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Abstract: Training data for a deep learning (DL) neural network (NN) controller are obtained from
the input and output signals of a conventional digital controller that is designed to provide the
suitable control signal to a specified plant within a feedback digital control system. It is found that
if the DL controller is sufficiently deep (four hidden layers), it can outperform the conventional
controller in terms of settling time of the system output transient response to a unit-step reference
signal. That is, the DL controller introduces a damping effect. Moreover, it does not need to be
retrained to operate with a reference signal of different magnitude, or under system parameter
change. Such properties make the DL control more attractive for applications that may undergo
parameter variation, such as sensor networks. The promising results of robustness against parameter
changes are calling for future research in the direction of robust DL control.

Keywords: deep learning; feedback control; conventional controller; neural network; backpropaga-
tion; robust control

1. Introduction

Design methods for feedback control systems are well-established. These include
classical linear control system design, techniques for nonlinear control, robust control,
H-co control and adaptive control. In addition, model-free control has emerged with
techniques such as fuzzy logic control and artificial neural networks (ANN). The latter
methods generally extend adaptive control techniques to nonlinear systems [1]. Closed-
loop control applications of NNs are different from classification and image processing
applications, which are open-loop. NNs were first introduced in closed-loop control
systems by Werbos in [2]. Offline learning, in particular, was formalized in [3] and was
shown to yield important structural information. In addition, an important problem that
also had to be addressed in closed-loop NN control was weight initialization for feedback
stability [4]. In this work, an NN is trained and used for function approximation to replace
a conventional controller in a digital feedback control system. Neural networks can model
linear or nonlinear systems as they are excellent at finding the underlying processes that
govern these systems. It has been stated in [1] that the two-layer NN is sufficient for
feedback control purposes. In the present work, however, we show that the addition of
hidden layers, resulting in deep NN controllers, produces a damping effect and improves
feedback control system stability. The multi-layer NN (specifically the two-layer network
with one hidden layer) took 30 years to effectively replace the single-layer NN, which was
introduced as early as the 1950s. The reason was the lack of the proper learning rule to
update the hidden layer weights during training, a problem that was later solved by the
backpropagation (BP) algorithm in 1986 [5]. The BP algorithm is also based on stochastic
gradient descent (SGD) learning as in the single-layer NN, but uses a different method to
update the gradient, namely, backpropagation. It took another 20 years to solve the poor
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performance issues of the deep NN (two or more hidden layers) through the innovation
of deep learning (DL). DL, in essence, comprises many small technical improvements to
ensure proper training. DL solves problems such as vanishing gradient, overfitting and
computational load [6,7]. A deep NN with two hidden layers is shown in Figure 1. The
inter-layer arrows in the figure represent weighted connections. It is a multiple-input,
multiple-output (MIMO) system; however, in this work, only a single outlet is considered,
with the hidden layers using a nonlinear activation function ®(-), while the output layer
uses a linear activation function ¥(-). The output vector Y in Figure 1 can be expressed
as follows:

Yix1 = ¥ [Mpxk P {Hgx) P (Wyx1 Xix1 + Bjx1) + Brx1} + brxa] 1)

where X is the input vector; W, H and M are the weight matrices of the first hidden,
second hidden and output layers, respectively; I, /, K and L are the numbers of nodes of
the input, first hidden, second hidden and output layers, respectively. The variables B,
and b represent the respective biases. The activation functions operate point-wise on the
relevant vectors.

Activation-1 Activation-2 Activation-3

D() D() ¥()

J nodes K nodes L nodes
Hidden Output
Layers Layer

Figure 1. A generic diagram for a three-layer deep NN (neural network) with two hidden layers.

In this work, a conventional controller is first designed and tested in a feedback control
system. By using the input-output information of this controller as the training data of a
learning algorithm such as the BP algorithm, a DL controller consisting of a deep NN is
trained offline and then made to replace the conventional controller. Finally, the system or
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plant is controlled just by the DL controller and its performance monitored. It is shown
that the feedback control system performance criteria can all be improved such as settling
time, overshoot, steady state error, etc.

Relevant recent works in the literature include [8] where a NN controller with one
hidden layer is trained for use with multi-input, multi-output (MIMO) systems resulting in
an improvement in transient response regarding overshoot and settling time, but without
resorting to DL. In [9], the speed of a DC motor is controlled in a feedback control loop
with a proportional-integral-derivative (PID) controller, the most commonly used in in-
dustry. Similar to the present work, DL is also resorted to in order to design an intelligent
controller but via a deep belief network (DBN) algorithm [10]. A DBN performs a kind
of unsupervised learning using a restricted Boltzmann machine (RBM) [10] to generate
a set of initial weights to improve learning. RBM’s are networks in which probabilistic
states are learned for a set of inputs suitable for unsupervised learning. A similar approach
to DL control is the work in [11], where RBMs are also used for weight initialization by
unsupervised training. The disadvantage of DBNs is the hardware requirement since they
consist of two stages, unsupervised pre-training and supervised fine tuning. The ordinary
deep NNs used in the present work are less computationally demanding, and moreover,
single-stage supervised offline learning is possible due to the availability of input-target
data in the application considered.

In addition to supervised and unsupervised learning, there is also a third type of learn-
ing in machine learning called reinforcement learning (RL). This is learning by making and
correcting mistakes in a trial-and-error fashion, that is, learning by experience in case of the
absence of a training data set. It is a process in which a software agent makes observations
and takes actions within an environment and in return, it receives rewards [12]. RL thereby
achieves long-term results, which are otherwise very difficult to achieve. Deep RL has
recently been used in robotic manipulation controllers [13,14]. A deep learning controller
based on RL is also implemented in [15] for the application of DL in industrial process
control. However, RL is very computationally expensive and requires large amounts of
data, and as such, it is not preferable to use to solve simple problems. RL suffers from the
lack of real-world samples such as in robotic control where robotic hardware is expensive
and undergoes wear and tear.

In [16], a deep NN controller is developed to reduce the computational cost of imple-
menting model predictive control (MPC). MPC is a reliable control strategy to effect control
actions by solving an optimization problem in real time. However, the deep NN controller
architecture uses long short-term memory-supported NN (LSTMSNN) models, and there-
fore needs a graphical processing unit (GPU) to accelerate the online implementation of
the controller by parallelizing computations. Similarly, ref. [17] uses DL-based techniques
and recurrent NNs for real-time embedded implementation of MPC, thereby eliminating
online optimization.

In the present work, the deep NN controller used with a second-order plant in a
closed-loop control system is more computationally efficient in the training phase as well
as in real-time operation, while retaining DL benefits, compared to the above works that
employ DBNs, RL and LSTMSNN:S. In addition, detailed results are presented regarding
improvement in settling times as the DL controller implementation gets deeper, steady
state error and overshoot. The results of using different activation functions in hidden
layers have also been considered. Effects of parameter changes such as changes in plant
gain and pole locations are elaborated on to prove the robustness of the present approach
versus conventional electronic design. Robust design of control systems is necessary to
keep the plant performance optimal under parameter variation [18]. However, robustness
of the proposed DL has only been tested against its electronic counterpart, but has not
been tested for optimality in the sense of optimal robust control. The authors hope that
future research in this direction can succeed in extending the optimization methods in [18]
to develop an optimized method for DL robust control. In short, the present work offers a
versatile experimental setup of a standard deep NN controller in digital feedback control
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systems, thus unraveling several aspects regarding the vast potential of machine learning
and especially DL techniques in process control.

The rest of the paper is organized as follows: Section 2 presents the design of the
conventional controller within the digital feedback control system. Section 3 explains the
training procedure of the deep NN to construct the DL controller. The simulation results
are given in Section 4, and finally, Section 5 concludes the paper.

2. Conventional Controller Design for Digital Feedback Control System

The block diagram of a feedback control system with a digital controller D(z) is shown
in Figure 2. The z-transforms of the input sampled reference signal, the sampled error
signal, the sampled control signal and the sampled output signal are denoted by R(z),
E(z), U(z) and Y (z), respectively. We assume that G(z) is the z-transform of G(s) which is
given by:

G(s) = Gols)- Gy(s) @

where G, (s) is the plant transfer function and G, (s) is the transfer function of the zero-order
hold, which represents a digital-to-analog converter that converts the sampled control
signal to a continuous signal to be input to the plant. The zero-order hold takes the sample
value and holds it constant for the duration of the sampling interval T. As such, G, (s) is
given by [19]:

Go(s) = % - %e_ST ®3)
E(z) U(2) Y(2)
R@)
D(z2) p—»| G(2 >
Controller Plant

Figure 2. Block diagram of a feedback control system with a digital controller.

The closed-loop transfer function is:

Y(z) G(z) D(z)
Re ~ &) = 156@)pE @)
We consider a second-order system with the plant transfer function given by:
6960
Gpls) = s(s+4) ®)

Note that, whereas a continuous second-order feedback control system is stable for all
values of gain assuming left-half s-plane open-loop poles, a second-order sampled system
can be unstable with increasing gain [19]. Using Equations (2), (3) and (5), we convert to
digital as follows:

Gz) = Z[G(s) = Z [ 6
= (1—271)2 52(950? (6)
= 6960 (1—z 1) Z[H — 5 + 16(3-&-4)]
= 1740(1— z~ 1)[ _%(zz 1) +%(z eZ*”)
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Substituting in the above for T by 0.001 s, we obtain:

0.003475z + 0.003471
- 7
G = 719962 7 099 @

An analog controller G.(s) can be designed as a lead compensator such as to achieve

a phase margin of 45° with a crossover frequency of 125 rad/s. Using the compensation
design methods in [19] for meeting phase margin specifications, we find that:

_ 56(s+50)
) = = 3m2 ®)
With T = 0.001 s, we find D(z) = Z[G.(s)] as:

4857 — 461
D) = ——473 ©)

Now, the system in Figure 2 can be implemented in MATLAB with a unit-step reference
input in order to obtain the digital error and control signals, e(n) and u(n), respectively.
These signals are shown in Figures 3 and 4, whereas the unit step response of the control
system is shown in Figure 5. While these figures are simulation results, an analytical
expression for the unit step response can be obtained. In Equation (4), substituting for
G(z) and D(z) by Equations (7) and (9), respectively, and also substituting for the unit step
reference input R(z) by z/(z — 1), we solve by partial fractions to obtain:

V(o) = 2, L9765 (—1.4798 + j0.181) 2

(—1.4798 — j0.181) z
z—1 ' z—-0.8979 ' z— (0.9056 + j0.0862)

z — (0.9056 — j 0.0862) (10)
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Figure 3. The error signal input to the digital controller.
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Figure 4. The control signal output from the digital controller.
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Figure 5. The unit step response of the feedback control system.

Taking the inverse Z-transform, we obtain the unit step response as:

y(n) = 1+ 1.9765(0.8979)" + 2.9816(0.9096)" cos(0.0302 w1 +0.96157); n >0 (11)

Plotting the above expression coincides exactly with the plot of Figure 5. The conven-
tional controller input-output signals are needed to train the DL controller described in the

following section.
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3. The DL Controller

The error and control signals of Figures 3 and 4 can be used to train a deep NN
offline to obtain a DL version of the controller that learns the correspondence between
e(n) and u(n). In other words, the training data consisting of input and correct output
of the DL controller are the error input and control output signals of the conventional
controller stored for a sufficient number of discrete time instants during feedback digital
control system operation. Training is performed using the BP algorithm [6]. The trained DL
controller is intended to replace the conventional controller for real-time feedback control
system operation.

There are several training algorithms for training the neural network weights, the
most important being the backpropagation (BP) algorithm, in which the output error
starts from the output layer and propagates backwards until it reaches the hidden layer
next to the input layer to update the weights. Based on the update strategy, there are
different variations of BP, the most common being BP based on gradient descent (GD) [20].
With reference to Figure 1, the GD-based BP algorithm for updating the weights can be
summarized by the following equations, assuming a linear activation function for the
output layer and nonlinear activation functions for the hidden layers.

my < my + Amy,1=1,..., Landk=1,..., K.
where Amy, = a (d] — y1) yx = a«yyx
]’lkj%]’lkj%»Ahkj,k:l, ..... ,Kandjzl,....,].
where Ahk]' = l’ééky]‘with 6 = [Zmlkél} Xl (Uk) (12)
1

wji<—wji+iji,j:1, ..... ,Jandi=1,...., 1.
where AZUji = (xé]-xiwithcij = [%hk]‘sk} Xl ("U])

and so on for more hidden layers. In Equation (12) above, « is the BP learning rate, the
d’s are the correct outputs at the output layer needed for supervised training, the v’s are
the activation function inputs, the y’s are the activation function outputs for output and
hidden layers, the x’s are the inputs to the input layer and @' (.) is the derivative of the
nonlinear activation function ® (.).

In the present application, the training data consisting of the correct outputs (d’s) and
inputs (x’s) are values of the control signal u(n) and the error signal e(n), respectively.

It should be noted, however, that the correspondence between e(n) and u(n) is not
one-to-one, as can be seen from Figures 3 and 4. Instances can be found of a single value of
e(n), occurring at different time indices, that corresponds to more than one value of u(n).
These identical values of e(n) at different time indices can be made distinguishable from
each other if their past values are taken into account. Error values may be the same for
different time instants, but their past behaviors are normally different. Therefore, the input
layer of the deep NN may consist of more than one node to take into consideration present
as well as past values of the error signal, but the output layer has only one node such that
the NN performs regression or function approximation. The activation functions of the
hidden-layer nodes are chosen as the rectified linear unit (ReLU) function, which is known
to perform better with DL than the sigmoid function [6,7]. The reason is that the ReLU
function solves the problem of vanishing gradient due to back-propagating the error during
training. The output layer single node, however, can be chosen to have a linear activation
function. This would avoid any restriction in amplitude of the controller output which
constitutes the control signal to the plant. The sigmoid and tanh functions would restrict
the control signal from 0 to 1 and from —1 to 1, respectively. Similarly, a ReLU at the output
would not allow negative values, whereas the control signal can take on negative as well
as positive values as can be discerned from Figure 4. A neural network with two or more
hidden layers is considered deep [7]. It is important to properly choose the convenient
topology of a NN. Clearly, the number of neurons in the input layer is equal to the number
of inputs, and the number of neurons in the output layer is likewise equal to the number of
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outputs. As for the number of neurons in the hidden layers, this is a problem facing many
researchers. Rules of thumb are given in many instances in the literature [21,22]. Some of
these rules state that the number of nodes in the hidden layer should lie between those in
the input and output layers, and the number of hidden nodes could be taken as two-thirds
the sum of input and output layer nodes. In [23], it is concluded that the power of the
NN does not depend on whether the first hidden layer or second hidden layer has more
neurons, whereas [24] presents an empirical study of a three-layer (two hidden layers) NN
concluding that:

ny = [05n, + 1] and ny = ny —m (13)

where 17 and 1, are numbers of neurons in the first hidden and second hidden layers,
respectively, [ -] is the ceil integer function and ny, is the total number of hidden neurons in
both hidden layers. The trial-and-error approach, however, is often used to successfully
determine the number of layers and the number of neurons in the hidden layers [23].

4. Simulation Results and Discussion

All simulations are implemented in MATLAB (Academic License no. 904939). The
second-order system with the plant transfer function given by Equation (5) is considered
in this study, with analog controller given by Equation (8). The digital counterparts of
this plant and its control sub-system (as shown in Figure 2) have been implemented using
Equations (7) and (9) in the first round of the simulation, while the second round used
control data from this system to train a DL network that eventually replaced the electronic
control sub-system of Equation (9). This section will investigate the performance of the DL
controller versus the original electronic controller.

4.1. DL Training Process

Figures 3 and 4 demonstrate the training data that are used in offline training of the
deep NN that constitutes our DL controller. The training data are the necessary input-
correct output pairs needed for implementing the BP algorithm which is a supervised
learning algorithm. The learning rate of the BP algorithm is taken by trial and error as
0.02. In each training or learning iteration, seven past samples plus the present sample
of the error signal are used as input to the deep NN as discussed in Section 3. Thus, the
input layer will consist of eight nodes. By trial and error, this number of necessary input
nodes was found to yield optimum performance for this case of two hidden layers. The
output layer will have only one node as only one controller output is required to provide
the control signal to the plant. The output node is made to operate with a linear activa-
tion function. The number of neurons in each of the hidden layers is taken as five. For
two hidden layers, this number is almost in conformity with the empirical rule of
Equation (13). The nonlinear activation function for all hidden nodes is the ReLU function
which has the merit of solving the vanishing gradient problem for deep NNs trained by
the BP algorithm [6,7]. As in Figures 3 and 4, the number of available training data pairs
is 200. Training for 200 iterations, called an epoch [7], is repeated 200 times. That is, the
number of epochs is also 200. The DL controller with two hidden layers is first trained. Its
weights are initialized with real random numbers between 1 and —1 taken from a uniform
random distribution. However, the learning behavior and subsequent closed-loop stability
was found to be sensitive to the initial values of the weights. Therefore, different initial
random weights from the same uniform distribution were tried for good performance.
The offline nature of our training procedure renders this possible. There exist, however,
various weight initialization methods and algorithms in the literature [25,26]. These can
prove especially helpful in applications where the controller parameters are to be adjusted
online [27]. When learning was achieved, the DL controller was used in inference mode
to test its performance. In this mode, the same stored error signal from the conventional
controller is entered to the trained DL controller, every sample with its seven past values,
and the DL controller output is obtained as shown in Figure 6. It is clear that good learning
is achieved as Figure 6 is almost identical to Figure 4.
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Figure 6. Output signal of trained DL controller (with two hidden layers) in inference mode.

4.2. Performance of the DL Controller versus Electronic Controller

The next step is to use the trained DL controller in real time to provide the control
signal to the plant within the feedback control system. The unit step response is shown in
Figure 7. This, in turn, is almost identical to Figure 5 that corresponds to the conventional
controller whose behavior was learned.

0
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Figure 7. Unit step response of feedback control system using the trained DL controller with two

hidden layers.

The same trained DL controller is made to operate within the feedback system but
subject to a step reference of magnitude 2. The resulting step response of the system is
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shown in Figure 8, where it is clear that the system yields the correct response with the
same trained DL controller regardless of the step magnitude. Note that the input to the DL
controller is different from the training input. That is, the DL controller does not exhibit
any signs of overfitting [6]. The latter is a situation where the deep NN fails to respond
correctly to other than the training data. That is why, in this work, we do not need to
employ dropout which is another DL technique used to overcome overfitting [6,7].

3 T T T T
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T

o
o
5L o
o
o
15+ ©

o)

o
o
o

O 4
o
(o]

0 1 1
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time index n

response to a step of magnitude 2

o
o

Figure 8. System response to a step magnitude of 2 using the trained DL controller.

We now investigate the use of deeper NNs for DL controllers in feedback control and
compare between them as well as with the conventional controller in terms of settling
time. The settling time of the second-order system under consideration is taken as the time
needed for the system step response to reach a value within a certain percentage of the final
value. The percentages considered are 2, 0.2 and 0.02. Table 1 lists the settling time of the
different tested cases. The number of nodes is five in each hidden layer, and the number
of input layer nodes is eight for all cases. It can be seen from Table 1 that the deeper the
controller the smaller (better) the settling time of the feedback control system. The reason
is that better learning is achieved with deeper NNs. Moreover, with four hidden layers, the
DL controller even outperforms the conventional controller in terms of settling time. Thus,
the DL controller has the advantage of producing a damping effect when sufficiently deep,

thereby enhancing performance.

Table 1. Unit step response settling times for the different types of controllers under consideration.

Settling Times (Milliseconds) within r % of Final Value

Controller Type

r=2 r=0.2 r=0.02
Conventional 48 74 104
DL with 2 hidden layers 49 >200 >200
DL with 3 hidden layers 49 85 120
DL with 4 hidden layers 47 55 92

The number of input layer nodes was fixed at eight for all entries of Table 1 for
the purpose of comparison. However, with four hidden layers, results are better if we
set this number to four. For this case, the feedback system unit step responses with the
conventional and trained DL controllers are shown in Figure 9.
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Figure 9. Unit step response of the feedback system with conventional and trained DL controllers.

The number of hidden layers is four and the number of input nodes is four.

4.3. Robustness against System Parameter Change

Next, we investigate the influence of system parameter change on the performance
of the trained DL controller versus its conventional electronic counterpart. In all plants,
process parameters such as the properties of materials including thermal and electrical
conductivity, dimensions of components such as distances between capacitive plates, etc
may change with time due to aging, pressure, vibration, corrosion and so on. A control
system is robust when these changes have little or no effect on its performance. Otherwise,
these changes worsen the system performance. Changes of plant gain and pole locations

will be considered separately as follows.

4.3.1. Performance under Plant Gain Change

Let us assume that the plant gain in Equation (5) undergoes a considerable change,
from 6960 to 20,000. Using Equation (2) and converting to digital with T = 0.001 s, we
arrive at the following expression for G(z) using the same steps that led to Equation (7):

0.009987z + 0.009973
G = 719962 1 0.99 (14)

The trained DL controller for Figure 9 with four hidden layers and four input nodes
is tested in online operation of the feedback control system with the above plant param-
eter change. The unit-step response is shown in Figure 10 together with the simulated
conventional controller case (without re-design) under the same system parameter change.

Proceeding with a workout similar to that which led to Equation (11), the analytical
expression for the feedback system unit step response using the conventional controller of

Equation (9) under system parameter change is:
(15)

y(n) = 0.9999 + 0.1433(0.9439)" + 1.0948(0.9050)" cos(0.0927 7t 1 + 0.9936 77); 1 > 0
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Figure 10. Unit step response of the feedback control system with the trained DL controller (four
hidden layers and four input nodes) as well as with the conventional controller, both under plant

gain change, Equation (14).

Plotting Equation (15) above coincides exactly with the corresponding plot in
Figure 10. It is clear from Figure 10 that the DL controller behaves much more satis-
factorily than the conventional controller. This means that the latter has to be redesigned
for successful operation, whereas the DL controller does not need re-training. A magnified
view of Figure 10 is shown in Figure 11.
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Figure 11. A magnified view of Figure 10.

The advantage of obtaining smaller settling time with the DL controller is evident. DL
causes the system to reach steady state faster with less overshoot; the first-peak ratio is
almost 8, where the first-peak ratio @ is defined as the ratio of the first transient response
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peak using the conventional controller to that using the DL controller. Table 2 shows the
settling times of the control system for both controllers. The steady state error for all above

results is zero.
Table 2. Unit step response settling times for different controllers under plant gain change.

Settling Times (Milliseconds) within r % of Final Value

Controller Type
r=2 r=02 r=0.02
Conventional 40 80 114
DL with 4 hidden layers 14 30 43

4.3.2. Performance under Pole Location Change
If the pole locations of the analog plant change further towards instability, the closed-

loop digital control system unit step response begins to exhibit steady state error while
using the same trained DL controller and the same conventional controller. This is shown

in Figure 12 and the magnified view of Figure 13 for the analog plant given by:

6960
Gpls) = s(s+0.5) 16)
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Figure 12. Unit step response of the feedback control system with the trained DL controller (four
hidden layers and four input nodes) as well as with the conventional controller, both under pole

location change, Equation (17).
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Figure 13. A magnified view of Figure 12.

This, together with the zero-order hold, and with T = 0.001 s corresponds to the
digital system given by:

~0.003479z + 0.003479 a7)
T 22-2240.9995

Under this parameter change, the analytical expression for the unit step response is:

G(z)

y(n) = 1.0901 + 2.1642(0.9011)" + 3.2810(0.9096)" cos(0.0285 7t 1 + 0.9480 77); n > 0 (18)

Figure 13 shows a steady state error for the conventional controller that is greater than
that for the DL controller which is another advantage of the latter. The DL controller also
results in smaller overshoot. By the final value theorem, the steady state error of the digital
feedback control system subject to a unit step input, and using the conventional controller,

is given by:

. _ 1
ess = 21_13{(1—2 1>1+D(z)G(z)R(Z)} (19)
where 1
R(z) = 151 (20)
Therefore,
. 1
= i { repem) “

Substituting in the above by Equations (9) and (17), we find that ess = —0.09. This is
in accordance with the curve in Figure 13 that corresponds to the conventional controller

and with Equation (18) as n tends to infinity.
The relative percentage change in pole value is defined as:

A — .
o= 2P 100% = PP 100% 22)

pi pi
where py is the final pole value and p; is the initial pole value. For the above pole change
from s = —4 to s = —0.5, and using Equation (22), p would be —87.5%. Table 3 below lists
the steady state error values versus p for both controllers as p changes from —75% to nearly
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—100%. The other pole location is fixed at s = 0. It is clear that the steady state error is
always better with the DL controller.

Table 3. Steady state error versus percentage pole change for different controllers.

Relative Percentage Pole Steady State Error
Change (p) (DL Controller) (Conventional Controller)

-75 0 0

—77.5 +0.01 +0.02

—87.5 —0.05 —0.09
-90 —0.045 -0.07

—-92.5 —0.03 —0.05
-95 —0.02 —0.035

—97.5 —0.011 —0.017

Positive values of p result when the pole moves further away from the imaginary axis
in the s-plane. In this case, both analog systems and digital counterparts perform well with
zero steady state error so that the benefit of the DL controller is not noticeable. Therefore,
positive values of p will not be considered further.

A double-pole change is also considered by changings = —4tos = —2and s =0to
s = —0.5. In this case, the DL controller also exhibited improved performance regarding
both steady state error and overshoot, as compared to the conventional controller.

4.4. Effect of Activation Functions

It is useful here to consider the possibility of using different activation functions
in different hidden layers and present a corresponding numerical comparison related
to the plant gain change experiment in Section 4.3.1. It is found that the DL controller
with four hidden layers fails to train if sigmoid activation functions are used in all layers
due to the vanishing gradient problem [6]. When only the first two hidden layers were
assigned sigmoid activation functions and the remaining layers had ReLU functions,
the DL controller also failed to train properly for the same previous reason. However,
when using ReLU functions in the first two hidden layers and sigmoid functions in the
outer two hidden layers, training was possible and DL benefits were retained, but not as
markedly as in the case of all-ReLU functions. The training is still possible because the first
two hidden layers with ReLU functions save the gradient reaching them from vanishing to
zero during backpropagation. For a numerical comparison relating to the above argument,
we use the first-peak ratio as a performance measure. It is found that the first-peak ratio
R that was 8 under plant gain change is now reduced to only ## = 2 under the same
change when the DL controller hidden layers use the activation function arrangement of
ReLU-ReLU-sigmoid-sigmoid. Thus, DL still improves the performance but not as much
as the case of using ReLU activation functions in all four hidden layers.

4.5. Final Remarks and Future Directions

In this work, we considered a generalized way of replacing the linear lead-lag-type
controller of a second-order system by DL to represent a wide range of control systems.
Other linear controllers (such as PID) can be replaced by DL using similar analysis.

All of the control systems and plants considered in this paper are linear systems, in
the sense that they all obey the superposition property. Furthermore, uniform sampling
that follows Shannon-Nyquist Theory is considered, both in the conventional control
sub-systems and in their DL counterparts. As the topic of DL control is developing,
we expect future research to handle non-uniform sampling and non-linear DL control
subsystems. Please note that nonlinear systems are often approximated by LTI systems
using various techniques, e.g., via approximating the nonlinear transfer function near an
operating point [28], or via local coordinate transformation [29]. Hence, this work will be
the building block of designing DL approximations for nonlinear control systems. On the
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other hand, since DL controller exhibits better performance than existing linear systems
with the additional merit of robustness against parameter changes, it is expected that DL
control will be a better choice for approximating nonlinear systems than existing methods.

Another direction for future investigation would be to consider DL for real-time
control (RTC), which is time-constrained control to handle time-varying (or predicted) pa-
rameter changes either periodically or via triggered actions to activate a suitable subsystem
from a bank of predesigned control subsystems. However, due to the robustness of DL
control subsystems against parameter changes, as explained in Section 4.3, DL control is
already enabling RT control. If further possible changes are expected to be incorporated
into the plant transfer function so that a bank of pre-designed DL control subsystems is
required, then DL control would require far fewer triggers (hence, reduced complexity) as
compared to the conventional RT control subsystems. On the other hand, as DL control is
emerging, it would be too early at this stage to talk about unsupervised training to handle
time-varying parameters in DL real-time control (DL-RTC).

Despite the detailed study of the robustness of the proposed DL control subsystem
against parameter changes, as explained in Section 4.3, further research is required to
develop the full theory of Robust DL Control.

5. Conclusions

A deep learning controller can efficiently replace a conventional controller in a feed-
back control system if trained offline with the input-output signals of the conventional
controller. It has been shown that if the DL controller is sufficiently deep, it can outperform
the conventional controller in terms of settling time of the step response of the tested
second-order system. In addition, no re-training is needed under different reference input
magnitude or in case of system parameter change. Under system parameter change, the
conventional controller needs to be redesigned for comparable performance with the DL
controller. Another performance indicator for feedback control systems, namely the steady
state error, was also shown to improve using DL controllers. A call for a future direction of
robust DL control is also presented.
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