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Abstract: This work presents a battery management system for lead–acid batteries that integrates a 
battery-block (12 V) sensor that allows the online monitoring of a cell’s temperature, voltage, and 
impedance spectra. The monitoring and diagnostic capabilities enable the implementation of im-
proved battery management algorithms in order to increase the life expectancy of lead–acid batter-
ies and report the battery health conditions. The novelty is based on the online monitoring of the 
evolution of electrochemical impedance spectroscopy (EIS) over a battery’s life as a way to monitor 
the battery’s performance. Active cell balancing is also proposed as an alternative to traditional 
charge equalization to minimize excessive electrolyte consumption. A battery-block sensor (VTZ) 
was validated by using the correlation between experimental data collected from electrochemical 
impedance spectroscopy lab-testing equipment and sensors that were implemented in a series of 12 
V lead–acid battery blocks. The modular design and small size allow easy and direct integration 
into different commercial cell formats, and the proposed methodology can be used for applications 
ranging from automotive to stationary energy storage. 

Keywords: battery management system; multimodal sensor; electrochemical impedance spectros-
copy; state of charge; state of health; lead–acid batteries 
 

1. Introduction 
The implementation of a battery management strategy for lead–acid batteries by in-

tegrating a multipurpose sensor in a 12 V block allows the online monitoring of the state 
of health (SOH) and state of charge (SOC). In addition, this implementation can be easily 
and inexpensively included in existing battery systems. Although the purpose of this ar-
ticle is not to detail the algorithms for determination based on characterization and mod-
eling technologies, some related works are presented in [1,2]. Additionally, the architec-
ture described herein implements the balancing of an active voltage cell, which could ad-
ditionally improve the life expectancy of a series battery cells, as suggested by Krein and 
Balog [3]. 

In the last decade, many efforts have been devoted to the development of reliable 
and robust methods for determining the state of health and state of charge. Several au-
thors have reported different ways of estimating SOC and SOH variables of batteries; they 
can be divided in different categories—such as direct measurements, electrical and elec-
trochemical models, and adaptive and machine learning methods [4–7]—independently 
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of the target technology. For example, Kumar et al. [4] mentioned the problem of SOC and 
SOH determination in batteries with respect to their implementation in vehicles, which is 
still not accurate enough, and they reviewed different SOC and SOH indication algo-
rithms. 

In the category of direct measurements, discharge capacity tests can be used to detect 
the capacity at the beginning of the battery’s life, or intermediate measurements can be 
used to determine the state of health. However, even though this type of method is accu-
rate, it cannot always be incorporated into an intelligent diagnostic detection system by 
itself; see Lukic et al. [8]. Open circuit voltage (OCV) measurements are used in such tech-
nologies as lead–acid, NiCd, or Zn/Br, which are based on the relation of the OCV and 
SOC. This open circuit voltage usually has to be measured in offline conditions, but it can 
be online if the OCV is inferred from terminal voltage measurements or suitable models. 
Electrochemical impedance spectroscopy is another method that can be used for real-time 
prediction by interpreting parameters from the spectra [9–11]. However, initially, the elec-
trochemical model is difficult to implement, and it is very specific for each technology; see 
the study of Piller et al. [12]. Thus, it is necessary to develop specific protocols for extract-
ing EIS measurements for each type of electrochemical energy storage technology; see 
Meddings et al. [13]. In terms of adaptive methods based on algorithms, there are some 
other approaches based on time series [14] or fractional analysis [15]. Other widely used 
approaches are those of genetic-algorithm-based optimization, which was developed by 
Ramos et al. [16], or neural-network-based approaches, which were presented by Chun et 
al. [17]. From all of the mentioned options, it is necessary to identify the methods that can 
be directly implemented during real operations in stationary applications in order to 
avoid interfering in the operating mode, as suggested by Shahriari and Farrokhi [18]. In 
their work, a method for online measurement of the SOC and SOH—without the require-
ment of disconnecting the battery from the circuit—was developed. However, the battery 
was obliged to continuously charge or discharge, among other drawbacks. Furthermore, 
Khare et al. [19] proposed an online method for estimating the SOH of hybrid electric 
vehicles using various battery parameters, such as the internal resistance, terminal volt-
age, and specific gravity of the battery, but this differs from our target application. Sedigh-
far and Moniri [20] also developed an online method for the estimation of the SOC and 
the SOH of valve-regulated lead–acid (VRLA) batteries, which are oriented toward elec-
tric vehicle application. According to Marrero et al. [21], the integration of sensors and the 
development and optimization of a battery management system have great importance in 
the creation of battery systems in order to increase life expectancy or availability, rather 
than focusing only on Li-ion batteries, as the majority of researchers are doing; see also 
[22,23]. 

A battery management system for lead–acid batteries with an integrated battery-
block (12 V) sensor that allows the online monitoring of the cell temperature, voltage, and 
impedance spectra is presented in this article. The monitoring and diagnostic capabilities 
enable the implementation of improved battery management algorithms in order to in-
crease the life expectancy of lead–acid batteries and report battery heath conditions. As it 
is complementary to the monitoring of the evolution of EIS over a battery’s life as a way 
of monitoring the battery’s performance, active cell balancing is proposed as an alterna-
tive to traditional charge equalization in order to minimize excessive electrolyte consump-
tion. The battery-block sensor was validated using the correlation between experimental 
data collected from electrochemical impedance spectroscopy lab-testing equipment with 
a series of 12 V lead–acid battery blocks. The modular design and small size allows easy 
and direct integration into different commercial cell formats, and the proposed method-
ology can be used for applications ranging from automation to stationary energy storage. 

In summary, the identification of a correlation map between the EIS values and the 
states of health and capacity, coupled with an economical sensor, represents the key points 
of this work. 
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EIS is used extensively in many fields of electrochemistry and is useful as a tool for 
interpreting processes and reactions. In this work, it is used to measure dispersions from 
previously identified normal values and to associate these dispersions with degradation 
patterns or failure modes in batteries. 

Section 2 provides a general description of the architecture of the battery manage-
ment system and the 12 V multimodal VTZ sensor. Section 3 includes a description of the 
corresponding experimental setup. Section 4 presents the results of the EIS measurement 
tuning process in comparison to those of calibrated EIS lab equipment. Finally, the main 
conclusions and future directions are summarized in Section 5. 

2. Battery Management System Architecture 
Figure 1 shows a basic scheme of the battery management system architecture, where 

a series of VTZ sensors (Sensor 1, Sensor2, … Sensor n) that measure the voltage, temper-
ature, and EIS are associated with every 12 V battery block (Batt 1, Batt 2, … Batt n), which 
is integrated with a battery charger. 

 
Figure 1. Block diagram of the battery management system architecture in a battery string setup 
with a 12 V block. 

The master battery management system controller unit additionally monitors the bat-
tery string’s current and implements communication with both the battery charger and 
the string of sensors. Thus, the unit is able to command different battery management 
strategies, diagnose battery failures, or estimate the SOH. 

2.1. Description of the 12 V VTZ Sensor 
The proposed VTZ sensor (Figure 2) design integrates a basic form of impedance 

measurement (Z) that is complementary to the conventional temperature (T) and voltage 
(V). The sensor is easily integrated into a series of sensors associated with a battery bank 
or string to achieve higher voltages, and it could easily be integrated with a higher-level 
battery management system that would monitor the battery string’s current. It is neces-
sary to highlight that the VTZ sensor is not a portable measurement device, but rather an 
integrated device for battery blocks and modules for improving their maintenance and 
SOC and SOH predictions. Different studies have deepened the investigation of portable 
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impedance measurement devices for different applications [24–27], but nevertheless, the 
new point of our sensor is its direct integration in an electrochemical storage system. 

Figure 2a shows a VTZ sensor plate and Figure 2b,c shows its integration in the top 
part of 12 V high temperature lead–acid battery block. 

 
Figure 2. Images of the (a) VTZ sensor and (b,c) integration of the sensor in a 12 V lead–acid bat-
tery block. 

The motivation behind developing a multipurpose sensor designed to monitor the 
electrochemical parameters of a 12 V lead–acid battery block was to facilitate the real-time 
data monitoring for a stationary application in order to increase the battery’s life expec-
tancy by improving the battery management strategy according to the manufacturer’s rec-
ommendations. The sensors were installed in a complete battery string of lead–acid bat-
teries together with the battery management system controller. The precise battery block 
voltage allowed monitoring of the voltage dispersion and the command of voltage equal-
ization actions in the string. The VTZ sensor itself allowed active balancing during differ-
ent operation stages of the battery (namely, floating or charging). Monitoring not only the 
ambient temperature of the battery banks, but also every individual block improved the 
floating voltage compensation. Finally, continuous monitoring of the electrochemical im-
pedance spectroscopy offered reliable information on the degradation and failure modes 
of the battery over its lifetime. 

2.2. Basic VTZ Sensor Specifications 
The sensor was designed to monitor the voltage, temperature, and impedance of a 12 

V lead–acid battery block. Although the design could be adapted to other battery capaci-
ties, the impedance measurement was adjusted and calibrated for lead–acid batteries with 
a capacity of 100 Ah. Figure 3 presents a basic block diagram of the main design compo-
nents of the VTZ sensor, where Rsense is identified as the adjustable parameter that allows 
the calibration of the sensor. Other components included in Figure 3 are the voltage and 
the temperature sense, the control and communication module and the PWM control. 
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Figure 3. Block diagram of the VTZ sensor. 

Table 1 illustrates the measurement accuracy of the variables monitored by the sen-
sor. The range of temperatures that the sensor could measure was between −20 °C and 60 
°C. This covers a very wide range, which includes normal operating temperatures and 
temperature conditions that can occur in damaged elements or in adverse weather condi-
tions. The voltage range in which the sensor could identify this parameter ranged from 6 
to 15 V, thus covering the standard and maximum range of operation of the 12 V lead–
acid battery block. 

For the impedance measurement, the VTZ sensor was used to perform galvanostatic 
electrochemical impedance spectroscopy (GEIS), in which the electrical perturbation was 
a current. The impedance measurement was implemented by using a simplified square-
wave signal modulated at adjustable frequencies to emulate the measurement range of a 
laboratory EIS instrument. 

Table 1. Accuracy of the VTZ sensor. 

 Range Accuracy 
Temperature −20 to 60 °C ±1.5 °C 

Voltage 6 V to 15 V ±6 mV 
Impedance 10 mHz to 7 kHz - 

In addition to the monitoring of voltage, temperature, and impedance, the VTZ al-
lowed the active balancing of a series of cells, which allowed it to increase the life expec-
tancy of the complete string, as shown by Krein and Balog [3]. 

3. Experimental Setup 
Different high-temperature lead–acid batteries (12 V battery block—80 Ah) from the 

same manufacturer, which were intended for back-up applications, were used to develop 
the following experiments. These batteries had an improved performance at high temper-
atures compared to standard lead–acid batteries. They included an anode composed of 
lead (Pb), while the cathode consisted of a paste of lead oxide (PbO2). The electrodes are 
separated by a porous separator impregnated with an electrolyte consisting of an aqueous 
acid solution of H2SO4. On one hand, the electrochemical impedance spectroscopy (EIS) 
measurements were recorded by means of a Gamry 3000 battery tester, and on the other 
hand, the EIS spectra were found with three different types of VTZ sensor settings. The 
main difference between these sensors was in the resistance that regulated the current 
pulses in the impedance measurements: 25, 50, and 100 Ω. By dividing the battery voltage 
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by the value of this resistance, the current value was obtained (I = V bat/R). Bearing in 
mind that the nominal voltage of the lead–acid batteries was 12 V, the currents of the 
pulses associated with 25, 50, and 100 Ω were 0.12, 0.24, and 0.48 A, respectively. In order 
to perform the measurement of the electrochemical impedance spectra, the batteries were 
fully charged. In order to eliminate the influence of temperature and battery SOC, the tests 
were always performed at room temperature (25 °C) and at 100% SOC. The relaxation 
times prior to performing electrochemical impedance spectroscopy measurements were 
more than 12 h in all cases. In the case of the Gamry 300 battery tester, the impedance 
measurement was performed under an excitation current of 50 mA and in a frequency 
range from 10 mHz to 10 kHz. 

4. Results and Discussion 
Herein, we present the results of the EIS measurement tuning process in comparison 

with calibrated EIS lab equipment and the error distribution when using the sensor in a 
real 125 V DC battery string. 

4.1. 1 kHz Calibration Process 
Three different VTZ sensor setups were tested in order to calibrate the impedance 

measurements. As mentioned in the previous section, the greatest difference between 
these sensors was in the resistance that regulated the current pulses in the impedance 
measurement: 25, 50, and 100 Ω. The following results correspond to each different sensor. 
Repeatability tests were carried out on the measurements with different sensors and 10 
different batteries in the same state of health in order to quantify the dispersion of the 
measurements. 

Although the sensor provided the full range of the impedance spectrum from 10 mHz 
to 7 kHz for this experiment, we sought to calibrate the sensor against the measurements 
of the Gamry 3000 laboratory instrument based on the Rsense setting for a fixed value of 
1 kHz in order to validate the calibration process. According to Nguyen, several commer-
cially available battery testers diagnose battery aging by measuring the impedance of bat-
teries at 1 kHz on the basis of the fact that the real part of the complex impedance of a 
battery at 1 kHz is almost equal to its ohmic resistance [28,29]. In the frequency range 
between 1 and 10 kHz, generally, only the inductance (L) and the internal resistance (Ri) 
are important, because the other elements of the equivalent circuit have the double-layer 
capacitance in parallel, which provides nearly ideal conductivity in this frequency range. 
This leads to a simplified equivalent circuit based on an inductance and ohmic resistance 
[30]. 

Figure 4 shows the electrochemical impedance spectra from both the Gamry tester 
(yellow line) and the sensor (blue line). A more detailed image of the impedance spectra 
is provided at higher frequencies (right bottom part of Figure 4), and it is observed that 
they do not show as much deviation as at lower frequencies. Regarding the 100 Ω sensor 
(Figure 4), the deviation in the Zreal was, approximately, ±0.0154 Ω, while the deviation 
in the Zim was, approximately, ±0.0111 Ω, according to the measurements from the Gamry 
battery tester and the sensor (Table 2). 
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Figure 4. Electrochemical impedance spectra from the Gamry 3000 battery tester and 100 Ω sensor. 

The main deviation was observed at lower frequencies, in which the charge transfer-
diffusion stage differed to a greater extent. 

Table 2. Resistances measured at 1 kHz and the voltage parameter variations before and after EIS 
measurements with the 100 Ω sensor. 

 Sensor VTZ—100 Ohm Reference Gamry 
1 kHz Z real (Ω) 0.0052 0.0027 

1 kHz Z imaginary (Ω) 0.0026 −0.0003 
Ordinate axis cut (Zimg = 0) 0.0052 0.0027 

Initial voltage (V) 12.7236 12.8334 
Final voltage (V) 12.6927 12.8398 

Figure 5 shows the electrochemical impedance spectra from both the Gamry tester 
(red line) and the sensor (black line). A more detailed image of the impedance spectra is 
provided at higher frequencies (left top part of Figure 5), and it is observed that they do 
not show as much deviation as at lower frequencies. Regarding the 50 Ω sensor (Figure 
5), the deviation in the Zreal was approximately ±0.0128 Ω, while the deviation in the Zim 
was approximately ±0.0073 Ω according to the measurements from the Gamry battery 
tester and the sensor (Table 3). 
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Figure 5. Electrochemical impedance spectra from the Gamry 3000 battery tester and 50 Ω sensor. 

The main deviation was observed at lower frequencies, in which the charge transfer-
diffusion stage differed to a greater extent. 

Table 3. Resistances measured at 1 kHz and the voltage parameter variations before and after EIS 
measurements with the 50 Ω sensor. 

 Sensor VTZ—50 Ohm Reference Gamry 
1 kHz Z real (Ω) 0.0045 0.0027 

1 kHz Z imaginary (Ω) 0.0017 −0.0003 
Ordinate axis cut (Zimg = 0)  0.0047 0.0027 

Initial voltage (V) 12.4881 12.8334 
Final voltage (V) 12.4503 12.8398 

Figure 6 shows the electrochemical impedance spectra from both the Gamry tester 
(green line) and the sensor (red line). A more detailed image of the impedance spectra is 
provided at higher frequencies (left top part of Figure 6), and it is observed that they do 
not show as much deviation as at lower frequencies. Regarding the 25 Ω sensor (Figure 
6), the deviation in the Zreal was approximately ±0.0111 Ω, while the deviation in the Zim 
was approximately ±0.0053 Ω according to the measurements from the Gamry battery 
tester and the sensor (Table 4). 
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Figure 6. Electrochemical impedance spectra from the Gamry 3000 battery tester and 25 Ω sensor. 

The main deviation was observed at lower frequencies, in which the charge transfer-
diffusion stage differed to a greater extent. 

Table 4. Resistances measured at 1 kHz and the voltage parameter variations before and after EIS 
measurements with the 25 Ω sensor. 

 Sensor VTZ—25 Ohm Reference Gamry 
1 kHz Z real (Ω) 0.0046 0.0027 

1 kHz Z imaginary (Ω) 0.0013 −0.0003 
Ordinate axis cut (Zimg = 0) 0.0049 0.0027 

Initial voltage (V) 12.4371 12.8334 
Final voltage (V) 12.3852 12.8398 

The voltage values are included in the tables (Tables 2–4), as they correspond to the 
initial voltage value before the impedance measurement and the final voltage value after 
the impedance measurement with both the Gamry battery tester and the sensors; they are 
used to ensure that the sensor does not draw a large percentage of the power from the 
battery. For all cases, it was observed that the voltages remained stable during the meas-
urement; thus, the functionality and adequate consumption of the sensor were assured. 

The errors in the sensor measurements with respect to the reference measurements 
were mainly due to the lower accuracy of the VTZ sensors compared to the Gamry battery 
tester. Other measurement conditions influenced the sensors’ accuracy, but are not con-
sidered in this analysis. 

Despite having more dispersion of the values at lower frequencies, it is necessary to 
consider that the information given by this sensor will be evaluated in comparison with 
more historical data of the same setup and battery (via the battery management system), 
which will provide information about the state of health of the battery, as presented by 
Kiel et al. [31]. The impedance spectrum itself will not be evaluated, but the evolution of 
this impedance spectrum and its independent variables will. The goal is to monitor the 
impedance curve over the life of the battery. The sensor is able to detect these differences 
and compare them to its initial measurement. 
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4.2. EIS Measurement Dispersion Evaluation 
In the second phase, a series of tests were performed in order to determine the dis-

persion of the measurements among the ten sensors in a string of 10 battery blocks, as 
illustrated in Figure 7, where their electrochemical impedance spectra are plotted. It was 
observed that in an adequate initial state, the 12 V lead–acid blocks from the same manu-
facturer presented similar impedance spectra and, therefore, similar impedance parame-
ter interpretations. It should be noticed that a similar dispersion was found when using 
the lab testing instrument. 

Figure 7 shows the electrochemical impedance spectra from 10 different lead–acid 
battery blocks (joined in series) measured by the sensor. 

 
Figure 7. EIS measurement dispersion from 10 different 12 V lead–acid battery blocks. 

5. Conclusions 
This work presents a battery management system for lead–acid batteries that inte-

grates a battery-block (12 V) VTZ sensor that allows the online monitoring of the cell tem-
perature, voltage, and impedance spectra. The monitoring and diagnostic capabilities en-
able the implementation of improved battery management algorithms in order to increase 
the life expectancy of lead–acid batteries and report battery heath conditions. A basic cal-
ibration process with the Gamry laboratory instrument allowed the impedance value at 1 
kHz to be adjusted with good precision. Subsequently, repeatability tests were carried out 
with a series of 10 blocks, obtaining admissible dispersion values compared to the errors 
of laboratory instruments. The sensor will allow the monitoring of impedance variations 
throughout the life of a battery and the correlation of these variations with the loss of 
capacity from experimental data. Although the sensor was calibrated for a 100 Ah capac-
ity, it could be used for other capacities and even different battery technologies, such as 
lithium ion, vented lead–acid, or NiCd, according to the proposed adjustment procedure. 
Although in the proposed set up, only 1 kHz was targeted, because the sensor offers the 
possibility of measuring the entire spectrum of impedance, other correlations might be 
investigated to monitor SOC and SOH, as proposed by Meddings et al. [13] for lithium 
chemistries or by Kiel et al. [31] for lead–acid chemistries. Additionally, the proposed sen-
sor design allows active balancing of the voltage dispersion during the charging process, 
thus avoiding the use of charge equalization and, therefore, minimizing the consumption 
of water, which will provide a longer life of the battery. 

Regarding the experimental results presented in the article, future steps will be taken 
to perform the final adjustment of the VTZ to the entire range of frequencies of the EIS 
spectra and to perform similar analyses and calibrations in other electrochemical storage 
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technologies. In addition, the final implementation of the sensor in lead–acid battery 
blocks will be developed in order to optimize the design of the final product. 
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Nomenclature 
 Definition 
SOH State of Health 
SOC State of Charge 
OCV Open Circuit Voltage 
EIS Electrochemical Impedance Spectroscopy 
VRLA Valve-Regulated Lead–Acid 
VTZ Name given for the multipurpose sensor 
GEIS Galvanostatic Electrochemical Impedance Spectroscopy  

References 
1. Olarte, J.; Zulueta, E.; Ferret, R.; Kurt, E.; Martínez de Ilarduya, J.; Lopez-Guede, J.M. High temperature lead acid battery SOC 

and SOH characterization based on electrochemical impedance spectroscopy data. In Proceedings of the 2020 8th European 
Conference Renewable Energy Systems (ECRES 2020), Istanbul, Turkey, 24–25 August 2020. 

2. Olarte, J.; Romo, S.; Martínez de Ilarduya, J.; Ferret, R.; Pacios, R.; Bekaert, E.; Zulueta, E.; Pazos, F.; Ibarrondo, X.; Alonso, N. 
Optimización del TCO en baterías mediante monitorización en tiempo real del estado de salud con modelos avanzados. In 
Proceedings of the 2020 VII Congreso Smart Grids (Smart Grids 2020), Madrid, Spain, 16 December 2020. 

3. Krein, P.; Balog, R. Life extension through charge equalization of lead-acid batteries. In Proceedings of the 24th Annual Inter-
national Telecommunications Energy Conference, Montreal, QC, Canada, 29 September–3 October 2002; pp. 516–523. 

4. Kumar, B.; Khare, N.; Chaturvedi, P.K. Fpga Design Scheme for Battery SOC & SOH Algorithms for Ad-vanced BMS. IJESRT 
2017, 7, 263–279. 

5. Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion Batteries: Review and 
Future Challenges. Electronics 2017, 6, 102, doi:10.3390/electronics6040102. 

6. Chang, W.-Y. The State of Charge Estimating Methods for Battery: A Review. ISRN Appl. Math. 2013, 2013, 1–7, 
doi:10.1155/2013/953792. 

7. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation 
for Electrical Vehicles. Energies 2018, 11, 1820, doi:10.3390/en11071820. 

8. Lukic, S.M.; Jian, C.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy Storage Systems for Automotive Appli-cations. IEEE Trans. 
Ind. Electron. 2008, 55, 2258–2267. 

9. Karden, E.; Buller, S.; De Doncker, R.W. A method for measurement and interpretation of impedance spectra for industrial 
batteries. J. Power Sources 2000, 85, 72–78, doi:10.1016/s0378-7753(99)00385-7. 

10. Keil, P.; Rumpf, K.; Jossen, A. Thermal impedance spectroscopy for Li-ion batteries with an IR temperature sensor system. In 
Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013. 

11. Raijmakers, L.; Danilov, D.; van Lammeren, J.; Lammers, M.; Notten, P. Sensorless battery temperature measurements based 
on electrochemical impedance spectroscopy. J. Power Sources 2014, 247, 539–544, doi:10.1016/j.jpowsour.2013.09.005. 

12. Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–
120, doi:10.1016/s0378-7753(01)00560-2. 

13. Meddings, N. Application of electrochemical impedance spectroscopy to commercial Liion cells: A review. J. Power Sources 2020, 
480, 228742. 

14. Alavi, S.; Birkl, C.; Howey, D. Time-domain fitting of battery electrochemical impedance models. J. Power Sources 2015, 288, 345–
352, doi:10.1016/j.jpowsour.2015.04.099. 



Electronics 2021, 10, 1228 12 of 12 
 

 

15. Zou, C.; Zhang, L.; Hu, X.; Wang, Z.; Wik, T.; Pecht, M. A review of fractional-order techniques applied to lithiumion batteries, 
lead-acid batteries, and supercapacitors. J. Power Sources 2018, 390, 286–296, doi:10.1016/j.jpowsour.2018.04.033. 

16. Ramos, P.M.; Janeiro, F.M. Gene expression programming for automatic circuit model identification in im-pedance spectros-
copy: Performance evaluation. Measurement 2013, 46, 4379–4387. 

17. Chun, H.; Kim, J.; Han, S. Parameter identification of an electrochemical lithium-ion battery model with convolutional neural 
network. IFAC-PapersOnLine 2019, 52, 129–134, doi:10.1016/j.ifacol.2019.08.167. 

18. Shahriari, M.; Farrokhi, M. Online State-of-Health Estimation of VRLA Batteries Using State of Charge. IEEE Trans. Ind. Electron. 
2013, 60, 191–202, doi:10.1109/tie.2012.2186771. 

19. Khare, N.; Chandra, S.; Govil, R. Statistical modeling of SoH of an automotive battery for online indication. In Proceedings of 
the INTELEC 2008—2008 IEEE 30th International Telecommunications Energy Conference, San Diego, CA, USA, 14–18 Sep-
tember 2008; pp. 1–7, doi:10.1109/intlec.2008.4664086. 

20. Sedighfar, A.; Moniri, M.R. Battery state of charge and state of health estimation for VRLA batteries using Kalman filter and 
neural networks. In Proceedings of the 2018 5th International Conference on Electrical and Electronic Engineering (ICEEE), 
Istanbul, Turkey, 3–5 May 2018; pp. 41–46. 

21. Marrero, D.; Su, A. Extending the Battery Life of the ZigBee Routers and Coordinator by Modifying Their Mode of Operation. 
Sensors 2020, 20, 30. 

22. Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.F.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G.T.; 
et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394, 
doi:10.3390/s16091394. 

23. Mateev, V.; Marinova, I.; Kartunov, Z. Gas Leakage Source Detection for Li-Ion Batteries by Distributed Sensor Array. Sensors 
2019, 19, 2900, doi:10.3390/s19132900. 

24. Barreiros dos Santos, M. Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quan-
tification of free and total microcystin-LR in freshwaters. Biosens. Bioelectron. 2019, 142, 111550. 

25. Luo, T.; Li, L.; Ghorband, V.; Zhan, Y.; Song, H.; Christen, J.B. A portable impedance-based electrochemical measurement device. 
In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 
2016; pp. 2891–2894. 

26. Jiang, Z.; Yao, J.; Wang, L.; Wu, H.; Huang, J.; Zhao, T.; Takei, M. Development of a Portable Electrochemical Impedance Spec-
troscopy System for Bio-Detection. IEEE Sens. J. 2019, 19, 5979–5987, doi:10.1109/jsen.2019.2911718. 

27. Aksakal, C.; Şişman, A. On the Compatibility of Electric Equivalent Circuit Models for Enhanced Flooded Lead Acid Batteries 
Based on Electrochemical Impedance Spectroscopy. Energies 2018, 11, 118, doi:10.3390/en11010118. 

28. Nguyen, T.-T.; Tran, V.-L.; Choi, W. Development of the intelligent charger with battery State-Of-Health estimation using online 
impedance spectroscopy. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istan-
bul, Turkey, 1–4 June 2014; pp. 454–458. 

29. Kischkel, J. VRLA White Paper Lead Acid Battery and Its Internal Resistance; Panasonic Industry Europe GmbH: Bayern, Germany, 
2008; Volume 11. 

30. Hariprakash, B.; Martha, S.K.; Shukla, A.K. Monitoring sealed automotive lead-acid batteries by sparse-impedance spectros-
copy. J. Chem. Sci. 2003, 115, 465–472, doi:10.1007/bf02708238. 

31. Kiel, M.; Sauer, D.U.; Turpin, P.; Naveed, M.; Favre, E. Validation of single frequency Z measurement for standby battery state 
of health determination. In Proceedings of the INTELEC 2008—2008 IEEE 30th International Telecommunications Energy Con-
ference, San Diego, CA, USA, 14–18 September 2008; pp. 1–7. 


