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Abstract: The emergence of deep learning model GAN (Generative Adversarial Networks) is an 
important turning point in generative modeling. GAN is more powerful in feature and expression 
learning compared to machine learning-based generative model algorithms. Nowadays, it is also 
used to generate non-image data, such as voice and natural language. Typical technologies include 
BERT (Bidirectional Encoder Representations from Transformers), GPT-3 (Generative Pretrained 
Transformer-3), and MuseNet. GAN differs from the machine learning-based generative model and 
the objective function. Training is conducted by two networks: generator and discriminator. The 
generator converts random noise into a true-to-life image, whereas the discriminator distinguishes 
whether the input image is real or synthetic. As the training continues, the generator learns more 
sophisticated synthesis techniques, and the discriminator grows into a more accurate differentiator. 
GAN has problems, such as mode collapse, training instability, and lack of evaluation matrix, and 
many researchers have tried to solve these problems. For example, solutions such as one-sided label 
smoothing, instance normalization, and minibatch discrimination have been proposed. The field of 
application has also expanded. This paper provides an overview of GAN and application solutions 
for computer vision and artificial intelligence healthcare field researchers. The structure and 
principle of operation of GAN, the core models of GAN proposed to date, and the theory of GAN 
were analyzed. Application examples of GAN such as image classification and regression, image 
synthesis and inpainting, image-to-image translation, super-resolution and point registration were 
then presented. The discussion tackled GAN’s problems and solutions, and the future research 
direction was finally proposed. 

Keywords: artificial intelligence healthcare; computer vision; deep learning; generative adversarial 
networks 
 

1. Introduction 
Deep learning models directly learn the high-level features of unstructured data [1]. 

The real power of deep learning lies in its ability to handle unstructured data. Especially, 
generative modeling generates unstructured data such as new images or text; therefore, 
deep learning wields great influence on the field of generative models. 

Generative modeling is the next frontier of machine learning. Deep learning has been 
applied to generative modeling for just a few years. At the 2014 NIPS (Neural Information 
Processing Systems) conference, Google Brain’s Ian Goodfellow introduced GAN 
(Generative Adversarial Networks) [2]. GAN has given rise to a number of algorithms 
and has advanced this field further. 
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Since mid-2018, great progress has been made in the field of sequence modeling and 
image-based generative modeling. Sequence modeling was mainly driven by the 
transformer [3], an attention-based module that eliminates circulatory or convolutional 
neural networks. Examples include Google’s BERT (Bidirectional Encoder 
Representations from Transformers), GPT-3 (Generative Pretrained Transformer-3) for 
language modeling, Parallel WaveGAN for speech synthesis, and MuseNet for music 
composition [4–7]. GAN-based technologies such as PGGAN (Progressive Growing of 
Generative Adversarial Networks), SAGAN (Self-Attention Generative Adversarial 
Networks), BigGAN, and StyleGAN have been developed; thus improving the position 
of image generation [8–11]. 

Recently, media interest in generative modeling projects has increased. The 
StyleGAN introduced by NVIDIA generates an authentic face image. GPT-3 from open 
artificial intelligence generates a complete sentence by providing a short introduction 
syntax. As of 2021, GAN and attention-based methods have evolved significantly, 
generating video, text, speech, and music that even experts cannot distinguish. 

GAN has two networks: generator and discriminator. The generator converts 
random noise into a real sample, whereas the discriminator distinguishes whether the 
input sample is real or synthesized by the generator. An example of Input-Output for both 
networks is shown in Figure 1. 

 
Figure 1. Training algorithm of GAN (Generative Adversarial Networks). 

First, a real sample is selected from the training set for randomness. The output of 
the generator is then combined into a training set, and the discriminator is trained. The 
target of the real image is “1,” and that of the generated image is “0.” The real image 
outputs a value close to “1,” and the synthetic image, a value close to “0.” 

It is difficult to train the generator because the real image is not mapped to any point 
in the latent space. When the output of the generator is inputted to the discriminator, the 
probability of being real is outputted. Such probability is the output of the GAN. The input 
is a randomly generated 𝑑-dimensional latent space vector, and the output is “1” to train 
the GAN by generating a training batch. The output should be set to “1” to generate a real 
sample.  

Loss function is binary cross entropy between discriminator output and target “1”. 
The target is a binary value, and it uses one output unit with the sigmoid activation 
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function [12]. When training the GAN, the weight of the discriminator should be freezing 
so that only the weight of the generator is updated. Otherwise, it is adjusted to consider 
the generated image as real. 

The criteria for selecting references appearing in this paper are as follows: 
∙ A concept that first emerged in relation to a specific topic; 
∙ It is not the first model to appear, but it shows a remarkable performance improvement 

compared to the existing model; 
∙ Papers with higher citation index than existing models of similar concept. 

The contributions of this paper are as follows: (1) You can check how the objective 
function, structure, and conditions of the GAN model affect the training results. At the 
same time, it is possible to acquire the knowledge necessary for model design and develop 
competencies. (2) Explain the theory of GAN. Based on this, observation of similar 
phenomena or future occurrences can be predicted, and tests can be conducted through 
experiments. In the absence of a theoretical perspective, we have no choice but to resort 
to empirical theory, which can lead to distortion. (3) By providing various application 
cases of GAN, you can learn application cases and make service improvements and 
performance in related fields. Furthermore, based on the theory and knowledge 
introduced in the thesis, it is possible to cultivate an eye that can be applied to other fields. 
(4) Major problems arising during GAN training were analyzed and countermeasures 
were suggested. (5) You can predict the future of GAN and prepare future response 
solutions based on this. 

In chapters 1–4, the structure and operation principle of GAN, core models of GAN 
published so far, and theory of GAN was analyzed. In chapter 5, application examples of 
GAN such as image classification and regression, image synthesis, image-to-image 
translation, super-resolution, and point registration were introduced. In chapter 6, GAN’s 
problems and solutions were described. In chapter 7, the contents previously described 
were summarized and future research was forecasted. 

2. Preliminaries 
2.1. Notation 

The generative model can synthesize images by grasping and learning the statistical 
distribution of training data. In any case, the network weight is learned through 
backpropagation [13]. The GAN literature deals with multidimensional vectors and 
italicizes vectors in the probability space. Latent vectors are usually denoted by 𝑧. In the 
signal processing field, vectors are represented by lowercase symbols to emphasize the 
multidimensional nature of variables. Therefore, 𝑝ௗ௔௧௔(𝑥)  is the probability density 
function for random vector 𝑥 of 𝑅|௫|. The probability that a continuous random variable 
will be included in a given interval is called probability density, and this is expressed as a 
probability density function. 𝑝ீ(𝑥) represents the distribution of vectors generated in 𝐺. 𝜃஽ and 𝜃ீ are the weights learned from 𝐺 and 𝐷, respectively. 

As with all deep learning algorithms, training requires an objective function. At this 
time, loss function, objective function, and cost function are the same terms. To be precise, 
the cost function represents the sum of loss functions for all training data, and the objective 
function is the target function for optimization in more general terms. In general, however, 
these three terms are often used interchangeably. When the two objective functions are 
continuously updated, the objective functions of 𝐺 and 𝐷 are represented by 𝐽 (𝜃ீ;𝜃஽) 
and 𝐽஽(𝜃஽;𝜃ீ) to remind that the parameter sets 𝜃ீ  and 𝜃஽  are dependent on each 
other. 
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When the multidimensional gradient is updated, the gradient operator of the 𝐺 
weight is expressed as 𝛻ఏಸ, and that of the 𝐷 weight, as ∇ఏವ . ∇ is a differential operator 
wherein each component is represented as a formal vector with respect to Cartesian 
coordinates 𝑥,𝑦, 𝑧. In the case of Expected gradient, it is denoted by 𝐸𝛻. 

2.2. Data Distributions 
The central issue in signal processing and statistics is density estimation, which 

acquires parametric or non-parametric data representations. The data generation 
distribution is used to represent the basic probability density or probability mass function 
of the observed data. GAN computes and learns the similarity between a candidate model 
distribution and a real data distribution. 

Bayes’s theorem can solve all inference problems in computer vision through 
conditional probability density functions [14]. It can be used as a model to learn the 
distribution of joints of interest and observation data. The problem is that it is difficult to 
construct a likelihood function for high-dimensional real images. GAN does not explicitly 
provide a method for evaluating density functions, and 𝐺  implicitly captures the 
distribution of real data. 

3. GAN Models 
3.1. Objective Function 

The objective function is very important because it is related to GAN’s challenges. If 
you use an objective function that is not suitable for the task you are trying to solve, the 
GAN can go out of control during training. A typical example is when losses vibrate. The 
loss of the discriminator and the generator does not show a stable state for a long period, 
and it vibrates greatly. 

As another example, although the image quality improves over time, the loss 
function of the generator may increase. This is due to the lack of association between the 
loss of the generator and the image quality. Lack of association makes it difficult to 
observe the GAN’s training process. The objective functions introduced in this paper are 
considered to be suitable methods for training complex GANs. 

3.1.1. WGAN (Wasserstein Generative Adversarial Networks) 
The WGAN loss is significant in that it correlates the convergence of the generator 

and the quality of the sample. WGAN introduced Wasserstein Loss, which correlates the 
quality of samples with the convergence of generator [15]. Wasserstein loss improved 
stability during the optimization process. First, Arjovsky used 𝑦௜ = 1,𝑦௜ = −1 instead of 𝑦௜ = 1, 𝑦௜ = 0 for binary cross-entropy loss. In addition, the sigmoid activation function 
was removed from the last layer of the discriminator. Therefore, prediction 𝑝௜  is not 
limited to the [0,1] range but can be any number in the [−∞,∞] range. For this reason, the 
discriminator of WGAN is called critic. The Wasserstein loss function is given by Equation 
(1). − ଵ௡∑ (𝑦௜𝑝௜௡௜ୀଵ )  (1)

WGAN compares prediction 𝑝௜ = 𝐷(𝑥௜)) and target 𝑦௜ = −1 for the real image to 
train critic 𝐷. Prediction 𝑝௜ = 𝐷(𝐺(𝑧௜)) and target 𝑦௜ = −1 for the generated image are 
then compared to calculate the loss. The loss function of the WGAN critic can be 
minimized by Equation (2). 𝑚𝑖𝑛஽ − (𝐸௫~௣೉ሾ𝐷(𝑥)ሿ − 𝐸௭~௣೥ൣ𝐷൫𝐺(𝑧)൯൧)  (2)

The WGAN critic maximizes the difference between the prediction of the real image 
and that of the generated image by increasing the score for the real image. Training the 
WGAN generator requires comparing the prediction and target for the generated image 
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and calculating the loss. The loss function of the WGAN generator can be minimized by 
Equation (3). 𝑚𝑖𝑛ீ − (𝐸௭~௣ೋൣ𝐷൫𝐺(𝑧)൯൧)  (3)

The Wasserstein loss function converges by training the discriminator so that the 
generator is updated correctly. This is different from the initial GAN, where it is important 
to ensure that the discriminator does not become too strong. Wasserstein loss can balance 
discriminator and generator training. WGAN trains the discriminator multiple times 
during the generator update to converge. In general, when updating a generator once, the 
discriminator is updated five times. 

Because WGAN has clipped weights from critics, learning speed is greatly reduced. 
If the gradient is not correct, the generator cannot learn the weight update direction. For 
this reason, another method for the Lipchitz constraint, the WGAN-GP (Gradient 
Penalty), was presented [16]. 

3.1.2. WGAN-GP (Wasserstein GAN-Gradient Penalty) 
WGAN-GP solves problems such as mode collapse and unstable training, and makes 

GAN training predictable and reliable. WGAN-GP included a gradient penalty term in 
the critic loss function [17]. Critics’ weights are not clipped. Moreover, the batch 
normalization layer should not be used for critics. Batch normalization generates a 
correlation between images in the same batch, so gradient penalty loss has less effect [18]. 
WGAN-GP suggests another way to enforce the Lipchitz constraint on critics: adding a 
term to the loss function that penalizes when the gradient norm of critic deviates 
significantly from “1”. As a result, the training process was greatly stabilized. 

Gradient penalty loss is the squared difference between the gradient norm of the 
output and one. This model naturally finds weights that minimize the gradient penalty 
term. In other words, the model is made to follow the Lipchitz constraint. It is difficult to 
calculate the gradient everywhere during the training process. WGAN-GP only calculates 
the gradient at some point. In order not to be biased on one side, the real image-synthetic 
image pair are connected as shown in Figure 2, and the images interpolated using 
randomly selected points along a straight line are used. 

 
Figure 2. Interpolation between images. 

3.1.3. SAGAN (Self-Attention Generative Adversarial Networks) 
Attention is an algorithm used in sequence models, such as transformers [3]. SAGAN 

is a model that applies the attention algorithm to GAN [9]. The self-attention algorithm is 
shown in Figure 3. 



Electronics 2021, 10, 1216 6 of 42 
 

 
Figure 3. Self-attention algorithm of SAGAN (Self-Attention Generative Adversarial Networks) [9]. 

In a GAN without attention, the convolution feature map can process only local 
information. In order to connect pixel information on one side of the image to the other 
side, the channel must be increased to several convolutional layers, and the dimension of 
the image space must be reduced. This process, on the other hand, loses accurate location 
information instead of capturing high-level features. As such, it is inefficient for the model 
to learn the dependence between distant pixels. SAGAN solved the problem above by 
applying the attention algorithm to GAN. The outline of the proposed method is shown 
in Figure 4. As shown in Figure 4, attention focuses on different types of areas. SAGAN 
made a significant advancement using an attention mechanism that works similar to 
human perception. 

 
Figure 4. SAGAN generated image and its attention map [9]. 

3.2. Structure 
3.2.1. DCGAN (Deep Convolutional Generative Adversarial Networks) 

In recent years, supervised learning using CNN (Convolutional Neural Networks) 
has been widely applied in the field of computer vision [19]. Conversely, unsupervised 
learning using CNN has not received much attention. 

Radford introduced DCGAN (Deep Convolutional Generative Adversarial 
Networks) in 2016 [20]. The interior of DCGAN is composed entirely of convolutional 
layers. The discriminator’s pooling layer is replaced with stride convolution, and the 
generator’s pooling layer with transpose convolution. After the convolutional layer, the 
fully connected classification layer is removed. Batch normalization is performed after 
each convolutional layer to promote the gradient flow. 

The basic algorithm of DCGAN is the same as that of the traditional GAN. There is a 
generator that generates 100-dimensional noise, and the noise is mapped and transformed 
through the convolutional layer. Figure 5 presents DCGAN’s generator structure. 
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Figure 5. Generator structure of DCGAN (Deep Convolutional Generative Adversarial Networks) [19]. 

The generator serves the same purpose as the VAE (Variational Autoencoder) 
decoder [21]. The input of the generator is a vector extracted from the multivariate 
standard normal distribution. The generator freezes and trains the discriminator, and this 
process is repeated for thousands of epochs. The output image size is the same as the input 
image. DCGAN is optimal when using the Adam (Adaptive Moment estimation) 
optimizer and a learning rate of “0.002” [22]. 

DCGAN learns various representations from objects to scenes. In addition, the 
learned features can be used for other tasks to be applied as a general image 
representation. Raymond used DCGAN to fill in unwanted or missing parts of the image 
[23].  

DCGAN is the first to use CNN as a generator and discriminator of GAN to improve 
performance. Currently, all GAN structures include a convolutional layer. Thus, GAN 
already implies the meaning of “DC”. 

3.2.2. BEGAN (Boundary Equilibrium Generative Adversarial Networks) 
BEGAN (Boundary Equilibrium Generative Adversarial Networks) attracted 

attention for its discriminator being CAE (Convolutional Autoencoder) and the properties 
of convergence judgment that DCGAN does not have [24,25]. BEGAN learns the latent 
space of the image while maintaining and adjusting the balance between the generator 
and discriminator. BEGAN uses AE (Autoencoder) as discriminator, not as classifier. The 
discriminator learns that the real image has a small reconstruction error, and that the 
image generated by the generator has a large reconstruction error. The generator learns 
such that the reconstruction loss of the discriminator is small. Unlike DCGAN, BEGAN is 
capable of convergent adjudication. 

The fundamental problem of GAN, mode collapse, also occurs in BEGAN. 
Accordingly, BEGAN-CS (BEGAN with Constrained Space), which has space limitations, 
was announced, but it did not solve the mode collapse [26]. 

Sung-Wook changed the structure of the BEGAN-CS discriminator from AE to VAE 
to solve the mode collapse and also changed the structure of the encoder and decoder [27]. 
The activation function changed from ELU (Exponential Linear Unit) to LReLU (Leaky 
Rectified Linear Unit) [28,29]. The KLD (Kullback–Leibler Divergence) term was added to 
the existing discriminator loss function [30]. The implementation model was able to solve 
the mode collapse, and the outline is shown in Figure 6. 
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Figure 6. Structure and principle of BEGAN (Boundary Equilibrium Generative Adversarial Networks) v3. 

3.2.3. PGGAN (Progressive Growing of Generative Adversarial Networks) 
PGGAN is a model developed by NVIDIA to improve the speed and stability of GAN 

training [8]. PGGAN is a model that generates images of high quality and high resolution 
by adding a new layer during the training of the generator and discriminator. PGGAN 
trains generators and discriminators from low-resolution images of 4 ൈ 4 pixels. Figure 7 
shows the training process of PGGAN. 

 

Figure 7. Training process of PGGAN (Progressive Growing of Generative Adversarial Networks) [7]. 

The added layer does not freeze but continues training. This algorithm was applied 
to the LSUN (large scale scene understanding) dataset image to obtain the results shown 
in Figure 8 [31]. 
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Figure 8. 256 ൈ 256 pixel images generated by PGGAN trained with LSUN (large scale scene 
understanding) datasets [8]. 

3.3. Condition 
3.3.1. Info and Conditional GAN 

The GAN model introduced so far has little or no control over the generated image. 
Info and Conditional GAN control the images to be generated [32,33]. InfoGAN 
(Information maximizing Generative Adversarial Networks) can control various 
properties of the generated image. It can apply the concept of information theory to 
predict the noise term for the output and convert it into a latent code in charge of control. 

The generator of InfoGAN takes two inputs: latent space 𝑧 and latent code 𝑐. The 
output of the generator is 𝐺(𝑍, 𝑐). GAN is trained to maximize the mutual information 
between latent code 𝑐  and generated image 𝐺(𝑍, 𝑐). Figure 9 shows the structure of 
InfoGAN. 
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Figure 9. Structure and principle of InfoGAN (Information maximizing Generative Adversarial 
Networks). 

Concatenated vector 𝐺(𝑍, 𝑐)  is entered as a generator. 𝑄(𝑐|𝑥)  is also a neural 
network. Combined with the generator, it forms a mapping of random noise 𝑍 and latent 
code 𝑐̂. For InfoGAN, the training goal is to estimate 𝑐 for a given 𝑋. This is done by 
adding a normalization term to the objective function of GAN. 𝑚𝑖𝑛஽𝑚𝑎𝑥ீ𝑉ଵ(𝐷,𝐺) = 𝑉 (𝐷,𝐺) − 𝜆(𝑐;𝐺(𝑍, 𝑐))  (4)

The term 𝑉 (𝐷,𝐺) in Equation (4) is the loss function of GAN, and the second term 
is the normalization term. 𝜆 is a constant, and the value is “1”. 𝐼(𝑐;𝐺(𝑍, 𝑐)) is the mutual 
information between the latent code 𝑐 and the generator’s image 𝐺(𝑍, 𝑐). 

Mirza made generators and discriminators class-conditional and extended the GAN 
structure to conditional settings. 

Figure 10 shows the structure of cGAN (Conditional Generative Adversarial 
Networks). cGAN performs conditional discrimination of real and synthetic images from 
discriminators, providing better representation than DCGAN in generating various data. 

 
Figure 10. Structure and principle of cGAN (Conditional Generative Adversarial Networks). 

3.3.2. Inference Model Based on GAN 
Before the models introduced in this section appeared, GAN lacked inference 

capacity to map a given observation 𝑥  to a latent space vector. Therefore, several 
techniques have been proposed to cultivate reasoning capability by reversing the 𝐺 of 
the pretrained GAN [34,35].  

ALI (Adversarially Learned Inference) and BiGAN (Bidirectional Generative 
Adversarial Networks) are inference models wherein 𝐷  tests 𝑑𝑎𝑡𝑎 − 𝑙𝑎𝑡𝑒𝑛𝑡  pairs 
[36,37]. 𝐺 consists of an inference network, an encoder, and a decoder. The input of 𝐷 is (𝑧, 𝑥) pair to identify whether it is a real image and its encoding or a synthetic image and 
its latent vector. 
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The quality of the synthetic image using ALI/BiGAN is not good, but it can be 
improved with additional cost for the sample and reconstruction distribution [38]. Figure 
11 shows the structure of a GAN with an added inference network. 

 
Figure 11. Structure of GAN with the addition of the inference network. 

3.3.3. AAE (Adversarial Autoencoder). 
As a network composed of encoders and decoders, AE learns how to map data to 

internal latent representations and re-output. In other words, it learns how to map from 
data space to latent space and vice versa. Reconstruction is outputted by these two 
mapping operations and is trained to be as close to the source as possible. 

AE is reminiscent of a reconstructed filter bank widely used for image and signal 
processing. Note, however, that AE generally learns bidirectional nonlinear mapping. The 
filter bank is a repository of filters from which features can be extracted. The parameters 
of the encoder and decoder are learned using backpropagation between the reconstructed 
image and the original. 

Ancestral sampling can also be performed in AE [39]. Adversarial training may be 
applied between the latent space and the ideal distribution. The latent space GAN is 
similar to the VAE, which serves as the KLD term of the loss function [40]. KLD is a 
measure of how the two probability distributions differ. There have also been attempts to 
apply Variational Bayesian Methods (VAEs) to GAN. Mescheder integrates VAE through 
adversarial training in the form of AVB structures [41]. A similar algorithm was proposed 
in Ian Goodfellow’s NIPS 2016 tutorial [42]. AVB tries to optimize targets such as VAE but 
uses adversarial training targets rather than KLD. 

3.3.4. StarGAN 
Image-to-image translation should ultimately have excellent quality of the generated 

image, and translation between various domains should be possible. In addition, images 
of various styles must be generated in each domain. The previously announced models 
for image-to-image translation were difficult to satisfy the aforementioned conditions as 
a single model. StarGAN is possible. 

StarGAN has a limitation, i.e., the style translation is limited to the local area [43]. 
StarGANv2 has added multi-task discriminator AdaIN (Adaptive Instance 
Normalization), latent code 𝑧, mapping network 𝐹, 𝑅ଵ, and diversity regularization in 
StarGAN [44]. As a single generative model that generates images of various styles in 
multiple domains, StarGANv2 consists of four neural networks: Generator 𝐺, mapping 
network 𝐹, style encoder 𝐸, and discriminator 𝐷. The generator has style and domain as 
inputs. It uses multi-tasking mapping network, style encoder, and discriminator. A 
method for projecting an image into a style space was presented. The residual blocks in 
the network are all pre-activation structures [45]. The structures of 𝐺, 𝐹, 𝐸, and 𝐷 are 
shown in Figure 12. 



Electronics 2021, 10, 1216 12 of 42 
 

 

Figure 12. StarGANv2 with four neural networks [44]. 𝐸  projects the image into the style space. The input is the image of the specific 
domain, and the output is the style code of the domain. 𝐹 projects latent code 𝑧 into the 
style space of a specific domain. The input is latent code 𝑧 as the specific domain, and 
the output is the style code of the domain. 𝐺 generates an image likely to be in the target 
domain. The input is the image corresponding to the content, the style code of the specific 
domain; the output is the image of the corresponding domain style. 𝐷  distinguishes 
whether the input image is a real image or a synthetic one generated by the generator. The 
inputs are real or synthetic image, and the outputs are truly false in each domain. This 
algorithm was applied to CelebA (large-scale Celeb faces’ Attributes High Quality) and 
AFHQ (Animal Faces High Quality) dataset images to obtain the results shown in Figure 
13 [46,47]. 

 
Figure 13. Image generated by StarGANv2 trained with CelebA (large-scale Celeb faces’ Attributes High Quality), AFHQ 
(Animal Faces High Quality) datasets [44]. 
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3.4. Mixing 
3.4.1. BigGAN 

BigGAN is an extended version of SAGAN, developed by DeepMind, and currently 
achieves the best performance in image generation trained with ImageNet datasets [10]. 
Figure 14 is an image generated by BigGAN trained with an ImageNet dataset [48]. 

 
Figure 14. Image generated by BigGAN trained with ImageNet dataset [10]. 

BigGAN currently has the best performance in generating images trained with 
ImageNet datasets, using 𝑧~𝑁(0,1) as the distribution of latent vectors when training. 
Truncated normal distribution is used for sampling. In other words, 𝑧 smaller than a 
certain threshold is sampled. The smaller the cut threshold is, the less the diversity, but 
the greater the reliability of the resulting sample. Figure 15 shows this well. 

 
Figure 15. Truncation technique of BigGAN [10]. 

BigGAN is as big as its name. Its deployment size is 2048, which is eight times larger 
than SAGAN. The channel size of each layer also increased by 50%. Shared embedding 
and orthogonal regularization have been added, and latent vector 𝑧 is used for each layer 
of the generator as well as the first layer. 
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3.4.2. StyleGAN 
StyleGAN uses a mixture of PGGAN and neural-style transfer technologies [8,11,49]. 

StyleGAN has been in the spotlight by creating full high definition-level results with 
several steps of control from the details of the image to the whole. Figure 16 shows the 
generator structure of StyleGAN. 

 
Figure 16. Generator structure of StyleGAN [11]. 

A in Figure 16 is a fully connected layer. StyleGAN solved the problem of latent space 
entanglement by proposing a method called AdaIN, which uses reference style bias 𝑦௕,௜ 
and scale 𝑦௦,௜. 𝑦௕,௜ and 𝑦௦,௜ are used to adjust the mean and variance of feature map 𝑥௜ 
outputted from the layers within the synthesis network. AdaIN is as shown in Equation 
(5). AdaIN(𝑥௜ , y) = 𝑦௦,௜ ௫೔ିఓ(௫೔)ఋ(௫೔) ൅ 𝑦௕,௜  (5)

To calculate the style parameters, latent vector 𝑧  is passed through mapping 
network 𝑓 , with intermediate vector 𝜔  generated. It then passes through the fully 
connected layer to generate 𝑦௕,௜ and 𝑦௦,௜ vectors of length 𝑛. This is to separate the style 
selection process of the image. The AdaIN layer prevents style information from leaking 
between layers. The style vector injected into each layer makes it affect only the features 
of that layer. This latent vector 𝜔 is better than the original 𝑧 vector. 
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The synthesis network is based on the PGGAN structure, and the style vector of the 
front layer of the synthesis network affects features larger than the style vector of the back 
layer. StyleGAN had full control over the image generated using latent vector 𝜔 and 
changed the style to various levels by changing the position of the 𝜔  vector in the 
synthesis network. 

A and B in Figure 17 were generated with different 𝜔 vectors. To merge the two 
images, A’s 𝜔  vector is passed through the synthesis network and is converted at a 
certain point into B’s 𝜔 vector. When deformation occurs early, styles such as posture, 
appearance, and glasses are transferred to A. When deformation occurs later, styles such 
as color and fine shape of the face are transferred to A. Both features of the A image are 
maintained. 

 
Figure 17. Result of style synthesis in two generated images [11]. 
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Finally, the StyleGAN structure adds noise behind each convolutional layer to 
capture areas such as hair position or face background. The noise injection location 
determines the fineness and roughness in the image. 

4. Theory Analysis of GAN 
In GAN’s training, 𝐷  explores parameters that maximize classification accuracy, 

and 𝐺  explores those that can confuse 𝐷  as much as possible. Figure 18 shows the 
process of exploring parameters for generators and discriminators. 

 
Figure 18. Process of navigating parameters for generators and discriminators. 

The training cost is evaluated using the 𝑉(𝐺,𝐷) function as shown in Equation (6). 𝑉(𝐺,𝐷) =  𝐸௣೏ೌ೟ೌ(௫)𝑙𝑜𝑔𝐷(𝑥) ൅ 𝐸௣ಸ(௫)log (1 − 𝐷(𝑥))  (6)

When the parameters of one network are updated, those of the other network are 
fixed. Goodfellow presented the optimal 𝐷 as Equation (7) when 𝐺 is fixed. 𝐷∗(𝑥) = 𝑝ௗ௔௧௔(𝑥)𝑝ௗ௔௧௔(𝑥) ൅ 𝑝ீ(𝑥) (7)

Optimal 𝐺 is when 𝑝ீ(𝑥) = 𝑝ௗ௔௧௔(𝑥) → 𝐷 predicts 0.5 for all samples 𝑥. In other 
words, 𝐺 is optimal when 𝐷 cannot distinguish between a real image and a synthetic 
one. The ideal situation is when 𝐷 is trained until 𝐺 is optimal, and then 𝐺 is updated 
again. Note that it may not be trained until 𝐷 is optimal, and the parameters of 𝐺 and 𝐷 are updated at the same time. 
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In general, training criteria other than saturation for 𝐺 using 𝑚𝑎𝑥ீ 𝑙𝑜𝑔 (1 −𝐷൫𝐺(𝑧)൯) 
instead of 𝑚𝑖𝑛ீ 𝑙𝑜𝑔 (1 −𝐷൫𝐺(𝑧)൯)  are used. Despite these methods, GAN training is 
unstable due to the difficulty in converging a pair of models, and collapsing occurs 
wherein only a few data are generated for different input data. In addition, 𝐷 ’s loss 
converges rapidly to “0” and often does not give good feedback to [20,50,51]. 

Goodfellow and Salimans explained that GAN training is unstable because GD 
(Gradient Descent) is an inadequate solution to form GAN’s saddle point [2,50]. This does 
not mean that GD is not good. As a low-dimensional space inherent in a high-dimensional 
space, Manifold exists in a high-dimensional space that can represent real data. When the 
color image sample is 𝑁 × 𝑁 × 3 size of [0,𝑅ା]ଷ, the space that can be called 𝑋 is a 3𝑁ଶ 
dimension. Each dimension is “0” and the maximum measurable pixel. Note that 𝑝ௗ௔௧௔ 
constitutes a manifold of real data related to a particular problem and occupies a small 
portion of total space 𝑋. Likewise, the sample generated in 𝐺 should occupy only a small 
portion of 𝑋. 

Arjovsky showed that the dimensional space of 𝑃 (𝑥) and 𝑝ௗ௔௧௔(𝑥) was lower than 
that of 𝑋 [51]. 𝑃 (𝑥)  and 𝑝ௗ௔௧௔(𝑥)  may not overlap, so 𝐷  can classify real image 𝑥~𝑝ௗ௔௧௔(𝑥) and synthetic image 𝑥~𝑝ீ(𝑥) with 100% accuracy. In this case, the error of 𝐷 converges to zero quickly. On one side, the parameter of 𝐺 is updated only through 𝐷 , and the gradient used when updating the parameter of 𝐺  also converges to “0”. 
Therefore, it may no longer be useful for updating 𝐺. 

Goodfellow proved that, when 𝐷  is optimal, 𝐺  is equivalent to minimizing JSD 
(Jensen–Shannon Divergence) between 𝑃 (𝑥) and 𝑝ௗ௔௧௔(𝑥)[2]. JSD is a measure of the 
similarity between two probability distributions devised by Jensen and Shannon. If A is 
not optimal, the update may not be meaningful or accurate. Such insight led to the study 
of alternative distance-based cost functions. 

4.1. Training Methods 
Radford’s DCGAN designed 𝐺 and 𝐷 similar to the existing CNN structure [20]. 

At the heart of DCGAN are stride convolution and transpose convolution [52]. This 
greatly contributed to improving the quality of the image synthesis work. To stabilize 
deep model training, both 𝐺  and 𝐷  proposed batch normalization. Furthermore, the 
fully connected layer was minimized. It was also shown that it is better to use LReLU 
instead of ReLU (Rectified Linear Unit) as an activation function [53]. 

Salimans proposed a heuristic solution to stabilize GAN’s training [50]. First is to 
change 𝐺’s training goals to increase the amount of information available. 𝐺 is trained 
to match features that are intermediate predictions of the real image and the synthetic 
image outputted from 𝐷. Second is to add a minibatch discrimination input function to 𝐷. This function encodes the distance between an input sample and another sample in 
minibatch units. In addition, it is easy to know whether 𝐷 and 𝐺 have the same output, 
which is effective for preventing mode collapse. Third is the heuristic average, which is to 
assign a penalty to the parameter when the moving average of the parameters in the 
network exceeds the previous average. This helps 𝐺  and 𝐷  maintain equilibrium. 
Fourth is virtual batch normalization, which calculates batch statistics using samples of 
minibatch size at the start of training and continues to refer to them. This method reduces 
the dependence of specific samples. The final one-sided label smoothing is to smooth 𝐷’s 
classification criteria. In this method, the intensity of the gradient transmitted to 𝐺  is 
adjusted to generate a better image. 

Sonderby added noise before entering data into 𝐷[54]. One-sided label smoothing is 
done because 𝐷 can be biased in a specific direction. Instance noise narrows the manifold 
of real and synthetic images. At the same time, it prevents A from easily finding the 
boundary separating the real image from the synthetic one. This method is implemented 
by adding Gaussian noise to both real image and synthetic image and annealing standard 
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deviation with time. As such, studies have been actively conducted to add noise to the 
sample for the stabilization of GAN training. 

4.2. Alternative Formulations 
This chapter describes the interpretation and overview of GAN’s information theory, 

including the cost function to improve the vanishing gradient. For the information theory 
interpretation and overview, Nowozin showed that it can be generalized to minimize 𝑓-
divergence other than JSD [55]. 𝑓-divergence includes a divergence scale similar to KLD, 
and it is approximated by applying fenchel conjugates to the generated sample. The 
fenchel conjugate is a pair function devised by fenchel, which is not a new algorithm but 
is meaningful since it is applied to GAN training. 𝑓 means convex. Depending on the 
choice of 𝑓-divergence, it provides a list of activation functions available in the fenchel 
conjugate and the last layer of 𝐺. When the object of 𝐺 was maximized in the experiment, 
the gradient became faint. At the beginning of the training, a cost function was proposed 
to update 𝐺, which is less likely to saturate. In 𝐺, only the prediction of 𝑓-divergence is 
minimized. Uehara expanded 𝑓-GAN, and Goodfellow also offered an alternative to JSD 
[42,56]. 

Weight clipping reduces the capacity of 𝐷 to force simpler feature learning [15]. 
Gulrajani proposed an improved training method in WGAN by penalizing the 𝐷 
gradient [17]. 

4.3. Disentangled Representation 
Interpretable disentangled representation has been studied for a long time [57]. The 

generative model aims to capture the generative factors of the training data. Disentangled 
representation is associated with symmetry transformations, wherein any property is 
changed but other properties are preserved. Symmetry transformation transforms certain 
properties but preserves others. In order to achieve symmetry transformation in neural 
networks, neurons must have no connection to other neurons. In other words, each 
neuron is isolated. Symmetry is often used in quantum mechanics and is more 
comprehensive than the symmetry mentioned in geometry. 

Disentangled representation is the process of learning symmetry, disentangling 
through training even if it starts from the fully connected layer. This is because latent units 
are sensitive to changes in generative factors. In terms of information theory, disentangled 
representation is highly useful. Because it compresses the information, it is more efficient 
than other algorithms, and it can increase the number of things to a lot. Disentangled 
representation is only effective for latent vectors. 

InfoGAN achieved better disentanglement by maximizing the same index code 
mutual information. AAE achieved better disentanglement by minimizing KLD due to 
adversarial losses [32,41]. 

4.4. Variants of GAN 
GAN is difficult to train due to partial gradient loss, thereby requiring careful 

hyperparameter tuning, but AAE and WGAN are less affected by these factors. 
First, AAE is easy to train because adversarial loss applies to low-dimensional, 

simple distributions. Second, WGAN was designed not to suffer from vanishing gradient 
[17]. In other words, it is designed to be less sensitive to nonlinear selection without batch 
normalization. cGAN synthesizes an image with user-specified contents. Vanilla GAN 
constructs a significant latent space but does not provide an inference model to map 
samples to latent representation. 

Both BiGAN and ALI are algorithms that map images to latent spaces [38] has 
improved the image quality of ALI than before. This model is an AE similar to VAE, 
normalizing the latent space by performing adversarial training between pre-encoding 
and post-encoding samples. 
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4.5. Latent Space of GAN 
GAN learns its own representation through training and generates a structured 

vector space in various domains. This algorithm is similar to other neural networks 
including VAE and language models, such as Word2Vec, an algorithm that evaluates 
word similarities and converts them into vectors [58]. 

Generally, the domain of the data to be modeled is mapped to a vector space having 
a dimension lower than such data space. The latent space is generated in 𝐺 and can be 
structured, supporting significant operations [20]. For example, if it is a face, mix gender, 
age, smile, hair, etc. 

In many GAN models is an “encoder” that maps back from the space to be modeled 
to the latent space [36,37]. This is because it is effective in exploring and utilizing GAN’s 
structured latent space. Using an encoder, it is possible to generate a high-level concept 
vector by mapping and analyzing a labeled image into a latent space. The concept vector 
can be applied to the offset in the latent space, affecting 𝐺. 

Gurumurthy proposed a method for modeling latent spaces as a Gaussian 
distribution and learning mixed components [59]. Mixed components are factors that 
maximize the potential of the generated data. 

5. Applications of GAN 
GAN can be quantitatively evaluated for features extracted from unsupervised 

learning, so it can be applied to image classification. This is the case wherein there are 
constraints on the generated images, and the condition is how the training object should 
be achieved. Better super-resolution is possible by adding adversarial losses to the existing 
approach [60–62]. It can also be applied to image-to-image, which automatically translates 
an input image to an output image. 

5.1. Classification and Regression 
The trained GAN model can be used for other downstream tasks. Downstream is 

data transmitted from the upper medium to the lower medium. For example, the 
convolutional layer output of the discriminator can be used as a feature extractor, and a 
linear model, such as SVM (Support Vector Machine), can be combined with it [20,50]. 
This is a structure wherein a feature vector that has passed through a feature extractor 
uses a classifier, such as SVM, as new input data. Radford achieved excellent classification 
performance when this method was applied to all of supervised learning, unsupervised 
learning, and non-trained datasets [20]. 

Like ALI, adversarial training can improve image quality when learning inference 
algorithms simultaneously [36]. The representation vector generated in the last three 
hidden layers of the ALI encoder records a lower misclassification ratio than DCGAN [35]. 
Higher performance was achieved when label information was added to the ALI. 

With less labeled training data, GAN can be used to generate more training data. 
Shrivastava improved the synthetic image while maintaining annotation information, 
achieving state-of-the-art performance in posture and gaze estimation with synthetic 
images only [63]. Spatiotemporal GAN also reported good results for gaze estimation and 
prediction [64]. When a model trained as a synthetic image is applied to a real image, on 
the other hand, it does not always show good results [65]. 

Bousmalis proposed a method to match the synthetic image of the original domain 
with the target domain [65]. To synthesize images from different domains, Liu suggested 
using multiple GANs with combined weights [66]. 

5.2. Synthesis and Inpainting 
A significant part of the recent GAN research topic is to improve the quality and 

usability of the generated images. LAPGAN (Laplacian Pyramid of Generative 
Adversarial Networks) introduces a cascade of CNN to generate images schematically 
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[67]. Cascade, once initiated, involves a series of stages each of which is triggered by the 
previous stage and the results are continued until the end. LAPGGAN extends cGAN 
wherein generators and discriminators receive additional label information as input. The 
algorithm has since been extended to solve the problem of natural language processing. 
The cGAN algorithm was proposed by Huang to work on medium representations rather 
than low-resolution images [68]. 

Reed used GAN to synthesize the image with text description [69]. For example, if a 
text description such as “a bird with black head, orange wings, and white beak” is the 
input to the network, GAN generates a plausible image. 

In the GAWWN(Generative Adversarial What-Where Network) of Figure 19, the 
position of the image is determined according to the conditions [70]. GAWWN supports 
an interactive user interface that allows gradually drawing large images with a 
description of the object and a bounding box. 

 
Figure 19. Controlling the bird’s position using bounding box coordinates and previously unseen text [70]. 

cGAN can synthesize new images with specific attributes and intuitively edit images 
such as changing the hair shape, wearing glasses, and reducing age [58,71–72]. 

Yurt used GAN to synthesize scarce medical images [73]. The multi-contrast MRI 
(Magnetic Resonance Imaging) protocol raises the level of morphological discrimination 
information that can be used for diagnosis. The number and quality of contrasts are 
limited by several factors such as scan time and patient movement. mustGAN (multi-
stream Generative Adversarial Networks) synthesizes insufficient or impaired contrast to 
alleviate restrictions and improve clinical usefulness. Contrast can be synthesized by one-
to-one or many-to-one method. The many-to-one method receives multiple raw images 
and learns shared latent representation that are more sensitive to common features. 
mustGAN proposes a multi-stream method that integrates information from multiple raw 
images. The shared feature map and complementary feature map generated from the 
stream are combined with the fusion block. The location of the fusion block is adaptively 
modified to maximize performance for each task. The structure of mustGAN is shown in 
Figure 20. 
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Figure 20. Structure and principle of mustGAN (multi-stream Generative Adversarial Networks) [73]. 

In Figure 20, mustGAN’s generator first consists of 𝐾 one-to-one and many-to-one 
streams. After that, it consists of adaptively deployed fusion blocks and a joint network 
for recovery. The one-to-one stream independently generates a unique feature map of 
each source image, and the many-to-one stream generates a shared feature map over the 
entire source image. The fusion block concatenates the feature map generated in the fusion 
layer. The joint network synthesizes the target image from the fused feature map. The 
joint network is classified into early, mid-term, and late-stage, according to the location of 
fusion. 

Previous works on GAN-based image inpainting focused only on performance 
improvement and did not consider diversity with a lower priority [23]. Therefore, the 
diversity is poor. Diversity is especially important in image inpainting. Cai proposed 
PiiGAN (Pluralistic image inpainting Generative Adversarial Networks), which extracts 
style vectors from ground truth [74]. Style vectors are latent vectors. PiiGAN has a 
separate style extractor and a loss of consistency that makes the image to be generated 
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approximate to the ground truth. The style vector and ground truth extracted from the 
style extractor are input to the generator. Consistency loss allows the generator to learn 
style mapping corresponding to multiple vector sets. PiiGAN has generated a diversity of 
realistic images with high quality that match the high-level semantic context of the ground 
truth images. 

5.3. Image-to-Image Translation 
The pix2pix model is a technique proposed in 2016 that uses GAN for image 

translation, not for image generation [75]. pix2pix is a model that maps the input image 
and the output image and shows very high accuracy. Therefore, the training image also 
has a pair of inputs and outputs. This model showed excellent results in a variety of 
computer vision problems, such as semantic segmentation, map generation in aerial 
photography, and colorization of black and white images. 

pix2pix is supervised learning that requires a pair of input and output images during 
training. Cycle-consistency Generative Adversarial Networks (CycleGAN) has a greater 
meaning than anything else in that it can perform image translation without a pair of input 
and output images [76]. Once trained, images can be translated from one area to another. 
For example, when training a horse and zebra dataset, CycleGAN can translate only the 
horse into a zebra without leaving the background when an image with a horse in the 
foreground is provided. 

CycleGAN used two GANs. The generator of each GAN performs image translation 
from one region to another. If 𝑋 is an input, the generator of the first GAN performs 
mapping 𝐺:𝑋 → 𝑌. Therefore, the output is 𝑌 = 𝐺(𝑋). The generator of the second GAN 
performs reverse mapping 𝐹:𝑌 → 𝑋 to become 𝑋 = 𝐹(𝑌). Each discriminator is trained 
to distinguish between a real image and a synthetic one. The algorithm is shown in Figure 
21. 

 
Figure 21. Cycle-consistency loss of CycleGAN (Cycle-consistency Generative Adversarial Networks) [76]. 

To train the combined GAN, we added forward cycle-consistency loss and reverse 
cycle-consistency loss. This means that the image obtained after two translations 𝐹൫𝐺(𝑋)൯~𝑋  for image input 𝑋  is equal to 𝑋 . Figure 22 is an example of an image 
translated by CycleGAN. 
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Figure 22. Example of image translation in CycleGAN (Cycle-consistency Generative Adversarial Networks) [76]. 

CycleGAN translate images between predefined domain sets. CSGAN (Cyclic-
Synthesized Generative Adversarial Networks) can also translate images between 
completely distant domain sets [77]. CSGAN uses cyclic-synthesized loss between 
synthetic and cyclic images of different domains. The loss of cyclic synthesis improves the 
quality of the image to be generated by minimizing side effects, such as artifact. Figure 23 
is an example of an image translated by CSGAN. 
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Figure 23. Example of image translation in CSGAN (Cyclic-Synthesized Generative Adversarial Networks) [77]. 

In Figure 23, rows 1 to 2 are samples of CUHK (the Chinese University of Hong Kong) 
datasets, and rows 3 to 4 are samples of FACADES datasets [78,79]. The first to second 
columns are the input image and the ground truth image, respectively. Columns 3 to 5 are 
images translated using DualGAN, CycleGAN, and CSGAN, respectively [76,77,80]. The 
artifacts of DualGAN and CycleGAN are indicated by red squares in the second and third 
columns, respectively. 

Scott used the pix2pix model to work on the human body [81]. The model was trained 
with color photographs of dancers and black-and-white images that revealed boundaries. 
Scott created a new form by generating a line drawing. Again, the model can transform it 
into a color photo space. Models make pictures similar to possible people. Figure 24 shows 
Scott’s work. 



Electronics 2021, 10, 1216 25 of 42 
 

 
Figure 24. Artist, Creative AI (Artificial Intelligence) [81]. 

Taeyoung succeeded in restoring the solar-side magnetic field image with image-to-
image technology based on cGAN [82]. Solar magnetic field images are important sensing 
data for solar activity and space weather forecasting. The situation of the rotating sun is 
useful in terms of forecasting. An image of the magnetic field in front of the sun as viewed 
from Earth can be acquired by SDO (Solar Dynamics Observatory)’s HMI (Helioseismic 
and Magnetic Imager) sensor. Still, it is difficult to acquire an image because there is no 
corresponding sensor in the stereo observatory that observes the side of the sun. 

SDO’s AIA (Atmospheric Imaging Assembly) sensor image and HMI image were 
trained in pairs on the GAN. SDO is a satellite observing the front of the sun, and HMI is 
a magnetic field sensor. Subsequently, stereo EUVI (Extreme Ultra Violet Imager) sensor 
images were inputted as conditions. EUVI is a solar-side observation satellite with the 
same characteristics as an AIA sensor. 
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In Figure 25, a is an extreme ultraviolet image observed by a satellite, c is a magnetic 
field image observed by a satellite, and b is a side magnetic field image generated by a 
GAN. a and c were obtained every 3 days. As a result of analyzing the front magnetic field 
image and the magnetic field image generated by GAN at various time periods, the 
sunspot is confirmed to have been reproduced properly. 

 

 
Figure 25. A lateral magnetic field image of the sun restored to the GAN [82]. (a) is an extreme ultraviolet image 
observed by a satellite, (c) is a magnetic field image observed by a satellite, and (b) is a side magnetic field image 

generated by a GAN. 

5.4. Super-Resolution 
SRGAN generates high-resolution images from low-resolution ones [60]. The 

SRGAN structure consists of three neural networks: generator, discriminator, and 
pretrained VGG-16 (Visual Geometry Group) neural network using the residual module 
[83,84]. SRGAN uses a perceptual loss function. 

The difference in feature map activity at the upper layer of the VGG network between 
the network output and the high-resolution portion becomes a perceptual loss function. 
In addition to perceptual loss, the authors added content loss and adversarial loss to make 
the generated image more natural and more artistic in detail. Perceptual loss is defined as 
the weighted sum of content loss and adversarial loss, as shown in Equation (8). 𝑙ௌோ = 𝑙௑ௌோ ൅ 10ିଷ × 𝑙ீ௘௡ௌோ   (8)

The first term on the right-hand side is content loss obtained using a feature map 
generated by pretrained VGG-16. This is the Euclidean distance between the feature map 
of the mathematically reconstructed image and the original high-resolution reference 
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image. The second term on the right-hand side is adversarial losses, designed to allow the 
generator-generated image to fool the discriminator. Figure 26 shows that the image 
generated by SRGAN is much closer to the original high-resolution image. 

 
Figure 26. Comparison of super-resolution performance between SRGAN (Super Resolution Generative Adversarial 
Networks) and other models [60]. 

5.5. Point Registration 
GAN is a learning-based technology that has also recently been applied to point 

registration. Point registration is mainly used in the fields of computer vision, pattern 
recognition, and robotics, and is also called point cloud registration or scan matching. 
Point registration is the process of finding a spatial transformation that can align two point 
clouds. 

Mahapatra used GAN to register medical images [85]. In the paper, CAE encodes a 
given pair of input images into latent space vectors. The encoded latent space vector was 
used to generate the matched image with the help of GAN. This feature transformation 
guarantees greater constancy to the input image type. As a result, GAN contributed to 
show better performance than the existing method in experiments on Chest X-ray, Retinal, 
and Brain Magnetic Resonance images. 

6. Discussion 
Several major advances in recent years have greatly improved the overall stability of 

the GAN model. Some challenges remain in GAN. 

6.1. Mode Collapse 
First is mode collapse, which occurs when the generator finds a small number of 

samples that deceive the discriminator. Therefore, no other sample can be generated apart 
from this limited sample. Generators tend to find one sample that deceives the 
discriminator, i.e., a mode, and they can map any point in the latent space to this sample. 
This means that the gradient of the loss function collapses to a value close to zero. Even if 
the discriminator is trained again to avoid being tricked into a single point, the generator 
will easily find another mode to deceive the discriminator. This is because the generator 
is already insensitive to input, and there is no reason to generate various outputs [51,86]. 

One of the mode collapse mitigation methods is to change the distance measurement 
algorithm used for statistical distribution comparison. Arjovsky suggests Wasserstein 
distance rather than DCGAN’s KLD and EBGAN (Energy-Based Generative Adversarial 
Networks)’s TV (Total Variance) distances [15,20,87]. Metz updated A by applying 
minimax to the accumulated loss values in several steps [88]. 𝐺  knows how 𝐷  will 
update, and it can generate a better image. 
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6.2. Training Instability 
Second is training instability. The hessian of the GAN loss function is infinite. 

Therefore, the optimal solution is to find a saddle point rather than the local minimum. In 
the case of the saddle point, the loss rate of the discriminator is high, and that of the 
generator is formed at the low optimal point. Many optimizers rely on the first derivative 
of the loss function. This is because initialization is important to find the saddle point. 

Lee argues that the nonlinear manifold theorem makes it difficult for GD to reach the 
target, and that the initial algorithm should be randomly selected [89,90]. 

Mescheder claims that GAN’s convergence is difficult because of the Jacobian matrix 
error and the eigenvalue of the imaginary part [55]. A second-order optimizer like the 
newton method is promising, but it needs to be expanded by a second- or a third-order 
formula depending on the parameter dimension. 

Arora uses a nonparametric Bayesian to associate a finite mixture of neural networks 
with an equilibrium [86]. This means that there is no equilibrium when the network is 
below a certain capacity. Even if the GAN’s training appears to converge, true learning 
distribution may still be far from the target distribution. To improve this problem, Arora 
proposed a new measurement method called neural network distance [86]. 

The optimal distance measurement method depends on the solution space. In order 
to solve the instability of training, we propose the EM (Earth Mover) distance as a method 
for measuring the distance between the real and synthetic sample distributions in the 
following situations: 1) There are two parallel lines, the probability distribution 𝑃 and 𝑄. 2) One straight line is fixed to 𝑥 = 0, and the other straight line can move along the 𝑥 
axis at 𝑥 = 𝜃. 3) 𝜃 > 0. KL, TV, and JS distance are each 𝐾𝐿(𝑃 ∥ 𝑄) = +∞,𝑇𝑉(𝑃,𝑄) =1, 𝐽𝑆(𝑃,𝑄) = 𝑙𝑜𝑔2. None of these distance measurements are a function of parameter 𝜃. 
Therefore, the probability distributions 𝑃 and 𝑄 cannot be differentiated with respect to 𝜃 so that they are similar to each other. On the other hand, the EM distance is 𝐸𝑀(𝑃,𝑄) =|𝜃|. Therefore, there is a slope for 𝜃, and we can move 𝑄 toward P. As a result, it can be 
differentiated without overlap of the two distributions. For this reason, EM distance can 
improve training performance. 

6.3. Evaluation Matrixs 
Evaluation matrixs, such as how to evaluate the accuracy of the generated image and 

whether the designed model can be compared with other models, can vary depending on 
the training purpose [56]. In GAN, most of the objective functions of generators and 
discriminators are measured by comparing how well each plays a role. For example, a 
specific objective function measures the degree to which a generator deceives a 
discriminator. IS (Inception Score) and FID (Frechet Inception Distance) are methods of 
comparing the results of various GAN models [91,92]. 

IS uses two criteria when measuring GAN performance. First is the quality of the 
generated image, and second is diversity. 

A good result is the ease of predicting conditional probability 𝑃(𝑦|𝑥). In other words, 
if an image is given, it should be easy to identify the type of object. IS classifies the 
generated image and predicts 𝑃(𝑦|𝑥) using the InceptionV3 model [93]. Here, 𝑦 is a 
label, and 𝑥  is a generated image, reflecting the quality of the image. 𝑃(𝑦)  is the 
marginal probability calculated as Equation (9). ∫௭𝑝൫𝑦ห𝑥 = 𝐺(𝑧)൯ 𝑑𝑧 (9)

Marginal probability is the probability distribution of 𝑋 or 𝑌 when two random 
variables 𝑋 and 𝑌 get paired and have a combined probability distribution as (𝑋,𝑌). 
Equation (9) removes the remaining probability through integral or summation. If the 
images generated in Equation (9) are varied, the data distribution for 𝑦  should be 
uniform. In other words, it should have high entropy. To combine the two criteria, KLD 
is calculated, with IS derived using Equation (10). 
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𝐼𝑆(𝐺) = 𝑒𝑥𝑝 (𝐸௑~௣೏ೌ೟ೌ𝐷௄௅(𝑝(𝑦|𝑥)|ห𝑝(𝑦)൯)  (10)

The disadvantage of IS is that it can incorrectly express performance when generating 
only one image per class. Then, even with low diversity, 𝑃(𝑦) is still uniform. 

FID uses an inception module and extracts features from the middle layer. The data 
distribution of the extracted features is then modeled using multivariate normal 
distribution with mean 𝜇  and covariance ∑ . The FID between real image 𝑥  and 
generated image 𝑔 is shown in Equation (11). 𝐹𝐼𝐷(𝑥,𝑔) = |ห𝜇௫ − 𝜇௚ห|ଶଶ + 𝑇𝑟(𝛴௫ + 𝛴௚ − 2(𝛴௫𝛴௚)భమ)  (11)

In Equation (11), 𝑇𝑟 summarizes all the elements of the diagonal. Lowering the FID 
value improves image quality and diversity. FID is sensitive to mode collapse; thus, the 
more similar the images are, the larger the FID value. 

FID is more resistant to noise than IS. If the network generates only one image per 
class, the distance value increases. For this reason, it is a better measurement than IS for 
image diversity. FID has a large bias but small variance. Due to the large bias, the value 
may vary depending on the size of the minibatch. When calculating the FID between the 
training data and the test data, the FID will be “0” because both are real images. When 
testing with multiple training samples, but, the FID will not be zero. 

Since FID and IS both use an inception model, it is a method based on feature 
extraction. If the model is not good at extracting features, the same score can be given 
regardless of which image is generated. 

Precision, recall, and f1 score are also used as evaluation matrixs [94]. The more 
similar the generated image is to the real image, the higher the precision. With higher 
recall, the generator generates a sample of the training dataset without duplication. Recall 
is also called sensitivity, hit rate, and true positive rate. The f1 score is a harmonic mean 
of precision and recall. Harmonic mean is the reciprocal of the arithmetic mean of the 
inverses for 𝑛 positive numbers. 

In addition to cost optimization, studies on end-to-end evaluation matrixs that can 
detect and prevent GAN problems such as mode collapse earlier are ongoing. However, 
it is difficult to find a satisfactory solution. Therefore, we propose to find and apply an 
evaluation matrix suitable for the model to be used through a lot of trial and error. 

6.4. Performance Comparisons 
6.4.1. Qualitative Comparisons 

Research on GAN is still actively underway. Academia and industry experts praise 
GAN as an innovation. The image inserted in Tables 1–6 is not a real image. All are 
synthetic images generated by GAN. 

There are six comparison datasets: Modified National Institute of Standards and 
Technology (MNIST), LSUN Bedroom, ImageNet, CelebA, CelebA-HQ, and Flickr Faces 
High Quality (FFHQ). The comparison model is the model introduced in Ⅲ and Ⅴ and 
its application model. Application models that added and removed Multi-Scale Gradients 
(MSG), Feature Quantization (FQ) and instance normalization techniques from StyleGAN 
were also added as comparison items [95–97]. Tables 1–6 shows the performance of GAN 
that can synthesize images at the same level as a real image. 
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Table 1. Visual results of different models trained with the MNIST dataset. More results are presented in that paper. 

 
cGAN 

(Mirza et al., 2014) [33] 
DCGAN 

(Radford et al., 2015) [20] 
InfoGAN 

(Chen et al., 2016) [32] 
BigGAN 

(Brock et al., 2018) [10] 

MNIST 

    
 

Table 2. Visual results of different models trained with the LSUN bedroom dataset. More results are presented in that 
paper. 

 
DCGAN 

(Radford et al., 2015) [20] 

WGAN 
(Arjovsky et al., 2017) 

[15] 

WGAN-GP 
(Gulrajani et al., 2017) 

[17] 

PGGAN 
(Karras et al., 2018) [8] 

LSUN 
Bedroom 

    
 

Table 3. Visual results of different models trained with the ImageNet dataset. More results are presented in that paper. 

 DCGAN 
(Radford et al., 2015) [20] 

SAGAN 
(Zhang et al., 2018) [9] 

BigGAN 
(Brock et al., 2018) [10] 

ImageNet 
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Table 4. Visual results of different models trained with the CelebA dataset. More results are presented in that paper. 

 
ALI 

(Dumoulin et al., 2016) [36] 
AVB 

(Mescheder et al., 2017) [41] 
ALICE 

(Li et al., 2017) [38] 
BEGANv3 

(Park et al., 2020) [27] 

CelebA 

    

 

Table 5. Visual results of different models trained with the CelebA-HQ higher resolution image dataset. More results are 
presented in that paper. 

 PGGAN 
(Karras et al., 2017) [8] 

StarGANv2 
(Choi et al., 2019) [44] 

MSG-StyleGAN 
(Karnewar et al., 2020) [95] 

CelebA-HQ 

   
 

Table 6. Visual results of different models trained with the FFHQ higher resolution image dataset. More results are 
presented in that paper. 

 StyleGAN 
(Karras et al., 2018) [11] 

StyleGAN-No Instance Norm 
(Kynkaanniemi et al., 2019) [97] 

FQ-StyleGAN 
(Zhao et al., 2020) [96] 

FFHQ 
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6.4.2. Quantitative Comparisons 
In this section, the quality of the generated image is evaluated probabilistically. There 

are five comparison datasets: Canadian Institute for Advanced Research-10 (CIFAR-10), 
ImageNet, LSUN, CelebA-HQ, and FFHQ. The comparison method is IS and FID, and the 
comparison model is the model introduced in chapters 3 and 5 and its application model. 
IS and FID, described in 6.3, related to the realism and visual appeal of images and provide 
useful properties related to quality. Performance is evaluated by looking at the IS or FID 
output from a model trained on a given dataset. 

Table 7 is the IS of 5 models trained on the CIFAR-10 dataset. Among the five models 
in Table 7, BigGAN showed the highest performance with IS 9.22 points, and ALI showed 
the lowest performance with 5.34 points for a performance difference of 3.88. 

Table 8 is the FID of 9 models trained on the CIFAR-10 dataset. Application models 
incorporating the latest techniques such as Adaptive Discriminator Augmentation (ADA), 
Consistency Regularization (CR), Differentiable Augmentation (DiffAugment), training 
MIXture (MIX), Latent Transformation (LT) and Adversarial Lipschitz Regularization 
(ALP) with StyleGAN, BigGAN, and WGAN were also added to the comparison items 
[98–103]. 

Table 7. The IS of different models trained on CIFAR-10 dataset. The higher the IS value, the better 
the performance. 

Dataset Model  IS (↑) 

CIFAR-10 
(64×64) 

ALI (Dumoulin et al., 2016) [36] 5.34 
BEGAN (Berthelot et al., 2017) [24] 5.62 
WGAN-GP (Gulrajani et al., 2017) [17] 7.86 
PGGAN (Karras et al., 2018) [8] 8.80 
BigGAN (Brock et al., 2018) [10] 9.22 

Table 8. The FIDs of different models trained on the CIFAR-10 dataset. The lower the FID value, 
the better the performance. 

Dataset Model  FID (↓) 

CIFAR-10 
(64×64) 

StyleGAN2+ADA+Tuning 
(Karras et al., 2020) 
[98] 2.92 

CR-BigGAN+DiffAugment 
(Zhao et al., 2020) 
[100] 

4.30 
BigGAN+DiffAugment 4.61 
StyleGAN2+DiffAugment 5.79 

BigGAN+MIX 
(Tang et al., 2020) 
[101] 

8.17 

BigGAN+CR+LT 
(Patel et al., 2020) 
[102] 9.80 

WGAN-ALP 
(Terjek et al., 2019) 
[103] 

12.96 

BigGAN 
(Brock et al., 2018) 
[10] 

14.73 

WGAN-GP (Gulrajani et al., 2017) 
[17] 

29.30 

Among the 9 models in Table 8, StyleGAN2+ADA+Tuning showed the highest 
performance with FID 2.92 and WGAN-GP had the lowest performance at 29.30 for a 
performance difference of 26.38. The FIDs of BigGAN+DiffAugment, BigGAN+MIX, and 
BigGAN+CR+LT were 10.12, 6.56, and 4.93 lower than those of BigGAN, respectively. In 
the case of the StyleGAN2 application model, StyleGAN2+ADA+Tuning has a 
performance difference of 2.87 lower FID than StyleGAN2+DiffAugment. In the BigGAN 
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application model, BigGAN+DiffAugment has the best performance, and in the 
StyleGAN2 application model, StyleGAN2+ADA+Tuning has the best performance. 

Table 9 is the FID for each training data usage of three models trained with the 
CIFAR-10 dataset. When 100% of the training data were used, CR-BigGAN+DiffAugment 
showed the highest performance with FID 4.30. StyleGAN2+DiffAugment showed the 
lowest performance at 5.79, for a performance difference of 1.49. When 20% and 10% of 
the training data were used, StyleGAN2+DiffAugment showed the highest performance 
at 12.15 and 14.5, respectively. BigGAN+DiffAugment had the lowest performance at 
14.04 and 22.4, respectively, with a respective difference of 1.89 and 7.9. Among the three 
models, StyleGAN2+DiffAugment showed the lowest performance decrease when the 
training data was reduced to 20% and 10%, and BigGAN+DiffAugment showed the 
highest performance decrease. 

Table 10 is the IS and FID of the four models trained on the ImageNet dataset. Among 
the four models in Table 10, BigGAN-deep showed the highest performance with FID 5.7, 
and BigGAN showed the lowest performance at 8.7 for a performance difference of 3.0. In 
IS, BigGAN-deep scored the highest with 124.5 points, and BigGAN showed the lowest 
performance with 98.8 points for a performance difference of 25.7 points. CR-BigGAN was 
not used in the experiment. As a result, when generating an ImageNet 128×128 sized 
image, the BigGAN-deep model had the best performance. 

Table 11 is the FID of 4 models trained on the LSUN bedroom dataset. A PG-SWGAN 
model that combines Sliced Wasserstein (SW) technique with PGGAN was also added to 
the comparison items [104]. Among the four models in Table 11, StyleGAN showed the 
highest performance with FID 2.65, and StackGAN2 (Stacked Generative Adversarial 
Networks2) showed the lowest performance at 35.61, for a performance difference of 32.96 
[105]. The application model of PGGAN, PG-SWGAN FID, was 8.0, for a 0.34 higher 
performance than PGGAN. 

Table 12 is the FID of the four models trained on the LSUN churches dataset. The 
MSG-StyleGAN model, which combines the MSG technique with StyleGAN, was also 
added to the comparison items. Among the four models in Table 12, StyleGAN2 showed 
the highest performance with FID 3.86, and PGGAN showed the lowest performance at 
2.56 for a performance difference of 1.3 [106]. StyleGAN2 FID, an application model of 
StyleGAN, was 3.86, for a performance difference of 0.35 higher than StyleGAN. On the 
other hand, the MSG-StyleGAN FID, an application model of StyleGAN, was 5.2, for a 
performance difference 0.99 lower than StyleGAN. 

Table 13 is the FID for each LSUN dataset category of the StyleGAN2 model. Among 
the four categories in Table 13, Car showed the highest performance with FID 2.32, and 
Cat showed the lowest performance at 6.93 for a performance difference of 4.61. When the 
Car image is generated in size 512×384, the FID is 2.32. It has the same FID value as when 
it is generated in the 256×256 size. When Cat, Churches, and Horse images were generated 
in the 512×384 size, FID was excluded from Table 13. Therefore, it is difficult to conclude 
that there will be no difference in FID in the Cat, Churches, and Horse categories when 
the image size is enlarged. 

Table 14 is the FID of 4 models trained on the CelebA-HQ dataset. Among the four 
models in Table 14, StyleGAN showed the highest performance with FID 5.06, and 
PGGAN showed the lowest performance at 7.3 for a performance difference of 2.24. The 
MSG-StyleGAN FID, an application model of StyleGAN, was 6.37, for a 1.31 lower 
performance than StyleGAN. PGGAN’s application model, PG-SWGAN FID, was 5.5, for 
a 1.8 higher performance than PGGAN. 

Table 15 is the FID of 5 models trained on the FFHQ dataset. Among the five models 
in Table 15, StyleGAN2 showed the highest performance with FID 2.84, and PGGAN 
showed the lowest performance at 8.4, for a performance difference of 5.56. The MSG-
StyleGAN FID, an application model of StyleGAN, was 5.8, or 1.37 lower performance 
than StyleGAN. Looking at only Tables 12, 14, and 15, MSG-StyleGAN is inferior to the 
StyleGAN. In other words, advances in technology do not necessarily bring only good 
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points. On the other hand, when the instance normalization of StyleGAN was removed, 
the FID was 4.16, or 0.27 higher performance than StyleGAN. 

Table 16 shows the model that showed the highest performance in the six datasets in 
Tables 7–15. The six datasets are CIFAR-10, ImageNet, LSUN Bedroom, LSUN Churches, 
CelebA-HQ, and FFHQ. In the CIFAR-10 dataset, StyleGAN2+ADA+Tuning showed the 
highest performance, BigGAN-deep in the ImageNet dataset, StyleGAN in the LSUN 
Bedroom dataset, StyleGAN2 in the LSUN Churches dataset, StyleGAN in the CelebA-
HQ dataset, and StyleGAN2 in the FFHQ dataset showed the highest performance. Except 
for the ImageNet dataset, they are all StyleGAN and its application models, and you can 
see that they work well for relatively multiple datasets. 

Table 9. FID of different models trained with the CIFAR-10 dataset. StyleGAN2 performs better 
than CR-BigGAN and BigGAN models when there is little training data. FIDs are measured using 
100%, 20%, and 10% training data of the CIFAR-10 dataset. The lower the FID value, the better the 
performance. 

Dataset Model 
FID (↓) 

100% Training 
Data 

20% Training 
Data 

10% Training 
Data 

CIFAR-
10 

(64×64) 

StyleGAN2+DiffAugment 
[100] 

5.79 12.15 14.50 

CR-BigGAN+DiffAugment 
[100] 

4.30 12.84 18.70 

BigGAN+DiffAugment 
[100] 4.61 14.04 22.40 

Table 10. The IS and FID of different models trained on ImageNet dataset. The higher the IS value, 
the better the performance. The lower the FID value, the better the performance. 

Dataset Model  IS (↑) FID (↓) 

ImageNet 
(128×128) 

BigGAN-deep (Brock et al., 2019) 
[10] 

124.5 5.7 

CR-BigGAN (Zhang et al., 2020) 
[99] 

- 6.7 

BigGAN+DiffAugment 
(Zhao et al., 2020) 

[100] 100.8 6.8 

BigGAN (Brock et al., 2019) 
[10] 

98.8 8.7 

Table 11. The FID of different models trained on the LSUN bedroom dataset. The lower the FID 
value, the better the performance. 

Dataset Model  Category FID (↓) 

LSUN 
(256 × 256) 

StyleGAN (Karras et al., 2019) [11] 

Bedroom 

2.65 
PG-SWGAN (Wu et al., 2019) [104] 8.00 
PGGAN (Karras et al., 2018) [8] 8.34 
StackGAN2 (Zhang et al., 2017) [105] 35.61 
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Table 12. The FID of different models trained on LSUN churches dataset. The lower the FID value, 
the better the performance. 

Dataset Model  Category FID (↓) 

LSUN 
(256×256) 

StyleGAN2 
(Karras et al., 2020) 
[106] 

Churches 

3.86 

StyleGAN 
(Karras et al., 2019) 
[11] 

4.21 

MSG-StyleGAN (Karras et al., 2018) 
[95] 

5.20 

PGGAN 
(Zhang et al., 2018) 
[8] 

6.42 

 

Table 13. FID of StyleGAN2 model trained with LSUN category and size-specific datasets. The 
lower the FID value, the better the performance. 

Dataset Model Category Image Size FID (↓) 

LSUN StyleGAN2 [106] 

Car 

256×256 

2.32 
Cat 6.93 

Churches 3.86 
Horse 3.43 

Car 512×384 2.32 

Table 14. The FID of different models trained on CelebA-HQ higher resolution image dataset. The 
lower the FID value, the better the performance. 

Dataset Model  FID (↓) 

CelebA-HQ 
(1024 × 1024) 

StyleGAN (Karras et al., 2019) [11] 5.06 
PG-SWGAN (Wu et al., 2019) [104] 5.50 
MSG-StyleGAN (Karnewar et al., 2020) [95] 6.37 
PGGAN (Karras et al., 2018) [8] 7.30 

 

Table 15. The FID of different models trained on FFHQ higher resolution image dataset. The lower 
the FID value, the better the performance. 

Dataset Model  FID (↓) 

FFHQ 
(1024 × 1024) 

StyleGAN2 (Karras et al., 2020) [106] 2.84 
StyleGAN+No Instance 
Normalization 

(Kynkaanniemi et al., 
2019) [97] 

4.16 

StyleGAN (Karras et al., 2019) [11] 4.43 
MSG-StyleGAN (Karnewar et al., 2020) [95] 5.80 
PGGAN (Karras et al., 2018) [8] 8.40 
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Table 16. The model that achieved the highest FID performance in each dataset. The lower the FID 
value, the better the performance. 

Dataset Model  FID (↓) 
CIFAR-10 (64 × 64) StyleGAN2+ADA+Tuning (Karras et al., 2020) [98] 2.92 

ImageNet (128 × 128) BigGAN-deep (Brock et al., 2019) [10] 5.70 
LSUN Bedroom (256 × 256) 

StyleGAN (Karras et al., 2019) [11] 2.65 

LSUN Churches (256 × 256) 
StyleGAN2 (Karras et al., 2020) [106] 3.86 

CelebA-HQ (1024 × 
1024) 

StyleGAN (Karras et al., 2019) [11] 5.06 

FFHQ (1024 × 1024) StyleGAN2 (Karras et al., 2020) [106] 2.84 
 

Several implications can be found in the performance evaluation section. First, out of 
Tables 7–16, there are only two tables in which IS is used as an evaluation matrix. As such, 
it is difficult to find papers using IS as an evaluation matrix. This is because when the IS 
generates only one image per class, the performance can be incorrectly expressed. 
Although FID has its drawbacks, it is most widely used as an evaluation matrix because 
it is more accurate than IS. 

Second, in Table 8, when the latest techniques such as CR, LT, MIX, and DiffAugment 
were applied to BigGAN, the performance was higher than when they were not. 
However, grafting the latest techniques does not always yield good results. It has been 
grafted, but the performance may be lower. In Table 10, BigGAN-deep had a difference in 
the performance of 0.96 and 1.1 from CR-BigGAN and BigGAN+DiffAugment. BigGAN-
deep is a more sophisticated model with deeper layers from the original BigGAN. In Table 
12, StyleGAN had a difference of 0.99 performance from MSG-StyleGAN. In Tables 14 and 
15, StyleGAN had a performance difference of 1.31 and 1.37 from MSG-StyleGAN. 
Different results may be generated depending on the nature of the data types used for 
training. This means that if the generation target is significantly different from now, the 
optimization configuration can also be changed accordingly. For this reason, it is judged 
that the optimal technique for the type of task to be solved must be confirmed through 
experimentation. In Table 9, the CR technique was applied to BigGAN to reduce the 
performance reduction rate that occurs when the dataset size is reduced, but it is not 
higher than the performance of StyleGAN2. We can expect performance improvement by 
grafting StyleGAN2’s CR technique, but it remains to be seen whether it will be better or 
worse like above. 

Finally, when the Cat, Churches, and Horse images in Table 13 were generated in 
512×384 size, FID was excluded. It is difficult to conclude that there will be no difference 
in FID when the image size is enlarged because the reason for excluding it from the paper 
has not been clarified [106]. In other words, it is difficult to conclude that the image size 
does not affect the FID. 

7. Conclusions 
Deep learning technology, which has led to the development of discriminative 

modeling, has also been used in generative modeling. Among them, GAN is capable of 
nonlinear mapping from latent space to data space, and it can utilize large datasets 
without labels. GAN is useful for image generation work. Currently, GAN research 
related to computer vision includes high-resolution image generation, image synthesis 
using text, style simulation, and image-to-image translation. 

To date, GAN’s performance has been remarkable. GAN showed excellent results in 
tasks that were difficult to perform in the traditional way. Previously, it was difficult to 
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convert low-resolution images into high-resolution ones. The SRGAN and pix2pix models 
showed GAN’s potential for this task. The StackGAN2 model was useful for text and 
image synthesis. 

GAN improved the existing deep learning method. Training deep learning models 
with supervised learning requires large amounts of data, including considerable time and 
money to collect. There may be no public data and even low volumes, if any. GAN can be 
used to generate the necessary data in this situation. CEGAN (Classification Enhancement 
Generative Adversarial Network) synthesized images by approximating the real data 
distribution in an unbalanced data environment, and significantly improved the 
classification performance [107]. 

GAN can also be used as a commercial application. Many commercial GAN 
applications have been developed, receiving good reviews. One example is Prisma, a 
mobile application [108]. 

Additionally, there is a field of text-based infographic generation. Infographics are 
useful for marketing and social promotion, but infographic design requires a lot of time, 
effort, and skill, which can lengthen the working period. Designers can use GAN to 
shorten the working time. Designing a similar website requires a lot of time, skill, and 
creativity, but designing the initial design as a GAN would save significant cost and time. 

Second is data compression. Using GAN enables increasing the resolution of image 
and video. We can connect to the Internet and send large amounts of data all over the 
world. Using GAN when transmitting low-resolution image and video can increase data 
quality and reduce bandwidth. 

Third is drug discovery and development. GAN can be used to generate molecular 
structures, taking into account the desired chemical and biological properties. Insilico 
medicine designed the corona virus disease-2019 3c-like protease inhibitory molecule 
[109]. The MIT technology review selected Insilico’s AI design technology as 2020 
Innovation 10. 

Fourth is reinforcement learning [110]. If the agent can simulate the environment 
with GAN, there is no need to test the strategy in computer or reality because agents learn 
in their own environment. 

In addition, GAN is already applied to music production, video games, game design, 
and movie industry. MuseNet has seen the power to transform the music industry. The 
process of creating music must be creative and complex, but MuseNet generated music in 
custom style. It can also extend to areas like news and novels but can give rise to ethical 
questions. Modern neuroscience theory argues that a person’s ability to perceive reality is 
not a discriminative model [111]. 

GAN appeared in 2014; six years have passed since then, but GAN training instability 
still remains. Sometimes, GAN does not converge at all because the two neural networks 
diverge during the training process. Many researchers have tried to stabilize GAN’s 
training. For example, solutions such as one-sided label smoothing, instance 
normalization, and minibatch discrimination have been proposed. It is believed that, as 
GAN develops, this stabilization will mature, and we will be able to train the model 
without any problems in the near future. 
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