requested item, the consumer deletes it from storage if
it is dynamic (Figure 4d). Static items remain in storage for future use, i.e., they are
cached (Figure 4c) (We target situations where users require a server temporarily, and
where this server caches contents that do not exceed the free capacity provided by
public cloud storage, i.e., 2−15 GB in general [21]. Therefore, our proposed method
does not scale storage space, e.g., as Azure Scaffold does [22]. However, when more
caching space is required, cached data can be deleted according to various policies,
e.g., remove data that have not been accessed in the past h hours; one can also use
cloud storage with larger free space, e.g., 1 TB [23]). The provider also deletes the
completed request from storage (Figure 4c,d). The deletions prevent storage from
being cluttered by temporary files.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 20 
 

 

 
(a) First step, common for all three cases in (b−d) 

 

  
 

(b) Desired item cached (c) Static item requested (d) Dynamic item requested 

Figure 4. Sequence diagram of proposed method in three different situations. 

• Step ①. The provider initiates the networking application and prepares to serve con-
sumer requests (Figure 4a). Then the following steps ②−④ repeat until the provider 
terminates the application. 

• Step ②. A consumer peeks at storage to see whether the desired item is cached (Con-
sumers can learn which files exist in the storage by subscribing to changes in the 
storage. For example, when we use the DropBox desktop application, we can imme-
diately see updates on a shared DropBox folder, because the application subscribes 
to changes in the folder [21]). If so, the consumer reads the cached item from storage 
(Figure 4b). Otherwise, the consumer sends a request to the provider via storage (Fig-
ure 4c,d). Please note that multiple consumers can exist and perform these functions 
simultaneously. 

• Step ③. The provider processes received requests. If multiple requests exist in the 
queue, they are processed in order of arrival—the earliest request is processed first. 
If a request requires a static item, the provider returns it immediately via storage 
(Figure 4c). If the request requires a dynamic item, the provider generates this item 
and returns it as soon as possible (Figure 4d). When waiting for dynamic items to be 
generated, the provider can process the next request. 

• Step ④. After receiving the requested item, the consumer deletes it from storage if 
it is dynamic (Figure 4d). Static items remain in storage for future use, i.e., they are 
cached (Figure 4c) (We target situations where users require a server temporarily, 
and where this server caches contents that do not exceed the free capacity provided 
by public cloud storage, i.e., 2−15 GB in general [21]. Therefore, our proposed method 
does not scale storage space, e.g., as Azure Scaffold does [22]. However, when more 
caching space is required, cached data can be deleted according to various policies, 
e.g., remove data that have not been accessed in the past h hours; one can also use 
cloud storage with larger free space, e.g., 1 TB [23]). The provider also deletes the 
completed request from storage (Figure 4c,d). The deletions prevent storage from be-
ing cluttered by temporary files. 
We now describe rules for writing and reading messages in storage. Many requests 

and items can be simultaneously written to storage, when multiple consumers access the 
same provider, and thus it should be possible to differentiate between them. 

Provider

① initiate application

Consumer Storage

② read 
cached item

ProviderConsumer

② send request via storage

③ return static item
via storage

Storage

④ delete request
from storage

ProviderConsumer

② send request via storage

③ generate dynamic item
and return it via storage

Storage

④ delete item and request
from storage

Figure 4. Sequence diagram of proposed method in three different situations.

We now describe rules for writing and reading messages in storage. Many requests
and items can be simultaneously written to storage, when multiple consumers access the
same provider, and thus it should be possible to differentiate between them.

• Request. A request is written to the /request/ folder in storage, which is configured
to be writable by consumers allowed to access the application. A request has a file
name of the form userID_sequenceNum; userID is the consumer’s ID in storage;
sequenceNum is the index of the request by the consumer, starting from zero, used
to differentiate multiple requests from the same consumer. The request for an item
contains this item’s ID, and a single request can ask for multiple items by including a
list of their IDs. Figure 5 shows an example as follows, steps 2©−1 and 2©−2 together
comprise step 2© in Figure 4, and similarly, steps 3©−1 and 3©−2 comprise step 3© in
Figure 4. In step 2©−1, consumer #1 writes a request to /request/ folder in storage.
This request has a filename consumer1_000, and it asks for file1.html. In step 2©−2,
the provider reads this request and prepares the requested item.



Electronics 2021, 10, 1277 9 of 19

• Response. An item returned by the provider is written to the root folder / in storage if
the item can be shared by all consumers; otherwise, it is written to a private /userID/
folder, which is configured to be readable only by the requester. In step 3©−1 of
Figure 5, the provider writes the requested item file1.html to the /consumer1/ folder,
which is then read by consumer #1 as shown in step 3©−2.

• Packaged Response. In Section 3.1, we mention packaging items to reduce delays.
We explain how to package items and how to process packages. Before launching a
networking application, the provider identifies static items and then packages those
often requested together (We can automate the process of identifying and packaging
static items [24], so it will not be a burden for the provider). The file name of a package
is itemID_[p]; trailing [p] indicates that the file is a package; itemID is the ID of the
item requested first and that leads to the request for other items in the package (e.g., if
a request for a.html entails subsequent requests for b.css and c.js, then the file name of
the package becomes a.html_[p]). When a consumer requests itemID, the provider
returns itemID_[p] if it exists, so that the consumer does not need to send further
requests; otherwise, itemID is returned. When the storage space is sufficiently large
to accommodate all packages, the provider can choose to pre-cache the packages in
storage before launching the application, so that consumers can read desired packages
directly from storage without sending requests.

• Variation in Message Format. The precise format of requests and responses can
vary depending on the networking application. For example, in web applications,
requests, and responses can use the HTTP format, therefore using most of the features
supported by this protocol. This will also reduce the cost of implementation, because
we can reuse most HTTP server and client codes. We describe this implementation in
Section 4.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 20 
 

 

• Request. A request is written to the /request/ folder in storage, which is configured 
to be writable by consumers allowed to access the application. A request has a file 
name of the form userID_sequenceNum; userID is the consumer’s ID in storage; se-
quenceNum is the index of the request by the consumer, starting from zero, used to 
differentiate multiple requests from the same consumer. The request for an item con-
tains this item’s ID, and a single request can ask for multiple items by including a list 
of their IDs. Figure 5 shows an example as follows, steps ②−1 and ②−2 together 
comprise step ② in Figure 4, and similarly, steps ③−1 and ③−2 comprise step ③ 
in Figure 4. In step ②−1, consumer #1 writes a request to /request/ folder in storage. 
This request has a filename consumer1_000, and it asks for file1.html. In step ②−2, 
the provider reads this request and prepares the requested item. 

• Response. An item returned by the provider is written to the root folder / in storage 
if the item can be shared by all consumers; otherwise, it is written to a private /userID/ 
folder, which is configured to be readable only by the requester. In step ③−1 of Fig-
ure 5, the provider writes the requested item file1.html to the /consumer1/ folder, 
which is then read by consumer #1 as shown in step ③−2. 

• Packaged Response. In Section 3.1, we mention packaging items to reduce delays. 
We explain how to package items and how to process packages. Before launching a 
networking application, the provider identifies static items and then packages those 
often requested together (We can automate the process of identifying and packaging 
static items [24], so it will not be a burden for the provider). The file name of a pack-
age is itemID_[p]; trailing [p] indicates that the file is a package; itemID is the ID of 
the item requested first and that leads to the request for other items in the package 
(e.g., if a request for a.html entails subsequent requests for b.css and c.js, then the file 
name of the package becomes a.html_[p]). When a consumer requests itemID, the 
provider returns itemID_[p] if it exists, so that the consumer does not need to send 
further requests; otherwise, itemID is returned. When the storage space is sufficiently 
large to accommodate all packages, the provider can choose to pre-cache the pack-
ages in storage before launching the application, so that consumers can read desired 
packages directly from storage without sending requests. 

• Variation in Message Format. The precise format of requests and responses can vary 
depending on the networking application. For example, in web applications, requests, 
and responses can use the HTTP format, therefore using most of the features sup-
ported by this protocol. This will also reduce the cost of implementation, because we 
can reuse most HTTP server and client codes. We describe this implementation in 
Section 4. 

 
Figure 5. Example of writing and reading messages in storage. 

  

filename: file1.html
content:
<html> … (omitted) …

ProviderConsumer #1 Storage

/request/

/consumer1/
filename: consumer1_000
content:
file1.html

②-1 write request to storage

②-2 read request from storage

③-1 write requested item 
to storage

③-2 read requested item 
from storage

Figure 5. Example of writing and reading messages in storage.

3.3. Applications of Proposed Method

We investigate which networking applications can be hosted by the proposed method.
This method works well with most applications that provide static items as these items
can be quickly delivered via storage through packaging and caching. Two such popular
applications are file sharing (e.g., FTP) and web (e.g., HTTP), as shown in Table 3. In
contrast, applications that mainly provide dynamic items may not take full advantage of
caching as dynamic items depend on the current input of particular users and are not always
reusable. However, we find that dynamic items can be delivered with minimum delay,
which is unnoticed or tolerable most of the time (Section 4.2). Such applications include
email transfer (e.g., SMTP), text messaging (e.g., AIM), gaming (e.g., Garry’s Mod) and
Internet telephony (e.g., SIP). In addition to the applications mentioned above, the proposed
method can host many custom applications that require publicly accessible servers. These



Electronics 2021, 10, 1277 10 of 19

applications include both mobile and desktop applications in various scenarios. For
example, during the development phase of a mobile application, the developer can use the
proposed method and evaluate networking functions.

In Sections 4 and 5, we evaluated the proposed method for representative applications,
i.e., web applications. However, we do not expect strikingly different results with other
applications because the simplified steps and performance enhancements apply similarly
across different applications.

4. Performance Evaluation

We implemented the proposed method for web applications and evaluated its perfor-
mance. We selected web applications, because they comprise a large portion of Internet
traffic, nearly 60% [25]. It also delivers a mix of static and dynamic items; hence, we can
evaluate the performance of transmitting both. The details of the experiment are explained
in Section 4.1 and the results of our evaluation are presented in Section 4.2.

4.1. Experimental Setup for Web Applications

We evaluated three different scenarios, as illustrated in Table 4, and compared their
performance. Scenario #1 is when the provider hosts the web-server on its own machine.
This corresponds to existing method #1 in Figure 2a, where the provider must configure
firewalls in the host and network. Scenario #2 is when the web-server is hosted by a
server-hosting company. This corresponds to existing method #2 in Figure 2b, where the
provider must register for the server and push updates. Scenario #3 is when storage is used
as a communication channel. This corresponds to the proposed method in Figure 2c, where
the provider neither configures firewalls nor uses paid services. For each of scenarios #1−3,
we measure the time required to access web services from over 90 consumer hosts. The
details of each scenario are explained in the following paragraphs.

Table 4. Three scenarios, of which we evaluated performance.

Scenario #1 Scenario #2 Scenario #3

Electronics 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

Table 4. Three scenarios, of which we evaluated performance. 

Scenario #1 Scenario #2 Scenario #3 

   

Consumers access web services in pro-
vider’s machine 

Consumers access web services hosted by 
server-hosting company 

Consumers access web ser-
vices via storage 

The 90 consumer machines were geographically dispersed: 48 hosts in Asia (China, 
Korea and Singapore), 30 hosts in North America (Canada and the US), and 12 hosts in 
Europe (Portugal, Spain, and the UK). These machines were in residential areas and aca-
demic networks, and they used Windows 10, 8, and 7. The data rates in these locations 
vary between 100 Mbps and 1 Gbps. For each of the three scenarios, the same 90 consumer 
machines accessed the web services for one-week period (from Monday to Sunday) in 
November 2020, so that the measurement results are not affected by the peculiarities of 
particular locations, days, and times. During this period, the machines mainly accessed 
the web services, and did not incur extra heavy network traffic that was not part of the 
experiment, such as video streaming and large-file downloads. For scenarios #1−2, the 
consumer machines requested web pages and received them either from the provider ma-
chine (for scenario #1) or the server (for scenario #2). For scenario #3, the consumer ma-
chines read web pages from storage if they were cached by previous requests; otherwise, 
the consumer machines requested and received the pages via storage. 

We used three web applications in SPECweb benchmark [31], as described in Table 
5. These applications ①−③ represent various types of services (e.g., customer-support 
and online banking sites) and workloads (e.g., large-file downloads and database query), 
and are designed by analyzing real web applications and server logs. Using the bench-
mark, we populated the provider machine (for scenarios #1 and #3) and the server (for 
scenario #2) with web and database contents. The benchmark also provides consumer be-
havior as a state machine that details the sequence of web pages that consumers access, 
the probability of accessing such web pages, and the time between consecutive accesses. 
For example, in ① customer-support application, a consumer may search for a manual, 
read it, and then consider which page to visit for t seconds; t is determined according to a 
Geometric distribution with a mean of 60; the consumer then searches for a software patch 
and downloads it with 30% probability or browses product catalogs with 70% probability. 
According to these state-machine models, the consumer machines accessed the web ap-
plications. Each consumer machine emulated five consumers, because each consumer re-
mains inactive from time to time (e.g., when reading a manual or when considering the 
next page to visit), so the 90 consumer machines together emulated a total of 90 × 5 = 450 
consumers. 

  

Provider
configure 
firewalls

Consumer

FW

…

…
Server

register &
push
updates

Consumer …

Provider

…

Storage

Provider

Consumer …

…

Electronics 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

Table 4. Three scenarios, of which we evaluated performance. 

Scenario #1 Scenario #2 Scenario #3 

   

Consumers access web services in pro-
vider’s machine 

Consumers access web services hosted by 
server-hosting company 

Consumers access web ser-
vices via storage 

The 90 consumer machines were geographically dispersed: 48 hosts in Asia (China, 
Korea and Singapore), 30 hosts in North America (Canada and the US), and 12 hosts in 
Europe (Portugal, Spain, and the UK). These machines were in residential areas and aca-
demic networks, and they used Windows 10, 8, and 7. The data rates in these locations 
vary between 100 Mbps and 1 Gbps. For each of the three scenarios, the same 90 consumer 
machines accessed the web services for one-week period (from Monday to Sunday) in 
November 2020, so that the measurement results are not affected by the peculiarities of 
particular locations, days, and times. During this period, the machines mainly accessed 
the web services, and did not incur extra heavy network traffic that was not part of the 
experiment, such as video streaming and large-file downloads. For scenarios #1−2, the 
consumer machines requested web pages and received them either from the provider ma-
chine (for scenario #1) or the server (for scenario #2). For scenario #3, the consumer ma-
chines read web pages from storage if they were cached by previous requests; otherwise, 
the consumer machines requested and received the pages via storage. 

We used three web applications in SPECweb benchmark [31], as described in Table 
5. These applications ①−③ represent various types of services (e.g., customer-support 
and online banking sites) and workloads (e.g., large-file downloads and database query), 
and are designed by analyzing real web applications and server logs. Using the bench-
mark, we populated the provider machine (for scenarios #1 and #3) and the server (for 
scenario #2) with web and database contents. The benchmark also provides consumer be-
havior as a state machine that details the sequence of web pages that consumers access, 
the probability of accessing such web pages, and the time between consecutive accesses. 
For example, in ① customer-support application, a consumer may search for a manual, 
read it, and then consider which page to visit for t seconds; t is determined according to a 
Geometric distribution with a mean of 60; the consumer then searches for a software patch 
and downloads it with 30% probability or browses product catalogs with 70% probability. 
According to these state-machine models, the consumer machines accessed the web ap-
plications. Each consumer machine emulated five consumers, because each consumer re-
mains inactive from time to time (e.g., when reading a manual or when considering the 
next page to visit), so the 90 consumer machines together emulated a total of 90 × 5 = 450 
consumers. 

  

Provider
configure 
firewalls

Consumer

FW

…

…
Server

register &
push
updates

Consumer …

Provider

…

Storage

Provider

Consumer …

…

Electronics 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

Table 4. Three scenarios, of which we evaluated performance. 

Scenario #1 Scenario #2 Scenario #3 

   

Consumers access web services in pro-
vider’s machine 

Consumers access web services hosted by 
server-hosting company 

Consumers access web ser-
vices via storage 

The 90 consumer machines were geographically dispersed: 48 hosts in Asia (China, 
Korea and Singapore), 30 hosts in North America (Canada and the US), and 12 hosts in 
Europe (Portugal, Spain, and the UK). These machines were in residential areas and aca-
demic networks, and they used Windows 10, 8, and 7. The data rates in these locations 
vary between 100 Mbps and 1 Gbps. For each of the three scenarios, the same 90 consumer 
machines accessed the web services for one-week period (from Monday to Sunday) in 
November 2020, so that the measurement results are not affected by the peculiarities of 
particular locations, days, and times. During this period, the machines mainly accessed 
the web services, and did not incur extra heavy network traffic that was not part of the 
experiment, such as video streaming and large-file downloads. For scenarios #1−2, the 
consumer machines requested web pages and received them either from the provider ma-
chine (for scenario #1) or the server (for scenario #2). For scenario #3, the consumer ma-
chines read web pages from storage if they were cached by previous requests; otherwise, 
the consumer machines requested and received the pages via storage. 

We used three web applications in SPECweb benchmark [31], as described in Table 
5. These applications ①−③ represent various types of services (e.g., customer-support 
and online banking sites) and workloads (e.g., large-file downloads and database query), 
and are designed by analyzing real web applications and server logs. Using the bench-
mark, we populated the provider machine (for scenarios #1 and #3) and the server (for 
scenario #2) with web and database contents. The benchmark also provides consumer be-
havior as a state machine that details the sequence of web pages that consumers access, 
the probability of accessing such web pages, and the time between consecutive accesses. 
For example, in ① customer-support application, a consumer may search for a manual, 
read it, and then consider which page to visit for t seconds; t is determined according to a 
Geometric distribution with a mean of 60; the consumer then searches for a software patch 
and downloads it with 30% probability or browses product catalogs with 70% probability. 
According to these state-machine models, the consumer machines accessed the web ap-
plications. Each consumer machine emulated five consumers, because each consumer re-
mains inactive from time to time (e.g., when reading a manual or when considering the 
next page to visit), so the 90 consumer machines together emulated a total of 90 × 5 = 450 
consumers. 

  

Provider
configure 
firewalls

Consumer

FW

…

…
Server

register &
push
updates

Consumer …

Provider

…

Storage

Provider

Consumer …

…

Consumers access web
services in provider’s machine

Consumers access web
services hosted by

server-hosting company

Consumers access web
services via storage

For scenario #1, we ran an Apache HTTP server [26] with a MySQL database [27]
on the provider’s machine, which has a 3.4 GHz CPU (Intel Core i7-6700 (Intel, Santa
Clara, CA, USA)) and an 8 GB RAM. We also configured host and network firewalls to
allow external connections to the server. For scenario #2, we registered for a web-hosting
service [28] with an option of 8 GB memory, 15 GB disk space, and 1 TB of traffic per day.
This option was sufficient to perform our experiments without excessive delay. We then
pushed web application contents to the server. For scenario #3, we used Google Drive [29]
as the storage facility with 15 GB of disk space. The provider machine and its configuration
were the same as those used for scenario #1, except that we modified the HTTP server



Electronics 2021, 10, 1277 11 of 19

codes using the Google Drive API [30], such that all messages were exchanged via storage,
as described in Section 3.2. Before launching the server, we packaged static items that
comprise the same web page—these packages remained and were cached in storage after
being first requested by a consumer. For all three scenarios, the provider machine was
placed in South Korea.

The 90 consumer machines were geographically dispersed: 48 hosts in Asia (China,
Korea and Singapore), 30 hosts in North America (Canada and the US), and 12 hosts
in Europe (Portugal, Spain, and the UK). These machines were in residential areas and
academic networks, and they used Windows 10, 8, and 7. The data rates in these locations
vary between 100 Mbps and 1 Gbps. For each of the three scenarios, the same 90 consumer
machines accessed the web services for one-week period (from Monday to Sunday) in
November 2020, so that the measurement results are not affected by the peculiarities of
particular locations, days, and times. During this period, the machines mainly accessed
the web services, and did not incur extra heavy network traffic that was not part of the
experiment, such as video streaming and large-file downloads. For scenarios #1−2, the
consumer machines requested web pages and received them either from the provider
machine (for scenario #1) or the server (for scenario #2). For scenario #3, the consumer
machines read web pages from storage if they were cached by previous requests; otherwise,
the consumer machines requested and received the pages via storage.

We used three web applications in SPECweb benchmark [31], as described in Table 5.
These applications 1©− 3© represent various types of services (e.g., customer-support and
online banking sites) and workloads (e.g., large-file downloads and database query), and
are designed by analyzing real web applications and server logs. Using the benchmark,
we populated the provider machine (for scenarios #1 and #3) and the server (for scenario
#2) with web and database contents. The benchmark also provides consumer behavior
as a state machine that details the sequence of web pages that consumers access, the
probability of accessing such web pages, and the time between consecutive accesses. For
example, in 1© customer-support application, a consumer may search for a manual, read
it, and then consider which page to visit for t seconds; t is determined according to a
Geometric distribution with a mean of 60; the consumer then searches for a software
patch and downloads it with 30% probability or browses product catalogs with 70%
probability. According to these state-machine models, the consumer machines accessed
the web applications. Each consumer machine emulated five consumers, because each
consumer remains inactive from time to time (e.g., when reading a manual or when
considering the next page to visit), so the 90 consumer machines together emulated a total
of 90 × 5 = 450 consumers.

Table 5. Summary of web applications used in the evaluation.

Application 1© Customer-Support 2© Online Banking 3© E-Commerce

Objective

Search for and download software
patches, drivers and manuals;
browse product catalogs;
search for products

Authenticate, login, and logout users;
check transaction details and balance;
check, add, and make payments
to payees;
modify user profile;
order checks

Authenticate, login, and
logout users;
browse and search for
computer systems to buy;
add products to cart;
purchase products in cart

4.2. Measurement Results

Based on the experimental setup, as described in Section 4.1, we measured the time
required to access the web applications. In particular, for each instance of access to a web
page, we measured the duration from when a page request is made till when the page
is fully received and rendered (for the two existing methods in scenarios #1−2), as this
is the response time perceived by a consumer [32]. For the proposed method in scenario
#3, a consumer machine checks storage for cached items before sending a request, thus
we measured the duration from when a consumer machine peeks at storage till when



Electronics 2021, 10, 1277 12 of 19

the page is fully received and rendered, as illustrated in Figure 6 (Please note that a web
page can consist of multiple items. For example, a request for an HTML document can
lead to requests for CSS, JavaScript, and image files, all of which collectively comprise the
same web page. In this case, the measured time is from when the first request is sent (for
scenarios #1−2) or from when the first peek at storage is made (for scenario #3) till all the
items are received and rendered).

Electronics 2021, 10, x FOR PEER REVIEW 12 of 20 
 

 

Table 5. Summary of web applications used in the evaluation. 

Application ① Customer-Support ② Online Banking ③ E-Commerce 

Objective 

Search for and download software 
patches, drivers and manuals; 
browse product catalogs; 
search for products 

Authenticate, login, and 
logout users; 
check transaction details 
and balance; 
check, add, and make pay-
ments to payees; 
modify user profile; 
order checks 

Authenticate, login, and log-
out users; 
browse and search for com-
puter systems to buy; 
add products to cart; 
purchase products in cart 

4.2. Measurement Results 
Based on the experimental setup, as described in Section 4.1, we measured the time 

required to access the web applications. In particular, for each instance of access to a web 
page, we measured the duration from when a page request is made till when the page is 
fully received and rendered (for the two existing methods in scenarios #1−2), as this is the 
response time perceived by a consumer [32]. For the proposed method in scenario #3, a 
consumer machine checks storage for cached items before sending a request, thus we 
measured the duration from when a consumer machine peeks at storage till when the 
page is fully received and rendered, as illustrated in Figure 6 (Please note that a web page 
can consist of multiple items. For example, a request for an HTML document can lead to re-
quests for CSS, JavaScript, and image files, all of which collectively comprise the same web 
page. In this case, the measured time is from when the first request is sent (for scenarios #1−2) 
or from when the first peek at storage is made (for scenario #3) till all the items are received 
and rendered). 

 
Figure 6. Measured time in performance evaluation for scenario #3. 

Table 6 summarizes the measurement results. For each of the three web applications 
①−③ and each of three scenarios #1−3, we present a box plot to show the distribution of 
measured times. Among the three applications ①−③, ① customer-support application 
had the largest access times on average. This is because application ① often transmits 
larger files (i.e., software patches and drivers of sizes 10−100 MB), whereas applications 
② and ③ send smaller pages (<10 MB). 

  

Consumer peeks at storage to see 
whether desired item is cached 

If item is cached, read it 
from storage

Otherwise, send a request 
and receive item in response

Unpack read item if it is 
packaged and render it

Measured Duration

Figure 6. Measured time in performance evaluation for scenario #3.

Table 6 summarizes the measurement results. For each of the three web applications
1©− 3© and each of three scenarios #1−3, we present a box plot to show the distribution of

measured times. Among the three applications 1©− 3©, 1© customer-support application
had the largest access times on average. This is because application 1© often transmits
larger files (i.e., software patches and drivers of sizes 10−100 MB), whereas applications 2©
and 3© send smaller pages (<10 MB).

Table 6. Distribution of access times for each pair of web applications and measurement scenarios.

Application
1© Customer

Support
2© Online Banking 3© E-Commerce

Access Time
Distribution

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

Table 6. Distribution of access times for each pair of web applications and measurement scenarios. 

Application ① Customer Support ② Online Banking ③ E-Commerce 

Access Time Distribution 

 

   

In all three applications, the proposed method (scenario #3) exhibited delays compa-
rable to those of the existing methods (scenarios #1−2), even though the proposed method 
communicated data via storage (The characteristics presented in this section were ob-
served consistently across the different locations where we performed experiments, i.e., the 
proposed method had access times comparable to the existing methods). In particular, in ap-
plication ①, the proposed method was faster than the two existing methods most of the 
time. These results occurred for the following three reasons. First, once-accessed static 
items were cached in storage and read directly from storage for subsequent access; this 
type of caching reduced delays most notably in application ①, because it contains more 
and larger static items than the other applications. Second, packaging items that are fre-
quently accessed together also contributed to reducing delays; when a consumer re-
quested a page that consists of multiple items, it was not necessary to send multiple re-
quests; only a single request was required to receive the entire page in a package. Lastly, 
the storage networks could deliver data as quickly as regular Internet connections did; 
this was also witnessed in previous research [11,12], which shows that popular storage 
networks are well optimized, such that data are rapidly synchronized. To summarize, the 
proposed method of communicating via storage did not incur significant performance 
degradation when compared to existing methods, and outperformed existing methods in 
applications with many large and static items. 

To more accurately analyze the benefits of caching and packaging in the proposed 
method, we evaluated access times using various subsets of these two techniques. In par-
ticular, we further divided scenario #3 into four sub-scenarios: (i) when both caching and 
packaging are used (scenario #3cp), (ii) when only caching is used (scenario #3c), (iii) when 
only packaging is used (scenario #3p), and (iv) when neither caching nor packaging is 
used (scenario #3n). Figure 7 shows the measurement results for application ①; the re-
sults were similar for the other two applications. When compared to scenario #3n, where 
no caching or packaging was used, the access times decreased when either caching or 
packaging was used (#3c and #3p); when both caching and packaging were used (#3cp), 
the access times further reduced, beyond those of the two existing methods #1 and #2. This 
suggests that the two techniques, caching and packaging, complement each other—pack-
aging reduced the number of request-response exchanges, and caching reduced the time 
for each exchange. 

max

min

median
25%

75%

Access Time (secs)
10
8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

Table 6. Distribution of access times for each pair of web applications and measurement scenarios. 

Application ① Customer Support ② Online Banking ③ E-Commerce 

Access Time Distribution 

 

   

In all three applications, the proposed method (scenario #3) exhibited delays compa-
rable to those of the existing methods (scenarios #1−2), even though the proposed method 
communicated data via storage (The characteristics presented in this section were ob-
served consistently across the different locations where we performed experiments, i.e., the 
proposed method had access times comparable to the existing methods). In particular, in ap-
plication ①, the proposed method was faster than the two existing methods most of the 
time. These results occurred for the following three reasons. First, once-accessed static 
items were cached in storage and read directly from storage for subsequent access; this 
type of caching reduced delays most notably in application ①, because it contains more 
and larger static items than the other applications. Second, packaging items that are fre-
quently accessed together also contributed to reducing delays; when a consumer re-
quested a page that consists of multiple items, it was not necessary to send multiple re-
quests; only a single request was required to receive the entire page in a package. Lastly, 
the storage networks could deliver data as quickly as regular Internet connections did; 
this was also witnessed in previous research [11,12], which shows that popular storage 
networks are well optimized, such that data are rapidly synchronized. To summarize, the 
proposed method of communicating via storage did not incur significant performance 
degradation when compared to existing methods, and outperformed existing methods in 
applications with many large and static items. 

To more accurately analyze the benefits of caching and packaging in the proposed 
method, we evaluated access times using various subsets of these two techniques. In par-
ticular, we further divided scenario #3 into four sub-scenarios: (i) when both caching and 
packaging are used (scenario #3cp), (ii) when only caching is used (scenario #3c), (iii) when 
only packaging is used (scenario #3p), and (iv) when neither caching nor packaging is 
used (scenario #3n). Figure 7 shows the measurement results for application ①; the re-
sults were similar for the other two applications. When compared to scenario #3n, where 
no caching or packaging was used, the access times decreased when either caching or 
packaging was used (#3c and #3p); when both caching and packaging were used (#3cp), 
the access times further reduced, beyond those of the two existing methods #1 and #2. This 
suggests that the two techniques, caching and packaging, complement each other—pack-
aging reduced the number of request-response exchanges, and caching reduced the time 
for each exchange. 

max

min

median
25%

75%

Access Time (secs)
10
8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

Table 6. Distribution of access times for each pair of web applications and measurement scenarios. 

Application ① Customer Support ② Online Banking ③ E-Commerce 

Access Time Distribution 

 

   

In all three applications, the proposed method (scenario #3) exhibited delays compa-
rable to those of the existing methods (scenarios #1−2), even though the proposed method 
communicated data via storage (The characteristics presented in this section were ob-
served consistently across the different locations where we performed experiments, i.e., the 
proposed method had access times comparable to the existing methods). In particular, in ap-
plication ①, the proposed method was faster than the two existing methods most of the 
time. These results occurred for the following three reasons. First, once-accessed static 
items were cached in storage and read directly from storage for subsequent access; this 
type of caching reduced delays most notably in application ①, because it contains more 
and larger static items than the other applications. Second, packaging items that are fre-
quently accessed together also contributed to reducing delays; when a consumer re-
quested a page that consists of multiple items, it was not necessary to send multiple re-
quests; only a single request was required to receive the entire page in a package. Lastly, 
the storage networks could deliver data as quickly as regular Internet connections did; 
this was also witnessed in previous research [11,12], which shows that popular storage 
networks are well optimized, such that data are rapidly synchronized. To summarize, the 
proposed method of communicating via storage did not incur significant performance 
degradation when compared to existing methods, and outperformed existing methods in 
applications with many large and static items. 

To more accurately analyze the benefits of caching and packaging in the proposed 
method, we evaluated access times using various subsets of these two techniques. In par-
ticular, we further divided scenario #3 into four sub-scenarios: (i) when both caching and 
packaging are used (scenario #3cp), (ii) when only caching is used (scenario #3c), (iii) when 
only packaging is used (scenario #3p), and (iv) when neither caching nor packaging is 
used (scenario #3n). Figure 7 shows the measurement results for application ①; the re-
sults were similar for the other two applications. When compared to scenario #3n, where 
no caching or packaging was used, the access times decreased when either caching or 
packaging was used (#3c and #3p); when both caching and packaging were used (#3cp), 
the access times further reduced, beyond those of the two existing methods #1 and #2. This 
suggests that the two techniques, caching and packaging, complement each other—pack-
aging reduced the number of request-response exchanges, and caching reduced the time 
for each exchange. 

max

min

median
25%

75%

Access Time (secs)
10
8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

Table 6. Distribution of access times for each pair of web applications and measurement scenarios. 

Application ① Customer Support ② Online Banking ③ E-Commerce 

Access Time Distribution 

 

   

In all three applications, the proposed method (scenario #3) exhibited delays compa-
rable to those of the existing methods (scenarios #1−2), even though the proposed method 
communicated data via storage (The characteristics presented in this section were ob-
served consistently across the different locations where we performed experiments, i.e., the 
proposed method had access times comparable to the existing methods). In particular, in ap-
plication ①, the proposed method was faster than the two existing methods most of the 
time. These results occurred for the following three reasons. First, once-accessed static 
items were cached in storage and read directly from storage for subsequent access; this 
type of caching reduced delays most notably in application ①, because it contains more 
and larger static items than the other applications. Second, packaging items that are fre-
quently accessed together also contributed to reducing delays; when a consumer re-
quested a page that consists of multiple items, it was not necessary to send multiple re-
quests; only a single request was required to receive the entire page in a package. Lastly, 
the storage networks could deliver data as quickly as regular Internet connections did; 
this was also witnessed in previous research [11,12], which shows that popular storage 
networks are well optimized, such that data are rapidly synchronized. To summarize, the 
proposed method of communicating via storage did not incur significant performance 
degradation when compared to existing methods, and outperformed existing methods in 
applications with many large and static items. 

To more accurately analyze the benefits of caching and packaging in the proposed 
method, we evaluated access times using various subsets of these two techniques. In par-
ticular, we further divided scenario #3 into four sub-scenarios: (i) when both caching and 
packaging are used (scenario #3cp), (ii) when only caching is used (scenario #3c), (iii) when 
only packaging is used (scenario #3p), and (iv) when neither caching nor packaging is 
used (scenario #3n). Figure 7 shows the measurement results for application ①; the re-
sults were similar for the other two applications. When compared to scenario #3n, where 
no caching or packaging was used, the access times decreased when either caching or 
packaging was used (#3c and #3p); when both caching and packaging were used (#3cp), 
the access times further reduced, beyond those of the two existing methods #1 and #2. This 
suggests that the two techniques, caching and packaging, complement each other—pack-
aging reduced the number of request-response exchanges, and caching reduced the time 
for each exchange. 

max

min

median
25%

75%

Access Time (secs)
10
8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

Access Time (secs)
10

8
6
4
2
0

Scenario
#1     #2    #3

In all three applications, the proposed method (scenario #3) exhibited delays com-
parable to those of the existing methods (scenarios #1−2), even though the proposed
method communicated data via storage (The characteristics presented in this section were
observed consistently across the different locations where we performed experiments, i.e.,
the proposed method had access times comparable to the existing methods). In particular,
in application 1©, the proposed method was faster than the two existing methods most
of the time. These results occurred for the following three reasons. First, once-accessed
static items were cached in storage and read directly from storage for subsequent access;
this type of caching reduced delays most notably in application 1©, because it contains
more and larger static items than the other applications. Second, packaging items that
are frequently accessed together also contributed to reducing delays; when a consumer
requested a page that consists of multiple items, it was not necessary to send multiple
requests; only a single request was required to receive the entire page in a package. Lastly,
the storage networks could deliver data as quickly as regular Internet connections did;
this was also witnessed in previous research [11,12], which shows that popular storage
networks are well optimized, such that data are rapidly synchronized. To summarize, the



Electronics 2021, 10, 1277 13 of 19

proposed method of communicating via storage did not incur significant performance
degradation when compared to existing methods, and outperformed existing methods in
applications with many large and static items.

To more accurately analyze the benefits of caching and packaging in the proposed
method, we evaluated access times using various subsets of these two techniques. In
particular, we further divided scenario #3 into four sub-scenarios: (i) when both caching
and packaging are used (scenario #3cp), (ii) when only caching is used (scenario #3c), (iii)
when only packaging is used (scenario #3p), and (iv) when neither caching nor packaging
is used (scenario #3n). Figure 7 shows the measurement results for application 1©; the
results were similar for the other two applications. When compared to scenario #3n, where
no caching or packaging was used, the access times decreased when either caching or
packaging was used (#3c and #3p); when both caching and packaging were used (#3cp),
the access times further reduced, beyond those of the two existing methods #1 and #2.
This suggests that the two techniques, caching and packaging, complement each other—
packaging reduced the number of request-response exchanges, and caching reduced the
time for each exchange.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Distribution of access times for different combinations of caching and packaging. 

5. Manageability Analysis 
In addition to the measurement of access times in Section 4, we also evaluated the 

manageability of the proposed method through a user study. The study compared the 
level of difficulty in configuring and running web applications with the proposed method 
as opposed to the level of difficulty with the two existing methods. In particular, we meas-
ured the time required to complete the configuration of web applications, such that the 
applications could run and were accessible over the Internet. 

We summarize the results as follows: 
• We observed decreases in the time required to configure web applications when the 

proposed method was used, in comparison to the existing methods (e.g., from 40−60 
to ~30 min). The decreases were greater for non-expert users (e.g., from 50−90 to ~35 
min) 

• We identified the main reasons why participants spent more time and made more 
mistakes when using the existing methods: (i) configuration of multiple, networked 
elements that interact with one another (e.g., host firewalls and network firewalls) 
and (ii) configuration and switch between multiple, heterogeneous environments 
(e.g., local Windows machine and remote Linux machine). 

5.1. User Study Methodology 
5.1.1. Participants and Group Assignments 

We recruited a total of 54 participants for this study, including 11 network adminis-
trators and 43 graduate and undergraduate students in technical majors (engineering, sci-
ence, and mathematics). Among the participants, 11 administrators and 13 students had 
prior experience configuring firewalls and web servers; in particular, the 11 administra-
tors and two of the 13 students had over two years of experience. The other 30 participants 
had background knowledge in networks but had not previously configured firewalls; 18 
of these had worked with web servers on multiple occasions throughout their academic 
experience as students; however, the remaining 12 had no such experience. For these 30 
participants, we provided appropriate training sessions on firewall and server configura-
tions. Thus, these 30 inexperienced participants assumed the role of relatively new users, 
whereas the other 24 participants assumed the role of experienced users. 

We divided the participants into three groups of equal size (groups #1−3), 18 in each. 
Groups #1, #2, and #3 configured web applications according to existing method #1, exist-
ing method #2, and the proposed method, respectively. We equally distributed experi-
enced participants and inexperienced participants across the three groups so that 8 expe-
rienced and 10 inexperienced participants were assigned to each group. From each of the 

Access Time (secs)

10

8
6
4
2
0

Scenario
#1     #2    #3cp #3c #3p #3n

#1: existing method #1 
#2: existing method #2
#3: proposed method

#3cp: both caching & packaging used
#3c: only caching used
#3p: only packaging used
#3n: none of caching and packaging used

14
12

16

Figure 7. Distribution of access times for different combinations of caching and packaging.

5. Manageability Analysis

In addition to the measurement of access times in Section 4, we also evaluated the
manageability of the proposed method through a user study. The study compared the
level of difficulty in configuring and running web applications with the proposed method
as opposed to the level of difficulty with the two existing methods. In particular, we
measured the time required to complete the configuration of web applications, such that
the applications could run and were accessible over the Internet.

We summarize the results as follows:

• We observed decreases in the time required to configure web applications when
the proposed method was used, in comparison to the existing methods (e.g., from
40−60 to ~30 min). The decreases were greater for non-expert users (e.g., from 50−90
to ~35 min)

• We identified the main reasons why participants spent more time and made more
mistakes when using the existing methods: (i) configuration of multiple, networked
elements that interact with one another (e.g., host firewalls and network firewalls)
and (ii) configuration and switch between multiple, heterogeneous environments (e.g.,
local Windows machine and remote Linux machine).



Electronics 2021, 10, 1277 14 of 19

5.1. User Study Methodology
5.1.1. Participants and Group Assignments

We recruited a total of 54 participants for this study, including 11 network administra-
tors and 43 graduate and undergraduate students in technical majors (engineering, science,
and mathematics). Among the participants, 11 administrators and 13 students had prior
experience configuring firewalls and web servers; in particular, the 11 administrators and
two of the 13 students had over two years of experience. The other 30 participants had back-
ground knowledge in networks but had not previously configured firewalls; 18 of these
had worked with web servers on multiple occasions throughout their academic experience
as students; however, the remaining 12 had no such experience. For these 30 participants,
we provided appropriate training sessions on firewall and server configurations. Thus,
these 30 inexperienced participants assumed the role of relatively new users, whereas the
other 24 participants assumed the role of experienced users.

We divided the participants into three groups of equal size (groups #1−3), 18 in each.
Groups #1, #2, and #3 configured web applications according to existing method #1, existing
method #2, and the proposed method, respectively. We equally distributed experienced
participants and inexperienced participants across the three groups so that 8 experienced
and 10 inexperienced participants were assigned to each group. From each of the two
participant pools, experienced and inexperienced, we randomly assigned participants to
one of the three groups.

5.1.2. Task Design

Each participant was given a task to configure web application 1© in Table 5. We did
not expect strikingly different results with other web applications because the configuration
steps are similar across different web applications.

We designed the configuration tasks, such that we can focus on and observe differences
among the three comparison groups #1−3, independently of particular web applications.
To this end, we assumed that web and database contents are prepared and provided to
the participants before the tasks begin, since the process of preparing the contents is the
same for the three groups. Given these contents, the participants either configured a local
machine and firewalls according to existing method #1 (group #1), configured a remote
machine and transferred data according to existing method #2 (group #2), or configured a
local machine according to the proposed method (group #3). These steps are summarized
in Table 7.

We provided the participants with the contents of web application 1©, according to the
benchmark [31] we used in Section 4. These includes web contents, their locations in file
systems, database contents, and their locations in database systems (i.e., database and table
names). The participants then performed the following steps: (i) they copied the contents
to the appropriate directories and databases, (ii) they configured servers and databases
(i.e., port numbers and home directories) and ran them, and (iii) they configured host and
network firewalls, so that the application can be accessed over the Internet. We considered
the task complete when the web application became accessible by external consumers. We
measured the elapsed time from the initiation of the task to its completion.

The three groups, groups #1−3, followed slightly different steps according to the
configuration methods they used. For group #1, the participants configured the same type
of server and database in the provider’s machine as used for scenario #1 in Section 4—an
Apache HTTP server and a MySQL database on a machine with a 3.4 GHz CPU and an
8 GB RAM. The provider’s machine used Windows 10 operating system, connected to the
Internet through a gateway router (Linksys WRT1900ACS [33]), therefore, the participants
configured host firewalls in Windows 10 (inbound policies) and network firewalls in the
router (port-forwarding policies). For group #2, the participants registered for a web-
hosting service with the same option as used for scenario #2 in Section 4—8 GB memory,
15 GB disk space, and 1 TB of traffic per day. The participants then pushed web application
contents to the server with SSH (Secure Shell) and SFTP (Secure File Transfer Protocol). For



Electronics 2021, 10, 1277 15 of 19

group #3, the participants used the same type of server and database as in scenario #3 in
Section 4—a MySQL database and an HTTP server that communicates via storage.

Table 7. User tasks for the three groups.

Group Group #1 Group #2 Group #3

Task Summary Host a web application in a
provider’s machine

Host a web application in a server
in a server-hosting company Host a web application via storage

Task Steps

• configure a web-server and
databases (e.g., port number,
home directory)

• copy contents to proper
directories and
populate databases

• configure host firewalls
• configure network firewalls

• register for a server in a
server-hosting company

• choose options to use in the
server to configure it (e.g.,
server-side web language,
database type)

• copy contents to proper
directories and
populate databases

• configure a web-server and
databases (e.g., port number,
home directory)

• copy contents to proper
directories and
populate databases

5.1.3. Procedure

In group #1, for participants without experience with firewall and server configura-
tions, we allocated two hours of training on the operation and configuration of firewalls
and web servers. In group #2, for the inexperienced participants, we allocated an hour of
training on web-hosting, service registration, selecting options, and using SSH and SFTP
to transfer data. In group #3, for the inexperienced participants, we allocated one hour of
training on web-server operation and configuration, similarly to group #1. The training
used a set of slides and documents based on formal training materials designed for network
engineers [34–36]. These materials are provided to the participants after the training, so
that they can refer to the materials while performing the tasks.

Participants then began completing the tasks, as described in Section 5.1.2. Upon
completion, we invited specific feedback, such as: What caused them to make mistakes?
Where they spent most of their time? What aspects of the configuration process they found
easy and/or difficult? This immediate feedback was efficient and detailed because the
participants’ memories about tasks they just completed were fresh.

5.2. Results of User Study

We tested for significant differences in the mean time-to-task-completion (i) between
group #1 (those who used existing method #1) and group #3 (those who used the proposed
method) and (ii) between group #2 (those who used existing method #2) and group #3. We
hypothesized that we would likely observe faster performance in group #3, which confirms
that the proposed method requires less time than existing methods #1 and #2. In particular,
our null hypotheses H0

′s state that the proposed method shows no difference compared to
the two existing methods in configuration time, and the alternative hypotheses Ha’s state
that the proposed method outperforms the existing methods. To test our hypotheses, we
conducted the one-sided t-test on the mean time-to-task-completion. The test results in a
p-value, the smallest value of the significance level α for which the null hypothesis can
be rejected. The smaller the p-value becomes, the more compelling the evidence that the
null hypothesis be rejected, and the alternative hypothesis be accepted. A smaller p-value
favors group #3—the use of the proposed method to configure a web application.

The hypotheses and results of the tests are summarized in Figure 8, including scatter
plots of the individual samples. The filled triangles and empty triangles represent samples
for group #1, experienced participants and those with no prior configuration experience,
respectively. Similarly, the circles represent samples for group #2, and rectangles represent
samples for group #3.



Electronics 2021, 10, 1277 16 of 19

Electronics 2021, 10, x FOR PEER REVIEW 17 of 20 
 

 

• Group #2 (configuration of servers in web-hosting services). The participants spent a 
significant portion of time populating data into a remote server in the web-hosting 
service. In particular, they pointed out that the server being remote, as opposed to 
being local, made the configurations difficult and time-consuming, because they had 
to transfer data and configure a remote machine through SSH and SFTP. For inexpe-
rienced users, it was difficult to grasp these remote access methods. It also took time 
to learn remote configuration environments (Linux-based) that are different from lo-
cal environments (Windows-based). 

• Group #3 (proposed method). The participants had difficulty when they did not have 
prior experience configuring web applications, similarly to those in groups #1 and #2. 
However, unlike group #1, the participants were not required to configure multiple 
firewalls and ensure consistency; in addition, unlike group #2, most of the work was 
completed locally on the provider’s machine, therefore, the participants were not re-
quired to switch between remote and heterogenous environments. 

 
Figure 8. Summary of statistical tests for significant differences in mean time-to-task-completion. 

5.3. Limitations of User Study 
The generality and representativeness of our results can be constrained by the num-

ber of participants of the study and by the configuration tasks used in the study. The num-
ber of participants was capped at 54 as network administrators and students typically 
have limited time only. However, these participants represent users with a wide range of 
experience levels in network and server configurations, varying from greater than 5 years 
to no experience. We also observed consistent perspectives about the benefits of the pro-
posed system and disadvantages of the existing methods. 

Figure 8. Summary of statistical tests for significant differences in mean time-to-task-completion.

All hypothesis tests were in favor of group #3; the p-values were less than 0.05, and the
null hypotheses showing no difference were therefore rejected at the α = 0.05 significance
level. The scatter plots also show that group #3 outperformed groups #1 and #2, particularly
for inexperienced users. We interpreted the feedback from the participants and identified
the reasons as follows.

• Group #1 (configuration with provider’s own machine). The participants found it
difficult to understand the interactions among multiple, networked elements (i.e.,
web-server, host firewall, and network firewall), and often failed to configure all these
elements consistently. For example, the port number of an inbound packet admitted
by the network firewall should match the number admitted by the host firewall; this
number should also match the number that the web-server is running on; only then,
the packet can be successfully received by the server. When such configurations
contain errors, the participants could not easily figure out where to look at and how to
solve the problems.

• Group #2 (configuration of servers in web-hosting services). The participants spent a
significant portion of time populating data into a remote server in the web-hosting
service. In particular, they pointed out that the server being remote, as opposed
to being local, made the configurations difficult and time-consuming, because they
had to transfer data and configure a remote machine through SSH and SFTP. For
inexperienced users, it was difficult to grasp these remote access methods. It also took
time to learn remote configuration environments (Linux-based) that are different from
local environments (Windows-based).

• Group #3 (proposed method). The participants had difficulty when they did not have
prior experience configuring web applications, similarly to those in groups #1 and #2.



Electronics 2021, 10, 1277 17 of 19

However, unlike group #1, the participants were not required to configure multiple
firewalls and ensure consistency; in addition, unlike group #2, most of the work was
completed locally on the provider’s machine, therefore, the participants were not
required to switch between remote and heterogenous environments.

5.3. Limitations of User Study

The generality and representativeness of our results can be constrained by the number
of participants of the study and by the configuration tasks used in the study. The number
of participants was capped at 54 as network administrators and students typically have
limited time only. However, these participants represent users with a wide range of
experience levels in network and server configurations, varying from greater than 5 years
to no experience. We also observed consistent perspectives about the benefits of the
proposed system and disadvantages of the existing methods.

The configuration tasks were designed to highlight differences among the three com-
parison groups #1−3, independently of particular web applications. As such, the configu-
ration steps used in the tasks are similar across different web applications, so we do not
expect strikingly different results with other web applications. The participants also stated
that the reasons why they spent most of their time were mainly related to the differences
among the three configurations methods and not to the particular web applications used in
the tasks. However, depending on what applications are configured, the exact configura-
tion times can differ. As we continue the development of the proposed system, we plan to
recruit more participants and publish additional results in more diverse settings.

6. Conclusions

We propose a method that assists users in setting up a publicly accessible server. In
particular, we target situations where users require a server temporarily and where this
server has a medium to small hit rate—some hundreds or thousands per hour. The method
uses public, unpaid cloud storage to deliver data between the server and clients. Because
the storage is already accessible over the Internet, users are not required to configure remote
firewalls and can focus on local settings, therefore reducing the complexity involved in
server configuration. Using the proposed method, we ran web applications and measured
their performance. We found that users can interact with the applications without signif-
icant delay when compared with existing methods. We also conducted a user study to
compare the manageability of the proposed method with current practice of configuring a
server. The study proved that the proposed method can reduce configuration times from
40−60 to nearly 30 min, and such reduction is particularly noticeable for non-expert users.

We plan to apply the proposed method to various other networking applications to
evaluate and improve performance and manageability. We also intend to explore additional
methods for configuring a combination of networking devices, such that users can easily
verify their consistency and correctness.

Funding: This research was supported by Kyungpook National University Research Fund, 2019.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
since it did not collect personal information and asked about the technologies presented in this work.
Even so, we explained to the participants about the details of the study and asked for their consent.

Informed Consent Statement: Informed consent was obtained from all participants involved in the
study.

Data Availability Statement: This study utilized the SPECWeb benchmark at http://www.spec.org/
web2009/docs/ (accessed on 10 March 2021).

Acknowledgments: We thank all the participants of the performance analysis and user study for
their time and valuable suggestions.

http://www.spec.org/web2009/docs/
http://www.spec.org/web2009/docs/


Electronics 2021, 10, 1277 18 of 19

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Grinter, R.E.; Edwards, W.K.; Chetty, M.; Poole, E.S.; Sung, J.; Yang, J.; Crabtree, A.; Tolmie, P.; Rodden, T.; Greenhalgh, C.; et al.

The ins and outs of home networking: The case for useful and usable domestic networking. ACM Trans. Comput. Hum. Interact.
2009, 16. [CrossRef]

2. Shehan, E.; Edwards, W.K. Home networking and HCI: What hath god wrought? In Proceedings of the ACM SIGCHI Conference
on Human Factors in Computing Systems, San Jose, CA, USA, 28 April–3 May 2007; pp. 547–556. [CrossRef]

3. Jakobi, T.; Ogonowski, C.; Castelli, N.; Stevens, G.; Wulf, V. The catch(es) with smart home: Experiences of a living lab field study.
In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp.
1620–1633. [CrossRef]

4. Lee, S.; Kim, H.S. End-user perspectives of Internet connectivity problems. Elsevier Comput. Netw. 2012, 56, 1710–1722. [CrossRef]
5. Dao Research. Amazon Web Services Cost Surprises. Oracle White Paper; DAO: San Francisco, CA, USA, 2019. Available online:

https://www.oracle.com/a/ocom/docs/dc/em/dao-research-aws-cost-surprises-white-paper.pdf (accessed on 10 March 2021).
6. Zhang, Z.; Wu, C.; Cheung, D. A survey on cloud interoperability: Taxonomies, standards, and practice. ACM SIGMETRICS

Perform. Eval. Rev. 2013, 40, 13–22. [CrossRef]
7. Hafidh, B.; Osman, H.A.; Arteaga-Falconi, J.S.; Dong, H.; Saddik, A.E. SITE: The simple Internet of Things enabler for smart

homes. IEEE Access 2017, 5, 2034–2049. [CrossRef]
8. Edwards, W.K.; Grinter, R.E.; Mahajan, R.; Wetherall, D. Advancing the state of home networking. Commun. ACM 2011, 54, 62–71.

Available online: https://dl.acm.org/doi/pdf/10.1145/1953122.1953143 (accessed on 10 March 2021). [CrossRef]
9. Dalal, A.C.; Chan, J.; Mitchell, K. A preliminary study of the role of language in home network troubleshooting. In Proceedings

of the ACM SIGCHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6. [CrossRef]
10. CheckPoint. Available online: https://www.checkpoint.com/ (accessed on 10 March 2021).
11. Bocchi, E.; Drago, I.; Mellia, M. Personal cloud storage benchmarks and comparison. IEEE Trans. Cloud Comput. 2017, 5,

751–764. [CrossRef]
12. Ravenscraft, E. Cloud Storage Showdown: Dropbox vs. Google Drive. Zaiper, December 2019. Available online: https:

//zapier.com/blog/dropbox-vs-google-drive/ (accessed on 10 March 2021).
13. Pooranian, Z.; Chen, K.; Yu, C.; Conti, M. RARE: Defeating side channels based on data-deduplication in cloud storage. In

Proceedings of the IEEE INFOCOM, Honolulu, HI, USA, 15–19 April 2018; pp. 444–449. [CrossRef]
14. Hu, H.; Wen, Y.; Niyato, D. Public cloud storage-assisted mobile social video sharing: A supermodular game approach. IEEE J.

Sel. Areas Commun. 2017, 35, 545–556. [CrossRef]
15. Zhu, C.; Leung, V.; Rodrigues, J.; Shu, L.; Wang, L.; Zhou, H. Social sensor cloud: Framework, greenness, issues, and outlook.

IEEE Netw. 2018, 32, 100–105. [CrossRef]
16. Almeida, B. Google Cloud Website Hosting with Google Cloud Storage. NetApp, February 2020. Available online: https:

//cloud.netapp.com/blog/google-cloud-website-hosting-on-google-cloud-storage-gcp-cvo-blg (accessed on 10 March 2021).
17. Abrams, M.; Standridge, C.R.; Abdulla, G.; Williams, S.; Fox, E.A. Caching Proxies: Limitations and Potentials. Computer Science

Technical Report of Virginia Polytechnic Institute and State University. 1995. Available online: https://eprints.cs.vt.edu/archive/
00000427/ (accessed on 10 May 2021).

18. Piorkowski, A.; Kempny, A.; Hajduk, A.; Strzelczyk, J. Load balancing for heterogeneous Web servers. In Proceedings of
the International Conference on Computer Networks, Ustron, Poland, 15–19 June 2010; pp. 189–198. Available online: https:
//link.springer.com/book/10.1007/978-3-642-13861-4 (accessed on 10 May 2021).

19. Abdo, J.B. Authentication proxy as a service. In Proceedings of the International Conference on Fog and Mobile Edge Computing,
Valencia, Spain, 8–11 May 2017; pp. 45–49. [CrossRef]

20. Taniguchi, Y.; Tsutsumi, H.; Iguchi, N.; Watanabe, K. Design and evaluation of a proxy-based monitoring system for OpenFlow
networks. Sci. World J. 2016, 2016, 1–10. [CrossRef] [PubMed]

21. Dropbox vs. Google Drive: Comparing Cloud Storage Services. Digital Guide, January 2021. Available online: https://www.
ionos.com/digitalguide/server/tools/dropbox-vs-google-drive/ (accessed on 10 March 2021).

22. How to Achieve Your Governance Needs in Azure. Azure Scaffold: The Framework Your Business Needs to Effectively Implement
Microsoft Azure. Cloud Direct Whitepaper. Available online: https://cdn2.hubspot.net/hubfs/452680/Azure%20Scaffold%20
whitepaper.pdf (accessed on 10 May 2021).

23. Jeffrey, W. Baidu Launches Overseas 1TB Free Cloud Storage Dubox, but You Have to Be Careful when Using it. Panda Yoo News,
September 2020. Available online: https://pandayoo.com/2020/09/15/baidu-launches-overseas-1tbs-free-network-disk-dubox-
but-you-have-to-be-careful-when-using-it/ (accessed on 10 May 2021).

24. Ali, W.; Shamsuddin, S.; Ismail, A. A survey of web caching and prefetching. Int. J. Adv. Soft Comput. Appl. 2011, 3, 1–27.
Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1059.1593&rep=rep1&type=pdf (accessed on
10 May 2021).

http://doi.org/10.1145/1534903.1534905
http://doi.org/10.1145/1240624.1240712
http://doi.org/10.1145/3025453.3025799
http://doi.org/10.1016/j.comnet.2012.01.009
https://www.oracle.com/a/ocom/docs/dc/em/dao-research-aws-cost-surprises-white-paper.pdf
http://doi.org/10.1145/2479942.2479945
http://doi.org/10.1109/ACCESS.2017.2653079
https://dl.acm.org/doi/pdf/10.1145/1953122.1953143
http://doi.org/10.1145/1953122.1953143
http://doi.org/10.1145/3290607.3312856
https://www.checkpoint.com/
http://doi.org/10.1109/TCC.2015.2427191
https://zapier.com/blog/dropbox-vs-google-drive/
https://zapier.com/blog/dropbox-vs-google-drive/
http://doi.org/10.1109/INFCOMW.2018.8406888
http://doi.org/10.1109/JSAC.2017.2659478
http://doi.org/10.1109/MNET.2018.1800029
https://cloud.netapp.com/blog/google-cloud-website-hosting-on-google-cloud-storage-gcp-cvo-blg
https://cloud.netapp.com/blog/google-cloud-website-hosting-on-google-cloud-storage-gcp-cvo-blg
https://eprints.cs.vt.edu/archive/00000427/
https://eprints.cs.vt.edu/archive/00000427/
https://link.springer.com/book/10.1007/978-3-642-13861-4
https://link.springer.com/book/10.1007/978-3-642-13861-4
http://doi.org/10.1109/FMEC.2017.7946406
http://doi.org/10.1155/2016/6513649
http://www.ncbi.nlm.nih.gov/pubmed/27006977
https://www.ionos.com/digitalguide/server/tools/dropbox-vs-google-drive/
https://www.ionos.com/digitalguide/server/tools/dropbox-vs-google-drive/
https://cdn2.hubspot.net/hubfs/452680/Azure%20Scaffold%20whitepaper.pdf
https://cdn2.hubspot.net/hubfs/452680/Azure%20Scaffold%20whitepaper.pdf
https://pandayoo.com/2020/09/15/baidu-launches-overseas-1tbs-free-network-disk-dubox-but-you-have-to-be-careful-when-using-it/
https://pandayoo.com/2020/09/15/baidu-launches-overseas-1tbs-free-network-disk-dubox-but-you-have-to-be-careful-when-using-it/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1059.1593&rep=rep1&type=pdf


Electronics 2021, 10, 1277 19 of 19

25. Maier, G.; Feldmann, A.; Paxson, V.; Allman, M. On dominant characteristics of residential broadband Internet traffic. In
Proceedings of the ACM Internet Measurement Conference, Chicago, IL, USA, 4–6 November 2009; pp. 90–102. [CrossRef]

26. Apache HTTP Server Project. Available online: https://httpd.apache.org/ (accessed on 10 March 2021).
27. MySQL: The World’s Most Popular Open Source Database. Available online: https://www.mysql.com/ (accessed on 10 March 2021).
28. DOTHOME: Server-Hosting Company. Available online: https://www.dothome.co.kr/ (accessed on 10 March 2021).
29. Google Drive. Available online: https://www.google.com/drive/ (accessed on 10 March 2021).
30. Google Drive API. Available online: https://developers.google.com/drive (accessed on 10 March 2021).
31. SPECweb2009 Benchmark. Available online: http://www.spec.org/web2009/docs/ (accessed on 10 March 2021).
32. Asrese, A.S.; Eravuchira, S.J.; Bajpai, V.; Sarolahti, P.; Ott, J. Measuring Web latency and rendering performance: Method, tools,

and longitudinal dataset. IEEE Trans. Netw. Serv. Manag. 2019, 16, 535–549. [CrossRef]
33. Linksys WRT1900ACS Dual-Band Wifi Router. Available online: https://www.linksys.com/us/p/P-WRT1900ACS/ (accessed on

10 March 2021).
34. Stoddard, D.; Thomas, M. Network Security First-Step: Firewalls; Cisco Press: Freehold, NJ, USA, 2012.
35. Laurie, B.; Laurie, P. Apache: The Definitive Guide; O’Reilly Media: Sebastopol, CA, USA, 2002.
36. Barrett, D.; Silverman, R.; Byrnes, R. SSH, The Secure Shell: The Definitive Guide; O’Reilly Media: Sebastopol, CA, USA, 2005.

http://doi.org/10.1145/1644893.1644904
https://httpd.apache.org/
https://www.mysql.com/
https://www.dothome.co.kr/
https://www.google.com/drive/
https://developers.google.com/drive
http://www.spec.org/web2009/docs/
http://doi.org/10.1109/TNSM.2019.2896710
https://www.linksys.com/us/p/P-WRT1900ACS/

	Introduction 
	Related Work 
	Difficulties in Network Configuration for Non-Expert Users 
	More Usable and Manageable Network-Configuration Interfaces 
	Various Uses of Public Storage 
	Relationships with Network Proxies 

	Method of Communication via Public Storage 
	Overview of Proposed Method 
	Requesting and Receiving Data via Storage 
	Applications of Proposed Method 

	Performance Evaluation 
	Experimental Setup for Web Applications 
	Measurement Results 

	Manageability Analysis 
	User Study Methodology 
	Participants and Group Assignments 
	Task Design 
	Procedure 

	Results of User Study 
	Limitations of User Study 

	Conclusions 
	References

