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Abstract: Saliency, which means the area human vision is concentrated, can be used in many
applications, such as enemy detection in solider goggles and person detection in an auto-driving
car. In recent years, saliency is obtained instead of human eyes using a model in an automated way
in HMD (Head Mounted Display), smartphones, and VR (Virtual Reality) devices based on mobile
displays; however, such a mobile device needs too much power to maintain saliency on a mobile
display. Therefore, low power saliency methods have been important. CURA tried to power down,
according to the saliency level, while keeping human visual satisfaction. But it still has some artifacts
due to the difference in brightness at the boundary of the region divided by saliency. In this paper,
we propose a new segmentation-based saliency-aware low power approach to minimize the artifacts.
Unlike CURA, our work considers visual perceptuality and power management at the saliency level
and at the segmented region level for each saliency. Through experiments, our work achieves low
power in each region divided by saliency and in the segmented regions in each saliency region, while
maintaining human visual satisfaction for saliency. In addition, it maintains good image distortion
quality while removing artifacts efficiently.

Keywords: saliency; segmentation; low power; mobile display

1. Introduction

The human visual system does not have the same interest in all areas of an image.
Visual attention is focused on objects or areas in which visual characteristics such as
brightness and color are clear. Using these visual features, it is possible to calculate the
degree of focus on a specific pixel in an image, and this is called saliency. There are two
ways to extract saliency from an image: a user study method using an eye tracker and a
saliency model applying the theory of prior experiments and visual features.

The eye tracker can track the movement of the pupil to the experimenter and measure
the time the pupil stays for a specific pixel in the image. Nemoto extracted FDM (Fixation
Density Map) from the image by dividing concentration on the sight, simple blinking, and
movement of the eye by the time the pupil stays [1]. When determining the performance
of the saliency model, the performance of the model can be determined by using the
FDM as ground truth. Since FDM extracts saliency using a user study, it is impossible to
calculate saliency for the images unused in a user study. Thus, we use a saliency model
that calculates saliency using image pixel values automatically.

A pioneering saliency model is the Itti model [2]. It extracts color, brightness, and
motion as visual features through a Gaussian filter and a Gaber filter using a feature
integration theory [3], which is a biological feature in human vision, and compares the
visual features with surrounding pixels to calculate image saliency. Starting with the Itti
model, various saliency models, such as CovSal [4], Judd [5], and WMAP [6], have been
developed. Among them, the CovSal model is used as a model to extract image saliency in
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this paper because it has higher saliency extraction performance and lower computational
complexity than other models that use relationship to pixel values.

Since the saliency technology complements the limitations of human vision by using
information on the location where vision is concentrated, it can be applied in various
ways in the military field. In particular, the saliency technology is being used variously
in HMD (Head Mounted Display) applications where interactions with the visual system
are important. Researchers of the University of Mumbai, India, conducted a study on the
Advanced Military Helmet, which displays all information related to the battlefield on a
single screen by integrating augmented reality models using various wireless communica-
tion technologies and saliency into the helmet [7]. Researchers of the PLA Army College
of Engineering in China proposed an object detection method through the combination
of human visual salience and visual psychology to quickly and accurately detect military
objects on a vast and complex battlefield [8]. As such, the saliency technology can be
applied to HMD to complement the limitations of human vision and provide integrated
battlefield information. However, since soldiers rely on batteries for power supply on the
battlefield, a low power technology that maintains saliency is very necessary in mobile
devices using batteries such as HMDs.

CURA [9], the most recently studied low power saliency study, is a mobile display
low power technique that divides an image according to saliency and then uses a different
display low power constant depending on the area. CURA uses JND (Just Noticeable
Difference) to solve the problem of brightness difference caused by the low power technique
applied differently for each divided area. When there is a difference in brightness in the
area, CURA uses JND to adjust so that the user does not recognize the difference in area.
However, if you look at the video provided by CURA, some artifacts, which are made by
the difference in brightness between regions, can be seen even if JND is used.

In order to improve such a problem, this paper proposes a new low power method
that utilizes a saliency model and an image segmentation algorithm that divides an image
into multiple objects. To this end, our method combines two saliency processing levels:
saliency level and pixel level synergistically. First, an image is divided into multiple regions
with the same saliency level using the saliency model. Second, each saliency region is
divided into subregions with the same pixel level using the segmentation algorithm. Then,
a low power and high visual-quality pixel conversion is fulfilled using a well-known IQA
(image quality assessment) index and gamma correction at all regions with the found both
levels adaptively. As a result, our method can achieve low power and high human visual
satisfaction and mitigate artifacts unlike CURA.

The rest of this paper is organized as follows. Section 2 describes related work such as
saliency models, segmentation, and low power technology. In Section 3, the motivation
and contributions are remarked. In Section 4, the proposed low power saliency method
is described. In Section 5, the proposed low power method and existing methods are
compared through experiments in the aspect of power saving and distortion. Finally,
Section 6 concludes with a summary.

2. Related Work
2.1. Saliency Model

Various saliency models that calculate saliency using the relationship of current pixel
values have been proposed, and the performance of this saliency model is compared
through similarity with the FDM indicating the degree to which the gaze extracted from
the eye tracker stays. Representative saliency models are Itti [2], CovSal [4], Judd [5], and
WMAP [6]. The Itti model [2] is a representative saliency extraction model. Based on the
detailed feature integration theory [3], the saliency is extracted by using the difference
in color, brightness, and motion at the center and around. The Judd model [5] includes
LabelMe Toolbox [10], Itti and Koch Saliency Toolbox [11], Felzenszwalb car and person
detectors [12], Viola Jones Face detector [13], Steerable pyramids code [14], and five sub-
models. In each model, saliency is extracted at the upper (face, human), middle (object), and
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lower (bright area) levels. Fernando’s WMAP (Weighted Maximum Phase Alignment) [5]
extracts saliency by combining SIFT [15], which is not affected by image size and rotation
among feature extraction models, and SURF [16], a SIFT performance improvement model.
The CovSal model [4] extracts a saliency map from an image using a covariance descriptor
that calculates nonlinear integration of features in the image.

The performance of the saliency model can be evaluated compared with FDM using
evaluation matrices such as SIM, CC, NSS, AUC, IG, KL, and EMD [17]. Among them, SIM,
CC, and NSS have a high correlation with human visual satisfaction. In this paper, since
the CovSal model has higher SIM, CC, and NSS values than other models, we select it.

2.2. Mobile Display Low Power Method

As display power consumption increases in devices such as smartphones and HMDs
that use limited batteries, a low power display technique is essential. As shown in Figure 1,
the power consumption of mobile displays varies according to the values of R, G, and B
channels [18]. Therefore, it is possible to increase the efficiency of the display low power
technique by adjusting the low power technique according to color rather than simply
reducing the pixel value of the entire image.
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Figure 1. Display power consumption of a Galaxy S3 smartphone when a different single color is
displayed on the screen: Red, Green, Blue, and White. R + G + B means the simple sum the power
consumed when Red, Green, and Blue colors are displayed independently.

Anand et al. proposed PARVAI that saves power of the display while maintaining
visual satisfaction by adjusting the value of the B channel with high power consumption
using the difference in power consumption according to R, G, and B [19]. But the PARVAI
method causes color distortion that can be observed with the naked eyes because the
B-channel value is too low to save power [20]. Lin et al. proposed CURA, a low power
technique that maintains visual satisfaction through different low power processing for
each area divided into five areas using the Itti model. To maintain visual satisfaction,
CURA tried to reduce distortion by considering JND between regions. However, in the
video provided by CURA, artifacts, which are distortions caused by applying different low
power techniques for each area, are observed clearly.

In this paper, the power savings of the low power technique are compared by calcu-
lating the mobile display power using the mobile display power model, Hong’s power
model [21].

2.3. Segmentation

Image segmentation partitions an image into multiple segments or objects which
are sets of pixels. In recent decades, a lot of image segmentation techniques have been
researched. They are categorized into color-based segmentation, semantic segmentation,
panoptic segmentation, panoramic segmentation, and so on. Color-based segmentation
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by using R, G, and B channels or their transformations has been widely studied due to its
effectiveness [22]. With the advent of RGBD cameras, such as Kinect, color segmentation
with the depth information has been studied. Especially, ACNet [23] considered that
RGB and depth images contain unequal information as well as different context distribu-
tions. Including color-based and RGBD segmentation, abundant semantic segmentation
approaches have been researched [24], which clusters parts of an image into the same
object. Recently, deep neural networks (DNNs) are widely used for semantic segmentation.
Meanwhile, a new kind of segmentation named panoptic segmentation [25] has emerged,
which combines semantic segmentation and instance segmentation. Panoramic semantic
segmentation targeting panoramic images, which have a large field of view (FoV), is also
being researched [26]. This approach is expected to expand the visual range and provide
the continuity of semantic information.

Meanwhile, in the aspect of application, image segmentation is geared towards appli-
cations on mobile devices, such as HMD devices, recently. Especially, in [27], pixel-wise
semantic segmentation was employed to improve the mobility of visually impaired people.
In [28], they suggested semantic labeling to improve navigation outcomes for prosthetic
vision users. We believe that advanced segmentation techniques will be useful for people
with impaired vision more and more.

In our work, we tackle employing color-based segmentation within the same saliency
area since each segment consists of pixels with the similar pixel value, dealing with the unit
of a segment can be power-efficient in the aspect of power management. Through various
experiments, we selected the SLIC superpixel algorithm [29] to divide the objects efficiently,
according to the pixel value, and reduce additional operations. The SLIC superpixel
algorithm [29] is a method of classifying images according to color and position using the
image and the number to be segmented. If the input number K and the total number of
pixels in the image are N, the image is divided into square superpixels with a side length
of S =

√
N/K and the center of each square is designated as the search center. As for the

color and space distance, which is the basis of the search, the center pixel and the Lab color
space distance and the pixel distance are calculated, and Figure 2 shows an original image
and the resultant image changed by the SLCI superpixel method.
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Since mobile display power consumption varies according to R, G, and B values, a
low power technique using the SLIC algorithm can be designed. However, if the SLIC
algorithm is used in a segmented area using saliency directly, it is impossible to divide
within saliencies because other areas are not excluded from its own search process. In this
paper, to solve this problem, we propose a method of adjusting the initial search position
in the SLIC algorithm in order to exclude pixels corresponding to other areas.

3. Motivation and Contributions

The saliency map calculated using the image pixel values can tell which area the
human vision is concentrated. Therefore, there is a need for a study on an efficient method
for a low power method that maintains visual satisfaction while dealing with the saliency
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map information efficiently. Looking at the example image as shown in Figure 3a, the
simplest way to implement low power is to perform global dimming using a single gamma
as shown in Figure 3b. However, since global dimming is a method that ignores saliency,
visual satisfaction tends to be low. In addition, even if they have similar visual satisfaction,
they have a low power-saving rate because the feature is not considered in the bright area.
Figure 3c is a saliency-aware method for advanced low power and visual satisfaction like
CURA. By applying different gammas according to the saliency, the visual satisfaction is
high and the power saving rate is high. However, since the saliency-aware method applies
a different gamma to each region, it is necessary to adjust the brightness difference between
regions resulting from the difference in gamma.
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CURA [9], a recently studied low power saliency-aware technique, proposed a
saliency-aware low power technique using JND between regions. CURA divides the
image into 5 areas using the Itti model [2] among the saliency models. When dividing
the image, the number of pixels in each region is the same. Then, based on SSIM [30],
different low power techniques are implemented in each area. It is claimed that JND solves
the artifact problem occurring at the boundary of the regions due to different low power
levels. However, as shown in Figure 4c, the difference in brightness due to the different
gammas can be observed between the bat held by the man and the landscape clearly. This
observation indicates that there is a limitation of using saliency only for low power and the
fine-grained segmentation within a saliency region is highly required.

Thus, in this paper, we tackle proposing a low power mobile display technique that
maintains high human visuality and high power saving by dividing an image into saliency
regions and their objects through two-level image clustering. We also aim at mitigating
artifacts which occurred in prior work. Specifically, we implemented (1) partitioning
between saliencies using the CovSal saliency model and (2) partitioning within saliencies
using the SLIC superpixel algorithm [29].
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The contributions of this paper are summarized as follows:

• We propose the first work combining a saliency level and a pixel level for better both
low power and human visual satisfaction;

• In order to determine a proper number of saliency clusters in the aspect of low power and
computing overhead, we devise four new factors based on the CovSal saliency model;

• In order to overcome the limitation that the SLIC superpixel algorithm cannot distin-
guish the areas divided in a saliency area, we devise a method of adjusting the initial
search position in the SLIC algorithm in order to exclude pixels overlapping by other
areas for better segmentation in each saliency area;

• Compared to prior work, artifacts are suppressed efficiently by using a high-performance
saliency model combined with pixel-level segmentation and a well-known image quality
assessment index while achieving low power consumption.

4. Proposed Low Power Saliency Method
4.1. Overview of the Proposed Method

Figure 5 shows the overall flow of the proposed low power saliency method. First,
our method finds the region of interest in the image using the CovSal saliency model and
calculates the following four factors: (1) the sum of the pixel values in the CovSal saliency
map; (2) the CovSal saliency map histogram gradient change rate; (3) the highest section
pixel in the 10 sections of the CovSal saliency map; (4) the number of pixels with a pixel
value of 0 in the CovSal Saliency Map. The image is divided based on these four factors.

Second, our method finds the row and column with color data in the CovSal saliency
cluster divided based on the CovSal saliency. Next, it corrects the image by centering the pixel
with the color value for the column and setting the pixel value to 0 for the rest of the column.
Our method divides the image corrected in the previous step into a 50 × 50 square, and then
sets the pixel with color data as the initial search position in the image whose pixel value is
corrected at the center of the square. Then, since the image is segmented for the purpose of
low power, pixels with zero brightness in the image are excluded because they do not affect
the power. As a result, the image is divided into superpixels according to the CovSal saliency
to implement two-stage division at the saliency level and the superpixel level.
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Finally, SSIM, which is an image quality evaluation index, is set, and the SSIM index
for the superpixel is set step by step by dividing it by a log scale in the target SSIM section
using the brightness value of each superpixel divided in the CovSal saliency cluster. Then,
based on the SSIM index set for each superpixel, the pixel value is compared to the image,
and the converted low power coefficient is calculated for the pixel value implementing
the target SSIM using a lookup table having the corresponding SSIM index. A low power
image is implemented by adjusting the pixel value based on the superpixel using the
previously calculated low power coefficient.

4.2. Clustering Based on the CovSal Saliency Model

In this paper, we use the CovSal model to discriminate saliency. This is because it has
higher performance in the SIM, CC, and NSS evaluation matrices [17], which are highly
correlated with human visual satisfaction, compared to the Itti model [2] used in CURA [9].
The CovSal model extracts the saliency map using the feature covariance calculated by
changing the size of the patch by using the absolute value of the pixel Lab value, the pixel
top-bottom, and left-right brightness difference as features. In the CovSal saliency map,
values 0 to 255 are assigned for each pixel in Figure 6a as shown in Figure 6b.
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Using CovSal, it is very important to determine the number of proper clusters in the
saliency map. If the number is small, we will have little chance for low power. Otherwise,
we will have big overheads to make the pixels of many saliency areas into low power ones.
Thus, we devise a noble method to determine the number of clusters based on the CovSal
model properly. For saliency-based image clustering using CovSal, the number of CovSal
saliency clusters is determined by calculating the following four factors: (1) Sum of pixel
values in the CovSal saliency map; (2) Gradient of the CovSal saliency map histogram; (3)
The number of pixels in the highest section among 10 sections of the CovSal saliency map;
(4) The number of pixels with a pixel value of 0 in the CovSal saliency map.

Among the four values, the number of pixels with a pixel value of 0 in the saliency
map is applied as a factor that decreases the number of CovSal saliency clusters when
the number is large. When there are multiple objects that attract attention in the CovSal
saliency map, the movement of the gaze is frequent, and thus pixels with a pixel value of 0
are rare in the saliency map. If there are many pixels with a pixel value of 0 in the saliency
map, there are few objects that attract attention, so the movement of the gaze is small.
Since there is little gaze movement, a small number of CovSal saliency clusters is suitable.
Specifically, in order to determine the number of clusters through a lot of experiments, we
suggest that the number of pixels whose pixel value of the CovSal saliency map is 0 in the
data set is divided by the resolution of the image and standardized. In our algorithm, if
the number of pixels with a pixel value of 0 in the standardized CovSal saliency map is
greater than the average in the Nemoto [1] data set, the number of clusters divided using
the CovSal saliency map is reduced.

Conversely, the remaining three factors are applied so that they increase the number
of saliency clustering when their values are large. That the sum of pixel values in the
CovSal saliency map is large means that the gaze is not concentrated in one place, and
there are several objects that attract the gaze, so gaze is concentrated across multiple areas.
Since various objects exist in the image, the number of CovSal saliency clustering must
be increased. In addition, in general, the histogram on the CovSal saliency map has a
downward sloping shape. This is because there are few areas of the image that attract
attention and are mostly backgrounds. Therefore, if there is an upward sloping shape
instead of a downward sloping one in the histogram, this means that there are many objects
that attract attention, so the number of CovSal saliency clustering should be increased.
Finally, when the CovSal saliency map is divided into 10 sections, the last section becomes
a section with a pixel value of 231 to 255. The large number of pixels with pixel values in
this section means that the gaze is concentrated in several places; therefore, the number of
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CovSal saliency clustering should be increased. To determine a specific number of CovSal
saliency clustering, the three factors are normalized when divided by the resolution and
compared to the values in the data set. The number of CovSal saliency clustering increases
when the value of the three factors in the image is larger than the average of the values of
the three factors in the Nemoto [1] data set.

Using the four factors described above, CovSal saliency map clusters are divided into
from 3 to 7 levels. In the CovSal saliency map, the number of pixels with a pixel value of
0 tends to be larger than that of pixels with a non-zero pixel value. Therefore, in CovSal
saliency clustering, except for pixels with a pixel value of 0, the other clusters are adjusted
so that the number of pixels in each cluster is similar. Figure 7 shows an image segmented
by using the proposed CovSal saliency clustering method. It is divided into four clusters
based on the four factors described above. The number of CovSal saliency clusters, which
is the division criterion, is adjusted so that the number of pixels is similar for each divided
cluster. Among the four images, the cluster has a higher saliency level from left to right.
The leftmost cluster has more pixels than other clusters because saliency includes an area
with a pixel value of 0.
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4.3. SLIC Superpixel Segmentation

When SLIC [29] is performed in the region divided by CovSal, pixels of the region
divided by each CovSal saliency cluster are not excluded from the search process of SLIC.
This is because the pixels in the different CovSal saliency cluster are considered to be black
pixels (i.e., pixels with a pixel value of 0) in the SLIC algorithm. In addition, the initial
search position of the SLIC algorithm is centered on each square after dividing the image
into squares by the number of inputs. Therefore, if the search center is a different saliency
area, the pixels of the corresponding area may not be clustered. As can be seen from Figure 8,
the original SLIC algorithm cannot be divided according to color in the saliency clusters
divided by CovSal. Since the original SLIC superpixel algorithm does not recognize the
area divided by CovSal saliency and divides the image based on color, the area divided
into other clusters is recognized and divided as an area with a pixel value of 0 as shown in
Figure 8. The first and fourth images are divided to some extent based on color because the
image is concentrated at the border or center. However, in the second and third images, the
saliency clusters of the pixels are formed in a ring shape, so the result of applying the SLIC
superpixel cannot be divided according to the color, which means that each superpixel has
different color pixels.
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Figure 8. Superpixels of CovSal clusters.

In order to overcome the limitations of the SLIC algorithm [29] in the CovSal saliency
cluster, it is necessary to perform segmentation by separating pixels in each cluster from
pixels with 0 values during the segmentation process. In addition, the initial search location
should be set within the divided area through CovSal saliency clustering rather than in the
entire image as is done by SLIC.

Table 1 is a CovSal clustering compression algorithm that removes regions without
color values in the middle because they have different saliency levels. After finding the row
and column with color data in each CovSal saliency cluster (lines 1–3), this algorithm finds
the width of the row of the region with color values in the cluster and set it as the width of
a compressed image which will be created. For each row of the region with color values,
the number of columns of the region with color values is calculated and the maximum
number of columns is set as the height of a compress image (lines 4–6). Since the number
of columns of the region with color values is different for each row, it places the color value
in the middle (lines 7–9) and fills the rest with 0 to create a compressed image of the CovSal
saliency cluster, as shown in Figure 9.

Table 1. CovSal cluster compressing algorithm.

Input: IS (CovSal saliency cluster image)
Output: Icom (Compressed CovSal cluster image)

1: rc(i) = row location of i th image color data row
2: Cc(i, j) = location of (i, j) th image color data
3: rn(i) = number of i th row image color data column
4: FOR i = 1: number of rc
5: Start = max(rn(i)) − rn(i)
6: FOR j = 1: rn(i)
7: Icom (rc, Start) = IS(rc(i), Cc(rc(i), j))
8: END FOR
9: END FOR
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Figure 9. Compressed CovSal clusters.

Each image in Figure 9 is the result when the algorithm in Table 1 is applied to each
one in Figure 7. Previously, Figure 8 shows that the original SLIC superpixel algorithm tries
to segment according to color, but it fails to consider color in each CovSal saliency cluster.
To overcome such problem, Figure 9 shows the result of correcting the image by applying
the algorithm in Table 1 to improve the segmentation performance of the original SLIC
superpixel algorithm. As a result of the correction, the image was divided into different
regions, connecting the upper and lower pixels to the pixel with a pixel value of 0, forming
an image as if it was pressed from the top. The fourth image is similar to that of Figure 7
because there are few areas divided into other areas in the middle of the image, but the
other images have big differences from those of Figure 7.

Table 2 shows an algorithm for adjusting the initial search position in the process of
segmenting an image using superpixels in a compressed CovSal cluster. First, with the
CovSal cluster compression algorithm, the compressed image from which the pixels with
different saliency levels are removed is divided into a 50 × 50 pixel square (lines 1–2).
Based on the center of the square, the algorithm checks whether the area in the compressed
image has no color value and sets the center as that of the search position (lines 3–9). From
a low power point of view, pixels with zero brightness in the image are excluded from
the superpixel search process because they do not consume power. Figure 10 shows the
result of segmenting an image, according to saliency and color, using both the cluster
compression algorithm applied to the clusters divided by CovSal and the initial position
search algorithm for superpixels in each CovSal cluster. Unlike the existing SLIC superpixel
algorithm [29], it can be seen that the image is divided according to color in the same cluster
area divided by CovSal saliency.

Table 2. Initial position search algorithm for superpixels in a compressed CovSal image.

Input: Icom (Compressed CovSal cluster image)
Output: C (Compressed image superpixel search center)

1: rnum = (row of Icom)/50
2: Cnum = (column of Icom)/50
3: FOR i = 1: rnum
4: FOR j = 1: Cnum
5: IF center of (i, j)th 50 × 50 square of Icom! = 0
6: C = center of (i, j)th 50 × 50 square of Icom
7: END IF
8: END FOR
9: END FOR
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Figure 10. CovSal cluster divided by the proposed superpixel method based on color.

Figure 10 shows the result of dividing the image according to color using the proposed
superpixel algorithm for clusters separated by the CovSal saliency model. Compared with
Figure 8, it can be seen that the segmentation performance according to color is improved.
In particular, it can be seen that each cluster is well divided based on color compared to
Figure 8 in the cluster areas divided according to the CovSal saliency model in the latter
three images, which are divided into different areas and have a lot of pixels with the value
0. Now, it is possible to implement a low power technique in which applies different low
power policies according to different colors within each cluster region while its saliency
is maintained.

4.4. Low Power Image Generation

After dividing the image into CovSal saliency areas and then segmenting each saliency
area into multiple superpixels based on color, different low power policies are implemented
for each superpixel according to the saliency level, brightness, and average values of R, G,
and B. For fair comparison with CURA [9], the image distortion degree by the low power
technique is evaluated by the SSIM [30] index in the same way as CURA. Using multiple
grayscale images, the SSIM indices are calculated to make up lookup tables according
to the degree of pixel value change while their brightness changes. The lookup table is
used to calculate a low power constant for gamma correction, which corresponds to the
desired SSIM index. Since an image has different power consumption depending on the
R, G, and B channel values, a low power constant is calculated in consideration of this.
Especially, human vision is sensitive to changes in bright areas, and sensitivity decreases
in a log scale as brightness decreases [31]. Therefore, the minimum and maximum SSIM
values are set for the degree of distortion according to the number of saliency clusters and
a required SSIM value is calculated in a log scale according to the saliency level. For R, G,
and B channels, each required SSIM value are calculated in the same way and then each
low power constant is calculated using the overall SSIM value and SSIM value per channel
by reflecting the ratio of brightness of each channel over luminance.

5. Experiments and Result
5.1. Comparision of Low Power Methods

In order to compare the proposed method with existing low power methods, FSIMc [32]
and Hong’s display power model [21] are used. FSIMc is an index which evaluates temporal
satisfaction in black and white images, in color images [32]. It is an evaluation index created
based on the characteristics that the human visual system mainly understands images accord-
ing to low level characteristics. FSIMc can evaluate the degree of color distortion, which is
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not considered in SSIM. Hong’s power model [21] accurately calculates the display power by
considering all three channels of R, G, and B and dependence between channels.

The global dimming method was implemented for mobile displays using the same
pixel change ratio in all areas, and the saliency-aware method was implemented by apply-
ing different low power policies (that is, constants for gamma correction) over the saliency
areas divided by using the CovSal saliency model. In order to compare the proposed
method with the global dimming and saliency-aware methods, 15 images in Nemoto data
set [1] were used and the image quality and power saving were calculated using FSIMc
and Hong’s power model. As can be seen in Table 3, the proposed method achieves a
bigger FSIMc index and a 3.2% higher power saving rate than global dimming. The reason
for this difference is that brightness and saliency are different for each image area, but the
global dimming method does not take this into account and implements low power by
using the same pixel change ratio in all areas. Therefore, the global dimming method does
not maintain saliency and has a lower power saving rate than the proposed method.

Table 3. Comparison of power savings and FSIMc.

Global Dimming Saliency-Aware Proposed Method

SSIM index 0.95 0.94 0.95

FSIMc index 0.9823 0.9723 0.9826

Power saving rate (%) 38.76 40.33 41.90

The saliency-aware method complemented the limitations of global dimming by
applying different low power constants according to the saliency. However, even in the
same saliency area, objects with different brightness and color exist. Since the saliency-
aware method does not distinguish these objects, it has lower power saving rates and visual
satisfaction than the proposed method. In Table 3, the saliency-aware method has a lower
FSIMc index by 0.0103 and a 1.5% lower power saving rate than the proposed method. Also,
since objects with different colors in the same saliency area are not considered, artifacts are
observed due to the difference in brightness, as shown in Figure 11c.
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5.2. Comparison with CURA

FSIMc and Hong’s power model are also used to compare the performance of the
proposed method and CURA. The four test images were obtained from the video provided
by CURA [9]. As shown in Figure 12, when we compared the images of the first column of
CURA and the proposed method, we can notice that the contour of the man with a bat is
clearer and the visual satisfaction of the proposed method is higher that of CURA. Also,
CURA shows artifacts caused by brightness differences between the saliency regions while
the proposed method does not. Similar observations can be found in the other images,
which CURA and the proposed method are applied to.
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In Table 4, the proposed method shows the same result with CURA in comparison
with the SSIM index. But, for the FSIMc index, the proposed method shows a better result.
This is because the proposed method employs different low power constants by reflecting
the different effects of R, G, and B channels over the overall luminance of the display
and FSIMc recognizes the color change. Also, the proposed method achieves a 2% higher
power saving rate than CURA, since it uses superpixels to classify images according to
color. We believe that the proposed method of the differences between saliencies and
within saliencies has higher performance than CURA, while CURA considers the difference
between the saliencies. Due to the limitation of the original SLIC algorithm, the proposed
method cannot completely segment along the boundary of the object. If the superpixel
performance of segmenting along the image boundary is improved, the proposed method
is expected to have higher performance compared to CURA.

Table 4. Comparison of image quality indices and power savings.

CURA Proposed Method

SSIM index 0.95 0.95

FSIMc index 0.9812 0.9826

Power saving rate (%) 39.47 41.90

6. Conclusions

In this paper, we proposed a new segmentation-based saliency-aware low power
approach by dividing images into saliencies using the CovSal saliency model and then
dividing each saliency into superpixels using the SLIC superpixel algorithm. Through
experiments, the proposed method shows bigger FSIMc indices and higher power saving
rates than the global dimming and saliency-aware methods. Compared to CURA, the
proposed method considers the image quality better by applying a technique that mini-
mizes the distortion of the image quality and color change within the saliency areas. As a
result, the proposed method shows better image quality, higher power saving rates, and no
artifacts unlike CURA.

As future work, we plan to implement the proposed method in HMDs and tackle
performance improvement in the aspect of a system. Especially, we will focus on improving
the performance of SLIC superpixels. Also, we will consider using instance segmentation
techniques such as YOLACT [33].
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