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Abstract: This paper aims at realizing upper limb rehabilitation training by using an fNIRS-BCI system.
This article mainly focuses on the analysis and research of the cerebral blood oxygen signal in the
system, and gradually extends the analysis and recognition method of the movement intention in the
cerebral blood oxygen signal to the actual brain-computer interface system. Fifty subjects completed
four upper limb movement paradigms: Lifting-up, putting down, pulling back, and pushing forward.
Then, their near-infrared data and movement trigger signals were collected. In terms of the recognition
algorithm for detecting the initial intention of upper limb movements, gradient boosting tree (GBDT)
and random forest (RF) were selected for classification experiments. Finally, RF classifier with better
comprehensive indicators was selected as the final classification algorithm. The best offline recognition
rate was 94.4% (151/160). The ReliefF algorithm based on distance measurement and the genetic
algorithm proposed in the genetic theory were used to select features. In terms of upper limb motion
state recognition algorithms, logistic regression (LR), support vector machine (SVM), naive Bayes (NB),
and linear discriminant analysis (LDA) were selected for experiments. Kappa coefficient was used as
the classification index to evaluate the performance of the classifier. Finally, SVM classification got the
best performance, and the four-class recognition accuracy rate was 84.4%. The results show that RF
and SVM can achieve high recognition accuracy in motion intentions and the upper limb rehabilitation
system designed in this paper has great application significance.

Keywords: brain–computer interface; intent recognition; SVM; ensemble learning

1. Introduction

The upper extremity is an important part of the human body. Research has found that
80% of severe stroke patients have upper extremity motor dysfunction. It is a relatively
feasible and efficient treatment method to perform rehabilitation training by using rehabili-
tation robot equipment to drive patients. However, in the traditional rehabilitation robot
training scheme, the robot usually assists the patient to complete the training action after
the specific training process is set [1]. The form of this program is very simple, and patients
may feel negative and slack during the training process due to boredom.

Many previous studies have shown that the process of autonomous training by patients
is very important. Compared with passive exercise training, the active willingness of pa-
tients to participate in training can better promote neurocortical reconstruction and motor
function recovery [2]. As a new human-computer interaction method, the brain-computer
interface (BCI) can bypass the function of nerve transmission channels and muscle parts, and
directly establish information communication channels between the brain and the external
environment, and control external devices. The application of BCI in the field of rehabilitation
has helped a lot of patients with limb dysfunction to carry out rehabilitation training and
accelerate their rehabilitation process. Therefore, in the field of rehabilitation medicine, the
study of feasible BCI technology has very important social significance [3–5].
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At present, many BCI researchers at home and abroad have focused on applying BCI
technology to the field of upper limb motor function rehabilitation, and have obtained
excellent research results. Anirban of the University of Essex and his research partners
successfully developed a hybrid BCI device to control the exoskeleton of the hand in order
to overcome the problem of low recognition accuracy in BCI system. The system combines
EEG and EMG signals. After the grasping intention of the subject is successfully detected,
the exoskeleton will perform finger flexion and extension. Finally, the recognition accuracy
of the system reached (90.00 ± 4.86)%, significantly improving the performance of BCI
system [6]. Zhai Wenwen hoped to improve the life independence of patients with severe
motor dysfunction through BCI technology. The upper-limb movement-related instructions
can control the robotic arm to complete the rehabilitation training of the shoulder, wrist and
elbow. The recognition accuracy of the system is as high as 93% [7]. Yoshiyuki Suzuki studied
the effects of human corticospinal excitability on motor tasks in the process of imagining
or observing the upper limbs. The experiments have shown that kinesthetic MI, including
visualizing and observing the virtual hand, can cause phase-dependent muscle-specific
corticospinal stimulation of wrist muscles that match those in the actual hand [8]. Although
they have achieved remarkable research results in the field of sports rehabilitation technology,
there are still many key technologies that need to be improved. For example, the recognition
accuracy of multi-classification tasks is low, real-time performance needs to be improved, and
it is difficult for users to autonomously control the pace of rehabilitation training.

This paper proposes a set of upper limb rehabilitation training robot system based
on user spontaneous movement fNIRS-BCI. Four upper limb movement paradigms are
designed: Lifting up, putting down, pulling back, and pushing forward. The start of
each task and the rest time were all controlled by the subjects autonomously without any
prompts from the outside world [9]. A variety of classifiers such as RF and SVM were
selected for evaluation, and a high accuracy rate was achieved. Furthermore, the most
suitable multiclass recognition algorithm was selected.

2. Experimental Design
2.1. Participants

A total of 50 volunteers were recruited for this experiment. Among them, 29 were male
volunteers and 21 were female volunteers. The ratio of male to female was approximately
3:2. All volunteers were right-handed, in good health, and had no history of mental illness
or cardiovascular and cerebrovascular diseases. In addition, all volunteers participated in
the experiment for the first time and only once. Before the experiment, all volunteers were
informed of the experiment details and signed the informed consent form of the experiment.

2.2. Experiment Paradigm

In order to increase the controllability and practicability of upper-limb auxiliary equip-
ment, four common upper-limb movement paradigms in daily life designed in daily life:
Lifting up, putting down, pulling back and pushing forward. During the experiment, the
near-infrared data of the subjects in different motion states were collected to provide a su-
pervised learning data set for subsequent research on motion intention recognition. The
experimental process is shown in Figure 1. Tasks 1, 2, 3, and 4 in the figure represent the four
action paradigms of lifting up, putting down, pulling back, and pushing forward, respectively.

During the experiment, the subjects should keep their scalp clean and keep their hair
dry before the experiment. It should be noted that the subjects need to rest for about 60 s
before the start of the experiment. The rest time between lifting and lowering actions was
10 s, and the rest time between other actions was about 50 s. The start of each task and the
rest time were all controlled by the subjects autonomously without any prompts from the
outside world. The specific paradigm of the experiment is shown in Figure 2. Figure 2a–d
represents the four action paradigms of lifting up, putting down, pulling back, and pushing
forward, respectively.
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Figure 2. The experimental diagram of upper limb movement. (a) Lifting up, (b) putting down,
(c) pulling back, and (d) pushing forward.

2.3. Cortical Regions

The FOIRE-3000 near-infrared acquisition system of Shimadzu Corporation was used
as a brain signal acquisition device to record the changes in the concentration of oxygen,
deoxygenation, and total oxygen hemoglobin in the experiment [10]. Because this experi-
ment emphasized the spontaneous movement intention of the subjects, task execution and
rest time were controlled by the subjects spontaneously, we chose to use continuous mode
to measure the cerebral hemoglobin information during the experiment. The equipment
sampling time was 130 ms.

This study used the internationally recognized 10–20 system as the positioning stan-
dard to locate brain functional areas. The experiment designed a 4 × 4 headgear layout
to detect the above key functional areas. There were a total of 24 effective test channels.
The overall headgear layout is shown in Figure 3. In the layout, the Cz point was used as
a reference point for the relative position, and the distance between Cz and the center of
the 23rd channel was 1.5 cm. The entire layout can cover four brain functional areas: PFC,
SMA, PMC (PMC = PMCL + PMCR), PMCR, and M1 brain area function [11].
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3. Data Analysis
3.1. Data Preprocessing

The interference components in the near-infrared signal mainly include baseline drift,
physiological interference, and high-frequency noise. Mathematical morphology has a very
strict data theoretical basis, and research shows that this method achieved good results
in nonlinear signal processing. Corrosion calculation and expansion calculation were the
basic calculation methods of this method. Based on the corrosion expansion calculation,
two different morphological calculations were used for the combination of opening and
closing. Among them, the open operation used the first expansion and then the corrosion
operation method to eliminate the peak of the signal to filter the peak noise above the
signal, and the closed operation used the first erosion and then the expansion operation
to fill the signal trough to smooth or suppress the signal valley noise. We combined the
on-off filter to eliminate both positive and negative impulse noises in the signal to avoid
unidirectional deviation of the filtered signal [12,13].

3.2. Data Preprocessing
3.2.1. Action Initiation Intent Feature Extraction

In order to accurately and quickly detect the time point of the subject’s transition
from resting to exercise, the selected feature has the ability to detect sudden changes and
singular signals. Near-infrared signals are non-stationary and nonlinear. Among a variety
of feature categories based on biological information to distinguish resting/exercise status,
Teager–Kaiser energy operator and slope value were used in many initial detection studies
of biological signals [14,15]. By calculating the Teager–Kaiser energy operator at each time
point and the blood oxygen slope characteristics at each time point, the instantaneous
changes attributed to the signal at each time point were obtained, and the waveform
changes of the measured signal were tracked in real time.

3.2.2. Motion State Feature Extraction

In the exercise state classification task, the goal was to recognize the exercise intention
before the real action. Therefore, it was necessary to extract the data of the real pre-exercise
time period for analysis. The training time period selection method is shown in Figure 4.
Took the starting point of the real action as the reference point (0), took the signal from −3 s
to 0 s as the training time period, and applied the sliding time window method. The length
of the window was set to 20. The overlapping length of two adjacent sliding windows was
three sampling points. Then, we calculated the features within the time window to obtain
the feature data set.
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3.3. Feature Selection
3.3.1. Action Initiation Intention Feature Selection

During the data collection process, because the subjects were at rest time and the
length of time in the task was different, there were also differences in the number of
samples in the rest segment and the number of samples in the task segment in the collection
of data. The construction of the action initiation intention recognition model faced the
problem of sample imbalance between different categories. Compared with the traditional
RF feature selection algorithm, this paper proposes an improved feature selection method
based on RF. For the original feature set, the algorithm first set the final number of retained
features, then used the sequential backward search method to remove the features with
low importance score from the feature set, until the number of features was the specified
number, the algorithm stopped, and the reserved feature subset was taken as the final
feature set [14,15].

3.3.2. Movement State Feature Selection

Facing the high dimensionality of features in multi-classification tasks, this paper
proposes a combined feature selection method based on ReliefF algorithm and genetic
algorithm. In order to eliminate irrelevant features and redundant features in the original
feature space, the ReliefF algorithm was first applied to evaluate the feature importance
based on the distance measurement between sample features, and features with higher
feature importance were retained as a feature subset [16,17]. On this basis, genetic algorithm
was applied to find the optimal feature combination under the current feature subset. The
flow of the feature selection method is shown in Figure 5.
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4. Results
4.1. Data Preprocessing Results

In order to obtain the ideal morphological filtering effect, the signal-to-noise ratio and
mean square error were used as evaluation indicators to conduct experiments on filters
with different structural elements, different amplitudes, and different widths. We selected
the parameter combination with the best comprehensive performance to construct the
morphology learn filters. Table 1 shows the maximum signal-to-noise ratio SNRmax the
minimum filtering error MSEmin and the corresponding combination of amplitude and
width of the near-infrared signal after filtering by different structural elements.
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Table 1. The filtering effect of various structural elements on the near-infrared signal.

Structural Element Amplitude Width SNRmax MSEmin

Cosine 0.8 70 11.9419 0.000219995
Triangle 1.2 60 8.19086 0.000320125

semicircle 1 70 13.0082 0.000197746
Straight line 1 50 14.9635 0.000162624

4.2. The Results and Analysis of Initial Intention Detection
4.2.1. The Results of Initial Intention of the Action

The initial intention detection task of this action divided the data samples of 50 subjects
participating in the experiment into a data set, of which the experimental data of 40 subjects
were used as the cross-validation set, the total number of samples was 65,354, and the
experimental data of the remaining 10 subjects were used as a test set, the total number of
samples was 16,392. Figure 6 shows the test results of the participants’ initiation of action
during the experiment. The red dashed line represented the start time of the action, and
the green dashed line marked the end of the task. In the example in the figure, “0” and “1”
were used to indicate the rest state and task state, respectively. If it was judged as “0” in
the rest period, it was regarded as correct, and when it was judged as “1”, it was regarded
as a misjudgment, it was judged in the task segment. If it was “1”, it was deemed correct.
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In order to explore the impact of different feature dimensions and different probability
thresholds on the classification results, we used 40, 50, 60, 70, 80, and 90 as the feature
dimensions, and applied the “threshold shift method” with 0.3, 0.4, 0.5, 0.6, and 0.7,
respectively, as probability threshold to carry out the experiment. We used RF and gradient
boosting tree (GBDT) classification algorithm to detect the initial intention of the action.
It can be seen that when the feature dimension was 60 and the threshold was 0.4, both
classification algorithms maintain their optimal performance. The optimal recognition
results of the RF and GBDT are shown in Tables 2 and 3.

By comparing the comprehensive indicators of the two classifiers of RF and GBDT,
the RF is finally selected as the final classification algorithm.
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Table 2. Optimal results of the RF algorithm.

Accuracy Rate False Judgment
Rate

Discrimination
Delay (s)

Comprehensive
Index

Train 94.4% 1.1% −0.267 1.200
Test 92.5% 2.1% −0.067 0.971

Table 3. Optimal results of GBDT algorithm.

Accuracy Rate False Judgment
Rate

Discrimination
Delay (s)

Comprehensive
Index

Train 92.5% 1.4% −0.202 1.113
Test 90.0% 2.5% −0.073 0.948

4.2.2. Feature Analysis

The distribution of the brain areas of each feature and the feature weight proportion
of the blood oxygen type were sorted out. The results show that among the three types of
characteristics of oxygen, deoxygenation, and total oxygen, the dominant characteristic
channels were channels 1, 4, and 5, and the important characteristic channels were 6, 12, 13,
19, 20 channels. The remaining channels are generally active channels, which are helpful to
the recognition task.

4.3. The Results and Analysis of Exercise Status Recognition
4.3.1. Recognition Results of Motion State

In this classification task, the 50 test data samples participating in the experiment were
divided into data sets. Among them, the experimental data of 40 subjects were used as the
cross-validation set, the total number of samples was 160, and the experimental data of the
remaining 10 subjects were used as the test set. The total number of samples was 40.

By comparing the final convergence results of the genetic algorithms of different
classification algorithms, the final iterative results of the four classification algorithms are
shown in Table 4. The final classification algorithm was sorted from highest to lowest score
as SVM > LR > LDA > NB. Therefore, for the classification task of this data set, SVM was
selected as the classifier of the final results [18]. The SVM algorithm’s recognition results
for all subject samples are shown in Table 5.

Table 4. The best evaluation indicators of different classifiers.

Classifier SVM Logistic Regression Naive Bayes LDA

Best Kappa coefficient 0.792 0.775 0.692 0.758

Table 5. Multi-state classification and recognition results.

Lifting-Up Putting Down Pulling Back Pushing Forward Average Variance Kappa Coefficient

Train 90.0% 82.5% 82.5% 82.5% 84.4% 0.001 0.792
Test 90.0% 70.0% 90.0% 80.0% 82.5% 0.007 0.767

4.3.2. Feature Analysis

The distribution of the brain regions of each feature and the weight ratio of the blood
oxygen type were classified and statistics [19]. In the characteristics of oxygen content, the
dominant characteristic channels are channel 1, 4, 5, and 12, and the important characteristic
channels are channel 6, 11, 13 and 15, among which channel 2, 21, 23, and 24 have no
relevant characteristics, and other channels are generally active. Among the deoxygenation
characteristics, the dominant characteristic channels are channel 1, 4, 5 and 6, and the
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important characteristic channels are channel 3, 7, 11, 12, 15, and 19. Channel 24 has no
relevant characteristics, and other channels are generally active. Among the total oxygen
characteristics, the dominant characteristic channels are channel 1, 4, 5, 6, 9, 12, and 13, and
the important characteristic channels are channel 7, 8, 10, 17, 19, and 20. Channel 22, 23,
and 24 have no relevant characteristics, while other channels are generally active.

5. Discussion

This paper proposed a set of upper limb rehabilitation training robot systems based on
user spontaneous movement fNIRS-BCI. Four upper-limb movement paradigms that are
highly related to daily life were designed. The combined filtering method of morphological
filtering and Butterworth band-pass filtering was used to preprocess the signal. In terms
of the recognition algorithm for detecting the initial intention of upper limb movements,
GBDT and RF were selected for classification experiments. Finally, RF classifiers with
better comprehensive indicators were selected as the final classification algorithm. The best
offline recognition rate was 94.4% (151/160), the false positive rate was 1.1% (733/65354).
The ReliefF algorithm based on distance measurement and the genetic algorithm proposed
in the genetic theory were used to select features. In terms of upper limb motion state
recognition algorithms, LR, SVM, NB, and LDA were selected for experiments, and Kappa
coefficient was used as the classification index to evaluate the performance of the classi-
fier. Finally, SVM classification got the best performance. The Kappa coefficient of the
classification result was 0.792, and the four-class recognition accuracy rate was 84.4%.

This study has many advantages: First of all, in the process of the experiment, the
corresponding tasks were automatically controlled by the subjects, during which there was
no task hint and no external stimulation. Four upper-limb movement paradigms that are
highly related to daily life were designed. At present, numerous research subjects need
to carry out experiments according to stimulus cues (mostly visual or auditory stimulus).
Kus et al. instructed the subjects to imagine left/right/feet movements according to the
prompts displayed on the screen, and tried to classify different imaginary movements [20].
Tengfei Ma et al. instructed the subjects to perform left/right hand finger tapping task
guided by a voice prompt [21]. Furthermore, in this paper, the research on upper limb
movement intention was based on the blood oxygen signal before the real action task. Ac-
cording to the brain signal before the actual action, the motor intention was judged, which
provided an important practical basis for the realization of real-time control application
based on brain computer interface technology. Now the majority of research on motor
imagery is based on the extraction of real motion signals for experiments, but this cannot
guarantee great real-time performance. For example, Trakoolwilaiwan et al. extracted
the time samples of the subjects during the resting and left and right hand movement
tasks for training and recognition [22,23]. Finally, in this paper, a variety of algorithms
(including ensemble learning) were selected for experiments and achieved high accuracy.
In the aspect of the initial intention recognition algorithm of upper limb movement, GBDT
and RF are selected for classification experiments. RF classifier with better comprehensive
indicators was selected as the final classification algorithm. The best offline recognition
rate was 94.4%(151/160). In the aspect of upper limb motion state recognition algorithms,
LR, SVM, NB, and LDA were selected for the experiment. SVM got the highest recogni-
tion accuracy in four classification recognition (84.4%). Now, the recognition accuracy of
multi-classification tasks on motor imagery is relatively low in a lot of research. Keum
Shik Hong et al. simultaneously obtained fNIRS signals of mental arithmetic (MA), right
hand motor imagery (RI) and left hand motor imagery (LI) from prefrontal cortex and
primary motor cortex. Multiclass linear discriminant analysis was utilized to classify MA
vs. RI vs. LI with an average classification accuracy of 75.6% across the ten subjects, for a
2–7 s time window during the 10 s task period [22,24]. Wang Wenle et al. collected fNIRS
signals of 16 subjects’ brain motor areas during the actual and imaginary movements of six
types of sign language tasks. Finally, they used AdaBoost.M1, SVM, LDA, HMM, NB, and
KNN algorithms to recognize the fNIRS signals. Finally, LDA achieves the highest average
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classification accuracy (78.70% ± 1.78%) [23,24]. The recognition accuracy in our paper is
higher than 75.6% and 78.70% ± 1.78%.

Although this study has the above advantages, there are still some areas that need
improvement. For example, the cascade structure adopted by the current system will cause
errors to occur between different classification tasks, during which a problem in a certain
recognition link will affect the final overall recognition rate. Therefore, in future research,
it is expected that other real-time algorithm frameworks can be used to make up for this
deficiency, such as parallel structure and hybrid structure.

Author Contributions: Conceptualization, funding acquisition, project administration, supervision,
methodology, C.L.; data analysis, experimental verification, writing, Y.X.; data preprocessing, method-
ology, L.H.; data curation, Y.Z.; investigation, S.K.; supervision, formal analysis, L.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (61673286),
and National key research and development program of China (U1713218).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, C.; Xu, J.; Kuang, S.; Qu, W.; Hu, H.; Sun, L. To Identify Motion Pattern of Lower Limbs by Using Cerebral Hemoglobin

Information during Motor Imagery. In Proceedings of the 2017 9th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2017.

2. Myrden, A.; Chau, T. Effects of user mental state on EEG-BCI performance. Front. Hum. Neurosci. 2015, 9, 308. [CrossRef] [PubMed]
3. Tung, S.W.; Guan, C.; Kai, K.A.; Kok, S.P.; Chuan, C.W.; Ling, Z.; Wei, P.T.; Effie, C. Motor imagery BCI for upper limb stroke

rehabilitation: An evaluation of the EEG recordings using coherence analysis. In Proceedings of the 2013 35th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 261–264.

4. Ge, S.; Yang, Q.; Wang, R.; Lin, P.; Gao, J.; Leng, Y.; Yang, Y.; Wang, H. A Brain-Computer Interface Based on a Few-Channel
EEG-fNIRS Bimodal System. IEEE Access 2017, 5, 208–218. [CrossRef]

5. Rota, G.; Handjaras, G.; Sitaram, R.; Birbaumer, N.; Dogil, G. Reorganization of functional and effective connectivity during
real-time fMRI-BCI modulation of prosody processing. Brain Lang. 2011, 117, 123–132. [CrossRef] [PubMed]

6. Chowdhury, A.; Raza, H.; Meena, K.Y.; Dutta, A.; Prasad, G. An EEG-EMG correlation-based brain-computer interface for hand
orthosis supported neuro-rehabilitation. Neurosci Methods 2019, 15, 1–11. [CrossRef] [PubMed]

7. Zhai, W.; Yang, Y.; Lu, S.; Gao, N. Brain computer interface system research of upper limb rehabilitation training robot. Res. Biomed.
Eng. 2019, 3, 269–274.

8. Suzuki, Y.; Kaneko, N.; Sasaki, A.; Fumiya, T.; Kimitaka, N.; Taishin, N.; Matija, M. Muscle-specific movement-phase-dependent
modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action
observation. Neurosci. Lett. 2021, 755, 135907. [CrossRef] [PubMed]

9. Glowinski, S.; Krzyzynski, T.; Bryndal, A.; Maciejewski, I. A Kinematic Model of a Humanoid Lower LimbExoskeleton with
Hydraulic Actuators. Sensors 2020, 20, 6116. [CrossRef] [PubMed]

10. Hong, K.S.; Khan, M.J.; Hong, M.J. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer
Interfaces. Front. Hum. Neurosci. 2018, 12, 246. [CrossRef] [PubMed]

11. Tsuzuki, D.; Jurcak, V.; Ksingh, A.; Okamoto, M.; Eiju, W.; Dan, I. Virtual spatial registration of stand-alone fNIRS data to MNI
space. Neuroimage 2007, 34, 1506. [CrossRef] [PubMed]

12. Saha, S.; Nesterets, Y.; Rana, R.; Tahtali, M.; Gureyev, T.E. EEG source localization using a sparsity prior based on Brodmann
areas. Int. J. Imaging Syst. Technol. 2014, 27, 333–344. [CrossRef]

13. Bhateja, V.; Verma, R.; Mehrotra, R.; Urooj, S. A Non-Linear Approach to ECG Signal Processing using Morphological Filters.
Int. J. Meas. Technol. Instrum. Eng. (IJMTIE) 2013, 3, 46–59. [CrossRef]

14. Jin, H.; Li, C.; Sun, L.; Hu, H.; Xu, J.; Qu, W. To classify two-dimensional motion state of step length and walking speed
by applying cerebral hemoglobin information. In Proceedings of the 2017 10th International Conference on Human System
Interactions (HIS), UIsan, Korea, 17–19 July 2017.

15. Yang, L.; Song, Y.; Ma, K.; Su, E.; Xie, L. A novel motor imagery EEG decoding method based on feature separation. J. Neural Eng.
2021, 18, 036022. [CrossRef]

16. Mahmoodin, Z.; Mansor, W.; Lee, K.Y.; Mohamad, N.B. An analysis of EEG signal power spectrum density generated during
writing in children with dyslexia. In Proceedings of the 2015 IEEE 11th International Colloquium on Signal Processing & its
Applications (CSPA), Kuala Lumpur, Malaysia, 6–8 March 2015.

17. Wu, T.; Yan, G.; Yang, B.; Sun, H. EEG feature extraction based on wavelet packet decomposition for brain-computer interface.
Measurement 2008, 41, 618–625.

http://doi.org/10.3389/fnhum.2015.00308
http://www.ncbi.nlm.nih.gov/pubmed/26082705
http://doi.org/10.1109/ACCESS.2016.2637409
http://doi.org/10.1016/j.bandl.2010.07.008
http://www.ncbi.nlm.nih.gov/pubmed/20888628
http://doi.org/10.1016/j.jneumeth.2018.11.010
http://www.ncbi.nlm.nih.gov/pubmed/30452976
http://doi.org/10.1016/j.neulet.2021.135907
http://www.ncbi.nlm.nih.gov/pubmed/33887382
http://doi.org/10.3390/s20216116
http://www.ncbi.nlm.nih.gov/pubmed/33121194
http://doi.org/10.3389/fnhum.2018.00246
http://www.ncbi.nlm.nih.gov/pubmed/30002623
http://doi.org/10.1016/j.neuroimage.2006.10.043
http://www.ncbi.nlm.nih.gov/pubmed/17207638
http://doi.org/10.1002/ima.22236
http://doi.org/10.4018/ijmtie.2013070104
http://doi.org/10.1088/1741-2552/abe39b


Electronics 2021, 10, 1239 10 of 10

18. Chaudhary, U.; Birbaumer, N.; Ramos-Murguialday, A. Brain-computer interfaces for communication and rehabilitation. Nat. Rev.
Neurol. 2016, 12, 513. [CrossRef] [PubMed]

19. Durgabai, R.P.L.; Ravi, B.Y. Feature selection using ReliefF algorithm. Int. J. Adv. Res. Comput. Commun. Eng. 2014, 3, 8215–8218.
[CrossRef]

20. Kus, R.; Valbuena, D.; Zygierewicz, J.; Malechka, T.; Graeser, A.; Durka, P. Asynchronous BCI Based on Motor Imagery with
Automated Calibration and Neurofeedback Training. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 823–835. [CrossRef] [PubMed]

21. Ma, T.; Wang, S.; Xia, Y.; Zhu, X.; Evans, J.; Sun, Y.; He, S. CNN-based classification of fNIRS signals in motor imagery BCI system.
J. Neural Eng. 2021, 18, 056019. [CrossRef] [PubMed]

22. Trakoolwilaiwan, T.; Behboodi, B.; Lee, J.; Kyungson, K.; Ji-Woong, C. Convolutional neural network for high-accuracy functional
near-infrared spectroscopy in a brain-computer interface: Three-class classification of rest, right-, and left-hand motor execution.
Neurophotonics 2018, 5, 011008. [CrossRef] [PubMed]

23. Wang, W.; Gong, A.; Fu, Y. Identification of One—Hand Sign Language Based on fNIRS. J. Kunming Univ. Sci. Technol. (Nat. Sci.)
2020, 45, 74–81.

24. Keum-Shik, H.; Noman, N.; Yun-Hee, K. Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci.
Lett. 2015, 587, 87–92.

http://doi.org/10.1038/nrneurol.2016.113
http://www.ncbi.nlm.nih.gov/pubmed/27539560
http://doi.org/10.17148/IJARCCE.2014.31031
http://doi.org/10.1109/TNSRE.2012.2214789
http://www.ncbi.nlm.nih.gov/pubmed/23033330
http://doi.org/10.1088/1741-2552/abf187
http://www.ncbi.nlm.nih.gov/pubmed/33761480
http://doi.org/10.1117/1.NPh.5.1.011008
http://www.ncbi.nlm.nih.gov/pubmed/28924568

	Introduction 
	Experimental Design 
	Participants 
	Experiment Paradigm 
	Cortical Regions 

	Data Analysis 
	Data Preprocessing 
	Data Preprocessing 
	Action Initiation Intent Feature Extraction 
	Motion State Feature Extraction 

	Feature Selection 
	Action Initiation Intention Feature Selection 
	Movement State Feature Selection 


	Results 
	Data Preprocessing Results 
	The Results and Analysis of Initial Intention Detection 
	The Results of Initial Intention of the Action 
	Feature Analysis 

	The Results and Analysis of Exercise Status Recognition 
	Recognition Results of Motion State 
	Feature Analysis 


	Discussion 
	References

