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Abstract: The aim of this study was to establish an early diagnostic system for the identification of
the bone metastasis of prostate cancer in whole-body bone scan images by using a deep convolutional
neural network (D-CNN). The developed system exhibited satisfactory performance for a small
dataset containing 205 cases, 100 of which were of bone metastasis. The sensitivity and precision for
bone metastasis detection and classification in the chest were 0.82 ± 0.08 and 0.70 ± 0.11, respectively.
The sensitivity and specificity for bone metastasis classification in the pelvis were 0.87 ± 0.12 and
0.81 ± 0.11, respectively. We propose the use of hard example mining for increasing the sensitivity
and precision of the chest D-CNN. The developed system has the potential to provide a prediagnostic
report for physicians’ final decisions.

Keywords: bone metastasis; deep learning; hard example mining

1. Introduction

According to a report published in 2018 by the National Health Insurance Research
Database of Taiwan, prostate cancer (PC) is the seventh highest ranking cause of cancer-
related deaths among Taiwanese men [1]. PC has a high degree of osteotropism [2] because
the possibility of metastases is relatively high; however, PC has a slower progression than
many other cancers. According to the American Cancer Society, if PC has only spread to
the bones and not to other organs, radium-223 can be used to help people live longer [3].
If the cancer has grown outside the prostate, preventing or slowing the spread of the
cancer to the bones is a major treatment goal. If the cancer has already reached the bones,
controlling or relieving pain and other complications is an important part of treatment. The
five-year relative survival rate for individuals with PC that has spread to distant lymph
nodes, organs, or the bones is 29% [3]. Patients with only bone metastases can be treated
with hormone therapy, chemotherapy, or radiation therapy. Early identification of PC
metastases is important because therapy can effectively slow metastasis progression at this
stage. One of the current diagnostic media used in clinics for bone metastasis diagnosis
is the whole-body bone scan (WBBS), with the vein injection of the Tc-99m MDP tracer.
The aim of this research was to develop an automated system for helping physicians to
detect bone metastasis in the early stage. In this study, we propose two neural network
(NN)-based systems: (1) an D-CNN-based deep learning technique that can identify bone
metastases in the pelvis as early as possible, and (2) a faster region-based convolutional NN
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(R-CNN) that can identify metastasis spots on the ribs or spinal cord, if any, in the WBBS.
Both these systems aim to help a physician in the early detection of small metastasis.

Small metastases can also be identified by measuring the bone scan index (BSI). The BSI
was proposed in 1998 [4]. A US patent related to the BSI was issued in 2012 [5]. The related
publication of this patent is [6]; however, no description of the measurement technique was
provided in the publication. We only know that in [6], the authors extracted 20–30 features
of the hotspots and used an NN as a classifier. They used 795 patients as the training
group, and the number of hotspots collected was >40,000 for various metastatic cancers
(e.g., prostate, breast, and kidney cancer). The system used in [6] suitably detected hotspots
in certain areas; however, it could not detect hotspots in the large area of bone metastasis
(Figure 3 in [6]). The reason for this result might be that the training data on hotspots were
limited. To the best of our knowledge, no researchers have described a technique for bone
metastasis detection or identification. In [7], the authors used ResNet50 as a backbone
and incorporated the ladder network to form a ladder feature pyramid network (LFPN),
which can use unlabeled data for bone metastasis detection. The mean sensitivity and
precision of lesion detection were 0.856 and 0.852, respectively. For metastasis classification
(four classes) in the chest, the sensitivity and specificity were 0.657 and 0.857, respectively.
The aforementioned study provides useful technical details on metastasis detection and
classification by using deep learning.

The remainder of this paper is organized as follows. The image resources, difficulties,
and models are described in Section 2. The results are presented in Section 3. A discussion
of the results is provided in Section 4, and the conclusions are detailed in Section 5.

2. Materials and Methods
2.1. Materials

No patient preparation was required. Patients underwent whole-body planar bone
scans with a gamma camera (Millennium MG, Infinia Hawkeye 4, or Discovery NM/CT
670 system; GE Healthcare, Waukesha, WI, USA). Bone scans were acquired 2–6 h after
the intravenous administration of 20 mCi of technetium-99m methylene diphosphonate
(Tc-99m MDP) by using a low-energy high-resolution or general-purpose collimator with a
matrix size of 1024 × 256, an acquisition time of 15–20 cm/min, and the photon energy
centered on the 140 keV photopeak with a symmetrical 20% energy window. During
the waiting time and immediately before the scanning, the patients were encouraged
to hydrate and void frequently. The patients were scanned in the supine position and
whole-body anterior–posterior images were acquired for interpretation. All the images
were interpreted using a dedicated GE Xeleris workstation (GE Medical Systems, Haifa,
Israel; version 2.0551).

In this retrospective analysis, 205 WBBS images were collected from China Medical
University Hospital between August 2013 and May 2019. This study was approved by the
Institutional Review Board of China Medical University and Hospital Research Ethics Com-
mittee (CMUH106-REC2-130). All the images were studied by two experienced physicians.
Hotspots were categorized into two types: (1) confirmed metastatic (or positive) hotspots,
and (2) non-cancerous lesions (including degenerative changes and inflammation), and in-
jury (post-trauma). The hotspot classification was confirmed and agreed upon in consensus
by the two experienced nuclear medicine physicians according to the available pathological
examination, relevant medical history, characteristic findings on other advanced medical
imaging modalities (e.g., computed tomography or magnetic resonance image) and/or
serial changes observed in follow-up bone scans. All the 205 patients were PC patients. Of
the 205 patients, 110 had bone metastasis (confirmed by physicians), and the remaining 95
did not have bone metastasis. To make the detection of hotspots with a computer algorithm
easier, we divided the human body into five parts likely to exhibit bone metastasis: the (1)
shoulder, (2) rib, (3) spinal cord, (4) pelvis, and (5) thigh. The number and position of the
hotspots are summarized in Table 1.
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Table 1. Number and position of the metastasis hotspots.

Shoulder Rib Spinal Cord Pelvis Thigh

Confirmed metastasis 315 602 399 311 198
Normal lesion 31 81 39 25 11

The patients were aged between 51 and 92 years, and the average age was 73.9 ± 8.32 years.

The collected WBBS images were in DICOM format, and all private connections were
removed. The spatial resolution of the raw image was 1024 × 512 pixels. The intensity
information of each pixel was saved in 2 bytes.

2.2. Difficulties in Bone Metastasis Detection

A difficulty in bone metastasis detection is the differentiation of normal and metastasis
hotspots. As injury and osteoarthritis may also cause hotspots, differentiating normal,
abnormal, and metastasis hotspots is difficult. For example, injury hotspots may occur
in not only one spot but along some spots in a straight line (on ribs). Osteoarthritis
hotspots might be symmetric on both sides (left and right). Human experts use certain
knowledge to recognize and differentiate hotspots. Such knowledge is non-trivial for
mathematically teaching computers or being embedded into an algorithm in traditional
image processing techniques. Finding efficient features for classification or object detection
is especially difficult.

Radiomics is a traditional method of extracting hand-crafted features [8,9]. Some
parts of [6] were also based on radiomics. The CNN has been used for more than 10 years
to extract features [7,10,11]. The artificial NN provides an alternative method to extract
features. Many studies have indicated that the CNN can extract efficient features automati-
cally during the training phase from numerous training images. In this study, we used the
faster R-CNN [12] and YOLO v3 [13,14] state-of-the-art techniques to identify hotspots. In
contrast to the CNN, the R-CNN and YOLO techniques can be used for more than simply
the classification of an image object. These techniques can be used to detect many objects
of interest in an image. The major differences between these two models is that the R-CNN
series is a two-stage model, while the YOLO series is a one-stage model. We pick them
as representatives for comparison. In the aforementioned techniques, bounding boxes
are used to identify the positions of objects and to classify them instantly (i.e., instance
segmentation). This property is suitable in metastasis hotspot detection and identification.
Figure 1 displays some obtained WBBS images. Figure 1a exhibits no bone metastasis, and
Figure 1b contains some metastasis hotspots.

Figure 1. WBBS images: (a) the patient has no bone metastasis and (b) the patient has some bone
metastasis hotspots on the rib and spinal cord. The pelvis has a large-area metastasis.
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PC might first invade the pelvis and then other sites. Cancer cells may invade the ribs
or spinal cord first. To achieve the goal of early bone metastasis detection, we developed
two D-CNNs: (1) the D-CNN for pelvis bone metastasis detection (named as the pelvis
NN) and (2) the D-CNN for rib and spinal cord bone metastasis hotspot detection (named
as the chest NN). This study was divided into the following stages: (1) image enhancement
and normalization, (2) detection of five body parts, (3) use of the pelvis NN, and (4)
use of the chest NN. In the pelvis NN, only the presence of bone metastasis (yes or no)
was determined; however, in the chest NN, the presence of bone metastasis as well as
the position of metastatic hotspots in the ribs and spinal cord (both segmentation and
classification) were determined.

2.3. Image Preprocessing and Normalization

The normalization of the image size and intensity is an important step prior to image
processing. The acquired WBBS images had large variations in the intensity distribution.
These variations may have been caused by many factors, such as the blood supply of bones,
skeletal (bone) metabolic status, body weight, drug metabolism rate, and leakage of the
radiotracer. Some WBBS images had a suitable intensity distribution; however, some other
images had poor quality. To alleviate this problem, which might cause problems in image
processing, we propose an automated image normalization strategy. This strategy involves
image size and image intensity normalization, which are fully automatic.

2.3.1. Spatial Normalization

A standard WBBS image has two views, namely anterior and posterior views. The
body range is detected using projection profiles, and both views are cut and centered
into an image with a size of 512 × 950 pixels without scaling or any other transformation.
This normalization process has no exception case that does not meet the condition. The
normalized image is named as f (r, c).

2.3.2. Intensity Normalization

The intensity of the WBBS images revealed the absorption of Tc-99m MDP by the
gamma camera. Leakage of the radiotracer and from the urine bag (usually near the femur)
also caused variations in the image intensity. The best method of solving this problem was
to focus on the visibility of the tibia and ignore the remaining body parts. A projection
profile was created along the x-axis. The head projection was on the left part of the profile,
and the leg projection was on the right part. A simple algorithm was created to detect two
local peaks from the right to the left on the right-hand part. By using the aforementioned
strategy, the tibia region can be correctly detected. A linear enhancement is then applied to
the tibia region only (from the knee to the foot) as follows:

b∗ = b ∈ int(1, max( f )),

g(r, c) = 255
f (r, c)

b
, i f

|k(r, c) ≥ a|
|k(r, c) > 10| ≥ Th

where int() converts the number to an integer, k(r,c) is the tibia region, a = 50, |*| denotes
the count number satisfying the “*” condition, and Th = 0.085 is a percentage threshold.
(r,c) is the coordinate representing the row and column. The parameter b is increased
from 1 until the “if ” condition is satisfied. g(r, c) is the intensity normalized image. The
aforementioned enhancement process is performed for image intensity normalization. We
use the raw data (DICOM format) of the WBBS and convert the image to the PNG format
as the input of the D-CNN after image intensity normalization.

2.3.3. Data Augmentation

A large dataset is crucial for achieving a suitable deep learning performance. However,
in this study, we only had a small dataset. Therefore, data augmentation was performed to



Electronics 2021, 10, 1201 5 of 13

improve the model performance. Many methods, such as scaling, shearing, rotating, and
mirroring, can be used for data augmentation. The intensity normalization procedure can
produce one image. According to this normalized image, we can create seven images with
different contrast levels. Let gmax denote the maximal number in the image. Between gmax
and b*, six zones are separated. The length of each zone is z = (gmax − b∗)/7. Furthermore,
linear transformation is used to produce an additional seven contrast images via letting b =
b* + z, b* + 2z, until b* + 7z; the transformation is as follows:

g(r, c) =

{
255 f (r,c)

b , if f (r, c)< b
255, otherwise

Another augmentation method is mirroring. In this method, the anterior and posterior
views are simply mirrored to double the data number.

2.4. Detection of Five Body Parts

We modified the faster R-CNN to a light version. As this network was only used to
detect the five body parts, we resized the image to 160× 200 for the input layer. The output
layer comprises the label and its bounding box. We only selected the best bounding box
for each class and then performed mirror mapping for its anterior or posterior view. In
this study, we used only the chest and pelvis parts as the initial sub-images for next-stage
inputs, such as chest NN and pelvis NN. The network structure is displayed in Figure 2.
The reason why we still need to detect five parts is as follows. The five parts—the shoulders,
ribs, spinal cord, pelvis, and thighs—have a tendency towards having cancerous bone
metastases of prostate and breast cancer. Our final goal is to detect all lesions on these five
parts, although this study focused only on the chest region (including the shoulders, ribs,
and spinal cord) and pelvis.

Figure 2. D-CNN for the detection of five body parts. The proposal layer provides bounding boxes (ROI) for the ROI
pooling to feed forward to its following CNN, which functions as a classifier.
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2.5. Pelvis NN

We only examined whether the pelvis part had bone metastasis; therefore, the output
class had only two categories: yes and no, as shown in Figure 3. We used three CNNs as
the backbone and modified them in the final fully connected (fc) layer. The NN used for
the detection of the five body parts can identify the pelvis part and combine the anterior
and posterior views to form a two-view image as an input image for the pelvis NN. The
input image size was fixed as 112 × 287 × 1 pixels. The NN used for the detection of five
body parts might output pelvis images of different sizes, and the two-view image is resized
to fit the input size of the pelvis NN. In the resizing action, the same scaling is used in the
x-direction and y-direction. The remaining part is padded to zero. The resizing action will
change the original resolution, and different patients have different scaling factors because
their pelvises are different sizes. However, the CNNs are used to recognize if there is any
bone metastasis; therefore, the change in original pixel size does not play an important
role in this stage. Ten-fold cross validation was performed to calculate their sensitivities
and specificities.

Figure 3. Pelvis NN for metastasis classification. We applied three CNN models for comparisons.

2.6. Chest NN

The goals of the chest NN are to detect the positions of hotspots and to classify the
hotspots (normal or metastasis). To achieve these goals, we compared two state-of-the
art methods, namely the faster R-CNN and YOLO v3. The input layer of the chest NN
had a fixed size of 346 × 292 × 3 pixels. The output layer was of two types: (1) one type
comprised three classes and (2) the other type comprised bounding boxes. We designed a
light version of the faster R-CNN for users possessing a single Nvidia GTX 1080 Ti graphic
card. The network structure is displayed in Figure 4. The applied YOLO v3 was from the
original network [13,14] without change.

The input layer had three dimensions. The first and second images were the anterior
and posterior views of the chest, respectively. The third image, B(r,c), was a nonlinear
combination of the anterior and posterior images by B(r,c) = R(r,c) .× G(r,c), where R,
G, B denotes red, green, and blue channel, ‘.×’ denotes pixelwise-multiplication. After
this operation, the blue channel intensity will be increased; therefore, it is normalized
to be in the range [0, 255] (using the uint8() function). In this manner, the anterior and
posterior spatial information was considered. We used grouped convolutional layers so
that the network could compute the separate image. After using three grouped layers, the
three obtained images were combined. Behind each grouped convolution layer, a batch
normalization layer [15] and rectified linear unit were embedded, which are not displayed
in Figure 4.
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Figure 4. Pelvis NN for metastasis classification. We applied three NN models for comparisons.

The faster R-CNN will generate six outputs for every detected object: (width, height,
center x, center y) of a bounding box, label of class, and confidence of classification. More
details can be found in [12].

2.7. Training NN
2.7.1. Hard Negative Mining

Hard negative mining (HNM) is a technique for increasing the specificity performance
and was proposed early in the development of computer vision [16,17]. In this method,
a model is trained with an initial subset of negative examples. Then, negative examples
that are misclassified by this initial model are collected to form another subset of hard
negatives. A new model is trained with this new subset, and the aforementioned process
may be repeated many times. Our strategy is described in the following text. After the
first training, all the training images are fed to the trained network again. A maximum
of three false positives (FPs), which have the highest scores for misclassifying metastasis,
are collected for each image. All the false-positive boxes are then collected to train the
network again.

2.7.2. Hard Positive Mining

A hard positive mining (HPM) approach is proposed in this study to increase the
sensitivity performance. This method is also based on an initial trained model. Some
positives, which might or might not be correctly detected by the initial model, are collected.
We call these positives hard positives because they were not detected or their scores are
very low in case they were detected. The HPM technique was implemented as follows.
According to an initial trained network, all images are fed into the network to determine if
any positive is missing. If a positive is missing, we define its score as 0. Then, all scores of
the detected true positives (TPs) are collected to calculate the training number (tn), which
is defined as follows:

tn =
2

max(score, 0.1)
.

In case a positive is not detected [false negative (FN)], its training number is set to 20.
The lower the score of a hard positive is, the higher the training number assigned to it is.
In the second training phase, the bounding box of each hard positive is randomly “swung”
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at its original local area so that the training pattern is never repeated. The aforementioned
method is also a type of data augmentation but is more efficient and targeted.

2.8. Performance

In the chest NN, many bounding boxes are output and marked as detected metastasis.
These outputs are compared to the boxes marked by physicians manually. We used
intersection over union (IoU) 50 as the threshold to define TPs and FPs. If the output
box overlaps the physician’s manual box by more than 50%, the box is defined as a TP;
otherwise, the box is defined as an FP. If a physician’s manual box is not detected by any box,
the box is defined as an FN. A true negative is not feasible. According to the aforementioned
criteria, the precision–recall curve is suitable for determining the performance of networks.

3. Results

The combined structure of all the CNNs adopted in this study is illustrated in Figure 5.
All the CNN processes are fully automated. The combined network has two stages. In stage
I, a simplified faster R-CNN is used to detect the chest and pelvis area. This R-CNN outputs
the bounding boxes. Then, the area in the box is processed, as described in Section 2.6. The
colored image is input into the stage II NN. In stage II, two types of NN exist: the chest
and pelvis NNs. For the chest NN, we designed a light version of the faster R-CNN, which
can be trained in a personal computer with only a single GPU (Nvidia GTX 1080 Ti) card.
In the chest NN, we used YOLO v3 as the backbone NN. In the pelvis NN, we compared
three NNs: ResNet18, ResNet101, and Inception v3.

Figure 5. Combined structure of all the NNs used in this study. The structure comprises two stages. Scheme 3. Results.

The R-CNN used for the detection of the five body parts could achieve 100% accuracy
according to IoU 90. Identifying the five body parts was straightforward because they were
significantly different.

The performance of the pelvis NN is presented in Table 2. The 205 patients were
divided into ten folds. Table 2 presents the average results of 10-fold training and testing.
We controlled the specificity as 0.81 and compared the sensitivities of the aforementioned
three CNNs. The results indicate that ResNet101 had the best sensitivity among these three
CNNs. Notably, this was the one-time 10-fold cross validation result.

Table 2. Metastasis classification results for the pelvis NN.

Inception v3 ResNet 18 ResNet 101

Sensitivity 0.84 ± 0.13 0.80 ± 0.15 0.87 ± 0.12
Specificity 0.81 ± 0.12 0.81 ± 0.12 0.81 ± 0.11

A total of 85 patients had pelvic bone metastasis, and the remaining 120 patients had no pelvic bone metastasis.
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The performance of the chest NN is presented in Table 3. We compared YOLO v3 and
the simplified faster R-CNN. YOLO v3 was implemented in the Taiwania II supercomputer
(Quanta Computer Inc., Taipei, Taiwan), and the faster R-CNN was implemented in a
personal computer with a single Nvidia GTX 1080 Ti (Nvidia, Santa Clara, CA, USA). We
used 10-fold training and testing to obtain the average of sensitivity and precision. YOLO
v3 had superior performance compared to the faster R-CNN. Moreover, YOLO v3 may
have had a deeper network than our simplified faster R-CNN. However, the simplified
faster R-CNN could be trained in a personal computer with a single GPU card; however,
YOLO v3 could not be trained due to memory limitations. YOLO v3 (Darknet-53) had
53 convolution layers, and the simplified faster R-CNN had only ten deep layers. The
qualitative results of chest NN are shown in Figure 6. In this figure, we see the injury
(post-trauma lesions) are not detected as metastasis, Figure 6d.

Table 3. Metastasis detection and classification results for the chest NN.

Yolo v3 Faster R CNN

Sensitivity 0.82 ± 0.08 0.70 ± 0.04
Precision 0.70 ± 0.11 0.69 ± 0.07

Figure 6. Detection and classification results of the chest NN. All the red marks denote predicted metastasis lesions by the
chest NN (Yolo v3). (a) Case no. 13, TPR = 6/7. (b) Case no. 108, TPR = 8/12. (c) Case no. 127, TPR = 10/10. (d) Case no.
137, FP = 1. (e) Case no. 152, TPR = 8/10. (f) Case no. 165, TPR = 8/9. TPR is true positive rate, FP is false positive.
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The learning parameters used in each CNN are listed in Table 4. Except for the faster
R-CNN, the other CNNs were executed in the Taiwan computing cloud (TWCC) [18].

Table 4. Training parameters of each CNN.

Model Learning Rate Batch Size Epoch

Faster R CNN 0.0001 16 40
Yolo v3 0.000579 32 100

ResNet 18 0.001 8 50
ResNet 101 0.001 8 50

Inception v3 0.001 8 50
Gradient method: ADAM.

Figure 6 displays the detection and classification results for the chest NN (YOLO).
All the red marks were classified as metastasis. Most of the metastasis locations were
correctly detected and classified. Some lesions had low luminance in the image; however,
they exhibited high luminance in the other side, which is not shown in Figure 6. Figure 6d
illustrates four post-trauma lesions, which were correctly detected and classified. The arrow
illustrates the positions of four post-trauma lesions. However, there is a false positive.

We found that using hard example mining increased the detection and classification
performance. In general, HNM increased the precision and HPM increased the sensitivity.
This is a trend that is not guaranteed for every case. Figure 7 illustrates the results obtained
with (blue curve) and without (red curve) the use of hard example mining. Based on the
result shown in Figure 7, we see a tendency that a superior precision might be achieved
when using hard example mining; more experiments can be performed to prove this.

Figure 7. Recall–precision curve. The red curve is obtained without using hard example mining. The
blue curve is obtained using hard example mining. The dots are the experimental results, while the
curve is the curve-fitting of the dots. Please note that the abscissa is reversed by “1-recall”.

4. Discussion

The image normalization process is necessary because it can transform an unclear
bone scan raw image into a visible one. We note that many raw images have less intensity,
meaning that they are not usable for neural network training purposes. The different
contrast levels for data augmentation purposes lead to expanding different mean-intensity
levels. This process is, according to our experience, important and helpful, offering more
information for the faster R-CNN in recognizing small or unclear lesions. We illustrate
some different contrast-level images, as shown in Figure 8. As we increase the intensity, it
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is important to note that the image should not be oversaturated. Based on our experience,
we can control the whole image brightness so that the image will not be oversaturated.
Figure 8 from the upper-left to the bottom-right constitutes seven images with different
levels of contrast. These images are provided as a simulation while the medical doctor is
observing an image. The observer has to change intensity/contrast to see different sites of
potential lesions in order to make a correct diagnosis. This augmentation is important in
providing different views of the same lesion, especially as some lesions might have strong
absorptions and some might not on the same image.

Figure 8. The 7 different contrast-level images were created for data augmentation purpose.

In this study, we proposed the consideration of anterior and posterior images in
3D form to obtain their spatial relation. The third image that should be considered is
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a nonlinear combination of the anterior and posterior views. With the aforementioned
strategy, metastasis lesions appearing in the front view are red and those appearing in the
back view are green. If a lesion has strong absorption of Tc-99m MDP, it would be white.
The proposed network can suitably consider the 3D relation because it takes advantage of
grouped convolution. In previous studies [6,7], such an arrangement has not been used.
Figure 9 provides an example of the 3D formation of a bone scan.

Figure 9. Three-dimensional formation of the anterior and posterior views of a bone scan (the spatial
relation is used in the proposed network).

HNM has been used in previous studies; however, HPM has rarely been used. In
this study, we used HPM for metastasis detection and classification. This technique
provides superior sensitivity in many but not all cases. We believe that HPM is a type of
augmentation technique with a targeted purpose.

18F-Fluoride PET/CT scans (here we shorten it to 18F-Fluoride scans) represent an
alternative way of detecting the bone metastasis of some cancers. 18F-Fluoride scans
can provide 3D information. The maximum intensity projection (MIP) of the volumetric
whole-body images from 18F-Fluoride scans is very similar to planar bone scintigraphy [19].
However, it (MIP) causes similar false positives, such as bone injury and osteophytes, to
those that occur in Tc-99m MDP planar bone scintigraphy. Our model cannot be directly
applied to the volumetric data provided by 18F-Fluoride scans, since it is not designed for
them. However, our model has the potential to be applied to the MIP of the volumetric data
of 18F-Fluoride scans, using some pre-training techniques such as transfer learning [20].

5. Conclusions

We developed a chest NN and a pelvis NN, which can detect and classify metastasis
hotspots. The sensitivity and precision rate for metastasis detection and classification in
the chest were 0.82 ± 0.08 and 0.70 ± 0.11, respectively. The sensitivity and specificity for
metastasis classification in the pelvis were 0.87 ± 0.12 and 0.81 ± 0.11, respectively. The
proposed system can be used to obtain a prediagnostic report for physicians’ final decisions.
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