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Abstract: The emergence of quantum computers is threatening the security of cryptography through
various quantum algorithms. Among them, the Grover search algorithm is known to be efficient
in accelerating brute force attacks on block cipher algorithms. To utilize the Grover’s algorithm
for brute force attacks, block ciphers must be implemented in quantum circuits. In this paper, we
present optimized quantum circuits of the SPN (Substitution Permutation Network) structured
lightweight block cipher, namely the PIPO block cipher. In particular, the compact design of quantum
circuits for the 8-bit Sbox is investigated. These optimization techniques are used to implement other
cryptographic operations as quantum circuits. Finally, we evaluate quantum resources of Grover
search algorithm for the PIPO block cipher in ProejctQ, a quantum simulator provided by IBM.

Keywords: quantum computers; cryptography; grover search algorithm; PIPO; quantum resources

1. Introduction

International IT (Information Technology) companies, such as Google and IBM, are
investing in the development of quantum computers. Quantum computers use qubits
with a superposition property that allows states of 0 and 1 at the same time with the
certain probability. Through this property, n-qubit in superposition state can express 2n

cases and has the advantage of parallel processing. Quantum computers are expected to
have strengths in fields of deep learning, chemistry, and simulation due to their parallel
computing abilities. However, the computational power of quantum computers poses
a huge threat to cryptography. Representative quantum algorithms threatening block
cipher and public key cryptography are Grover’s algorithm [1] and Shor’s algorithm [2],
respectively. Large-scale quantum computers using Shor’s algorithm can solve factorization
and discrete algebra problems within a polynomial time. If quantum computers with large-
scale qubits arrive, ECC (Elliptic Curve Cryptography) and RSA (Rivest–Shamir–Adleman),
which are widely used in asymmetric key cryptography based on these mathematical
problems, are no longer available. Currently, there are no large quantum computers that can
break RSA and ECC, but companies are launching quantum computers that use more qubits
than ever. NIST (National Institute of Standards and Technology) is working to standardize
asymmetric key cryptography https://csrc.nist.gov/projects/post-quantum-cryptography
(accessed on 13 May 2021) that can replace RSA and ECC in the preparation for attacks by
large quantum computers.

The Grover search algorithm accelerates brute force attacks against symmetric key
cryptography. The n-bit security level of symmetric key cryptography is reduced to the
n/2-bit security level on quantum computers using the Grover’s algorithm. For example,
the key-recovery attack on full AES are based on biclique attack [3]. The attack is faster than
the brute-force by a factor of about four. To recover an AES-128 key, this attack requires
2126.2 operations. In Reference [4], the result has been further improved to 2126.0 for AES-128.
For the case of Grover search algorithm, the complexity is only 264 for AES-128. To operate
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the Grover’s algorithm on quantum computers, target symmetric key cryptography must
be implemented in a quantum circuit. For this reason, studies have been conducted to
optimize and implement symmetric key ciphers into quantum circuits. Starting with the
implementation of the most widely used symmetric key cipher, such as AES [5–7], this
research area has recently expanded to lightweight block ciphers [8–12].

In quantum circuit implementations, qubits, quantum gates, and circuit depth are key
factors of the optimization. There are trade-offs among three optimization factors, such
as reducing the use of quantum gates instead of increasing the use of qubits. If quantum
computers that can use a number of qubits, it will be beneficial to increase qubits and
reduce the circuit depth or quantum gates. However, using a large number of qubits is
currently impossible at the quantum computer development level. The most ideal case is
to optimize both qubits and quantum gates.

In this paper, we implement the SPN structured lightweight PIPO block cipher [13] on
quantum computers for the application of the Grover search algorithm. When implement-
ing SPN structured block ciphers as quantum circuits, optimizing the substitution layer
is the main issue [6,7,14,15]. The PIPO block cipher uses 8-bit Sbox with the unbalanced-
bridge structure. If the Sbox operation of PIPO block cipher is implemented in a quantum
circuit straightforwardly, many qubits should be needed. However, we achieve the optimal
number of qubits by remodeling the Sbox of PIPO block cipher. Furthermore, other PIPO
operations are also optimized and optimal PIPO quantum circuits are obtained. Finally,
based on the proposed PIPO quantum circuit, the cost of the attack for key search using
the Grover’s algorithm is estimated through the quantum simulator of the ProjectQ.

Contribution

• The first optimized implementation of the PIPO block cipher in quantum circuits:
This paper is the first work that implements and optimizes the PIPO block cipher in
quantum gates. We efficiently implement the PIPO block cipher as a quantum circuit,
which was optimized in terms of qubits, quantum gates, and circuit depth.

• Compact design of substitution layer for quantum computers: When implementing
SPN-structured block ciphers as quantum circuits, it is important to optimize the
substitution layer. In this paper, we implemented the 8-bit wise substitution layer of
the PIPO block cipher to the optimal number of qubits and quantum gates.

• Quantum resource estimation of Grover search algorithm on PIPO block cipher: The
quantum programming tool IBM ProjectQ [16] is utilized to implement the PIPO block
cipher in quantum circuits. Based on this, we evaluate quantum resources for using
the Grover search algorithm to the PIPO block cipher.

2. Related Work
2.1. PIPO Block Cipher

In ICISC’20, a lightweight block cipher based on the innately bitslicing Sbox was firstly
proposed [13]. The new Sbox has an unbalanced-bridge structure, which uses an 8-bit
Sbox by combining 3-bit Sbox and 5-bit Sbox. They used these smaller Sboxes to design an
efficient and secure Sbox. The approach also supports the bitslicing method in nature. The
PIPO block cipher supports 64-bit plaintext and 128-bit (i.e., 13 rounds) or 256-bit keys (i.e.,
17 rounds). The notations used in this paper are explained in Table 1.

Table 1. Descriptions of notations in this paper.

Notation Explanation

⊕ XOR operation
& AND operation
∨ OR operation
¬ NOT operation

≪ i Rotation left operation by i-bit
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2.1.1. Encryption of PIPO Block Cipher

Each round consists of AddRoundkey, Substitution layer, and Permutation layer.
Before starting rounds, the first 64-bit of the master key is used as the round key (i.e.,
whitening key) and are XORed to the plaintext. The encryption structure of the PIPO block
cipher is shown in Figure 1.

Plaintext

Permutation

Substitution Keyschedule

.

.

.

Permutation

Substitution

.

.

.

Key

AddRoundkey

AddRoundkey

Ciphertext

1 Round 
AddRoundkey

Figure 1. Encryption structure of PIPO.

2.1.2. AddRoundkey and Keyschedule of PIPO Block Cipher

In the AddRoundkey operation, the 64-bit round key (RK) generated from the master
key (K) is XORed to the 64-bit block (B). The PIPO block cipher uses simple Keyschedule
operation to generate round keys. In the 128-bit key version, round keys are generated
as RKi = Ki mod 2 ⊕ i(i = 0, 1, 2, ..., 13), and RK0 is the whitening key. In the 256-bit key
version, round keys are generated as RKi = Ki mod 4 ⊕ i(i = 0, 1, 2, ..., 17), and RK0 is the
whitening key.

2.1.3. Substitution Layer of PIPO Block Cipher

The PIPO block cipher is designed to efficiently utilize the bitslicing method. The
64-bit block B is divided into an 8× 8 array and the 8-bit Sbox is applied to each column,
which is shown in Figure 2. In the bitsliced implementation, the bit of the Sbox (e.g.,
b0, b8, b16, b24, b32, b40, b48, b56) can be replaced with bytes (i.e., B0, B1, B2, B3, B4, B5, B6, B7).
Therefore, the substitution layer for 64-bit block B can be performed at once.
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Figure 2. Substitution layer structure of PIPO.

The PIPO block cipher uses the 8-bit Sbox with an unbalanced bridge structure con-
sisting of a combination of 3-bit and 5-bit Sboxes, as shown in Figure 3. It is designed
to implement the efficient bitslicing and consists of 11 or fewer linear operations. The
differential uniformity of the Sbox is 16 or less and the non-linearity is 96 or more. The
bitslicing implementation of the PIPO Sbox is shown in Algorithm 1.

5-bit Sbox! 3-bit Sbox

5-bit Sbox"

3-bit

2-bit

3-bit

3-bit 2-bit 3-bit

3-bit5-bit

Figure 3. Unbalanced-bridge structure of PIPO Sbox.
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Algorithm 1 Bitslicing implementation of PIPO Sbox.
Input: 8-bit X(x7, x6, x5, x4, x3, x2, x1, x0)

Output: 8-bit X(x7, x6, x5, x4, x3, x2, x1, x0)

1: 5-bit Sbox1:

2: x5 ←− x5 ⊕ (x7 & x6)

3: x4 ←− x4 ⊕ (x3 & x5)

4: x7 ←− x7 ⊕ x4

5: x6 ←− x6 ⊕ x3

6: x3 ←− x3 ⊕ (x4 ∨ x5)

7: x5 ←− x5 ⊕ x7

8: x4 ←− x4 ⊕ (x5 & x6)

9: 3-bit Sbox :

10: x2 ←− x2 ⊕ (x1 & x0)

11: x0 ←− x0 ⊕ (x2 ∨ x1)

12: x1 ←− x1 ⊕ (x2 ∨ x0)

13: x2 ←− ¬ x2

14: Extend XOR :

15: x7 ←− x7 ⊕ x1

16: x3 ←− x3 ⊕ x2

17: x4 ←− x4 ⊕ x0

18: 5-bit Sbox2:

19: t0 ←− x7, t1 ←− x3, t2 ←− x4

20: x6 ←− x6 ⊕ (t0 & x5)

21: t0 ←− t0 ⊕ x6

22: x6 ←− x6 ⊕ (t2 ∨ t1)

23: t1 ←− t1 ⊕ x5

24: x5 ←− x5 ⊕ (x6 ∨ t2)

25: t2 ←− t2 ⊕ (t1 & t0)

26: Truncate XOR and Swap :

27: x2 ←− x2 ⊕ t0, t0 ←− x1 ⊕ t2, x1 ←− x0 ⊕ t1, x0 ←− x7, x7 ←− t0

28: t1 ←− x3, x3 ←− x6, x6 ←− t1

29: t2 ←− x4, x4 ←− x5, x5 ←− t2

30: return X(x7, x6, x5, x4, x3, x2, x1, x0)

In Algorithm 1, 3 bits that are inputs of Sbox2 are used as the final result. For this
reason, temp bits (t0, t1, t2) are required. This feature is inefficient when it is implemented
in quantum circuits. However, we remodeled this Sbox design and optimized it without
additional qubits. This is explained in Section 3.
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2.1.4. Permutation Layer of PIPO Block Cipher

The PIPO block cipher performs bit rotations within a byte for the implementation
efficiency. To achieve the full diffusion within the minimum number of rounds, the bit
rotation is performed for seven rows (i.e., B1−7) as shown in Equation (1). Through this,
the PIPO block cipher can achieve the full diffusion within 2 rounds.

B1 ←− B1 ≪ 7, B2 ←− B2 ≪ 4, B3 ←− B3 ≪ 3,
B4 ←− B4 ≪ 6, B5 ←− B5 ≪ 5, B6 ←− B6 ≪ 1,
B7 ←− B7 ≪ 2

(1)

2.2. Quantum Computer and Programming

Unlike classical logic gates, quantum gates used in quantum computers using qubits
must be reversible. Quantum computers can perform the classical computing using several
reversible quantum gates. Some of these examples are X gate, CNOT gate and Toffoli gate
shown in Figure 4. The X gate is the same as the NOT operation in classical computers,
which outputs the opposite value of the input qubit. The CNOT gate is the same as the
XOR operation. In CNOT (X, Y), the input Y qubit becomes the result value X ⊕ Y, and
the input X qubit maintains the X state as it is. The Toffoli gate is the same as the AND
operation. In Toffoli (X, Y, Z), the the result value (X & Y) is stored in Z, and the input
qubits X and Y remain unchanged. Unlike classical computers, quantum gates used in
quantum computers are reversible.

X0 1
𝑋

𝑌

𝑋

𝑋 ⨁ 𝑌

𝑋
𝑌

𝑍 𝑍 ⨁ (𝑋 & 𝑌)

𝑋
𝑌0 X 1

Figure 4. Descriptions: of X gate (left); CNOT gate (middle);and Toffoli gate (right).

In the Sbox of PIPO block cipher, the OR operation is used. The OR operation can
be replaced by a combination of X gates and one Toffoli gate. This is shown in Figure 5.
To calculate the OR result of X and Y, X gates should be executed before performing the
Toffoli gate. Then, the Toffoli gate is performed and the OR result is stored in Z. If input
values (X and Y) are needed, the reverse operation should be performed. In quantum
circuits, reverse operations are used to perform certain operations again and return them
to their original states.

||

X

X

X

X

Reverse

X ∨

𝑋
𝑌

𝑍

𝑋
𝑌

𝑍 𝑋 𝑌
Figure 5. OR operation in quantum computers.
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It is easy to control bits in the classical programming, but controlling qubits in the
quantum programming is more challenging. When implementing quantum circuits, it is
important to minimize the use of qubits. Although quantum computers are in the process
of increasing the number of qubits, supported qubits in existing quantum computers are
limited. Hence, reducing the use of qubits required for quantum circuits is a key factor
in the optimization. If qubits used during the operations are no longer needed, they can
be reused. To do this, qubits to be reused should be initialized to zero. Unlike classical
computers, it is non-trivial to initialize qubits to zero.

For example, in quantum computers, to reuse the qubit A (i.e., initialize to zero), the
qubit B in the same state as A exists somewhere. The A qubit can be reused by XORing the
qubit B to A with the CNOT gate (i.e., CNOT (B, A) −→ A = A⊕ B = 0). Otherwise, the
qubit A will just become the garbage qubit. Similarly, it is hard to change the state of the
existing qubit A to the same state as the qubit B when A and B are in different states. For
this reason, the qubit A should be initialized to zero first, and then the qubit B should be
XORed to the qubit A.

2.3. Grover’s Algorithm

The Grover search algorithm accelerates the brute force attack. If n times were required
for the brute force attack, it is reduced to

√
n times by applying the Grover search algorithm.

This quantum algorithm consists of an oracle that inverts the sign to return the answer, and
a diffusion operator that increases the measurement probability of the returned answer. In
the example where the answer of 2-qubit is 10, after the oracle and the diffusion operator
are shown in Figure 6. Grover’s search increases the probability of measuring the answer
by repeating the oracle and diffusion operator. However, in the case of 2-qubit, the answer
is found with 100% probability without repetition.

|00 |01 |10 |11 |00 |01 |10 |11

average

Figure 6. After performing oracle (left) and diffusion operator (right).

The Grover search algorithm can be applied to key search of block cipher, and the
overall structure is shown in Figure 7.

Plaintext qubits

Key qubits

...

...

Oracle

H

H

H

Diffusion 
operator

Repeat

Figure 7. Grover search algorithm for block cipher key search.
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First, the n-qubit key to which the Hadamard gate is applied is in a superposition state.
For the n-qubit key, all key values (i.e., the number of 2n cases) exist as a probability at the
same time. This is the main advantage of quantum computers. In oracle, an encryption
quantum circuit is implemented, and the plaintext qubits are encrypted with key qubits in
the superposition state. Therefore, in plaintext qubits, all possible ciphertexts encrypted
with all possible keys exist as a probability. We find all the ciphertexts that match the
known ciphertext. This can be found with X gates and Controlled-Z gates.

Figure 8 is a simple example to help understand how the oracle finds the key when
the 2-qubit plaintext P(p1, p0) is encrypted with a 2-qubit key K(k1, k0) and the known
ciphertext C(c1, c0) is 10. Among the generated ciphertexts, when the ciphertext C is 10,
it becomes 11 due to the X gate and the Controlled-Z gate is activated. At this time, the
key K qubits are entangled with the plaintext P qubits. Therefore, the sign of the key value
(e.g., 10) used when generating ciphertext 10 is inverted. Finally, the reverse operation is
performed on the previously performed operations. Because the Grover’s search has to
iterate oracle and diffusion operator. The ciphertext 11 must be returned to the generated
ciphertext 10 by the reverse operation of the X gate, and the original plaintext must be
returned through the reverse operation of encryption.

X𝑝!

𝑝" Z

X

𝑘!

Encryption Encryption

Reverse

𝑘"

H

H

|00 |01 |10 |11|00 |01 |10 |11

Figure 8. Oracle for Grover key search.

As mentioned above, the diffusion operator amplifies the amplitude of the solution
and operates on key qubits. The Grover search algorithm properly iterates the oracle
and diffusion operator to increase the probability of the correct key value, and then finally
measures it. The diffusion operator does not change much because a formalized method
is used. Therefore, in the Grover’s search algorithm, how to implement the oracle is
important, and, in the case of key search for block cipher, it is most important to optimize
the encryption quantum circuit implemented in the oracle.

3. Proposed Method
3.1. Quantum Circuit Design for PIPO Block Cipher

Quantum resources required for key search using Grover’s algorithm are determined
by how optimized the target block cipher is in oracle. AddRoundkey, Keyschedule, Substi-
tution, and Permutation used for the PIPO encryption are all implemented in quantum
circuits. In our proposed PIPO quantum circuits, only qubits for plaintext and master key
are allocated. In total, 192 qubits are used for the PIPO-64/128 encryption, and 320 qubits
are used for the PIPO-64/256 encryption, respectively.

3.2. AddRoundKey of PIPO Block Cipher

In AddRoundkey, the 64-bit round key RK is XORed on the 64-bit block B. Since
it is a simple structure using only XOR operation, AddRoundkey is designed only with
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CNOT gates. The quantum circuit for AddRoundkey is explained in Algorithm 2. In the
notation CNOT (a, b), the operation target is b. For example, CNOT (a, b) indicates a = a
and b = a⊕ b. In Algorithm 2, the result of the XOR operation is stored in the qubit of
block B. Quantum resources used in the Grover’s search algorithm are determined by how
oracle is implemented.

Algorithm 2 AddRoundkey in quantum circuits.

Input: 64-qubit block B(b63, ..., b0), 64-qubit round key RK(rk63, ..., rk0)

Output: 64-qubit block B(b63, ...b0)

1: for i = 0 to 63 do
2: bi ←− CNOT (rki, bi)

3: end for

4: return B(b63, ..., b0)

3.3. Keyschedule of PIPO Block Cipher

In Keyschedule, the master key K is divided into 64 bits (K = K1||K0 or K =
K3||K2||K1||K0), and these are selected and XORed according to the round constant i to
be used as round keys (RKi = Ki mod 2 ⊕ i or RKi = Ki mod 4 ⊕ i). The operation is XOR-ing
the round constant i. Unlike AddRoundkey, we only used X gates, which is simpler than
CNOT gates. Since the value of i is known before the operation, qubits of K are flipped by
the X gate to positions where the bit of i is 1. In the Round 1 (i = 1), K1 is used and i is 1.
The X gate is performed on the least significant bit of K1.

We minimized the use of these X gates. In the case of PIPO-64/128, we perform the
XOR operation of round constants as shown in Figure 9. K0 is used for Round 1 and 3,
and K1 is used for Round 2 and 4. Therefore, K0 is XORed with round constants 1 and 3
in order, and K1 is XORed with 2 and 4 in order, because K1 is XORed with 2 first, the bit
of K1[1] is flipped due to the X gate. In the next Round 4, since 4 is XORed, the X gate is
performed only in K1[2]. After being used as a key for Round 2, K1[1] should be returned
to its original state by the reverse operation. However, there is a part where this reverse
operation can be omitted. In the case of K0, constant 1 is XORed in Round 1, and an X gate
is performed at K0[0]. In Round 3, since X gate is performed on both K0[1] and K0[0], the
reverse operation is omitted after the Round 1, and X gate is additionally performed only
on K0[1] in the Round 3. In PIPO-64/256, the maximum round constant is 17 and it works
for the least significant 5-bit and the method is the same.

𝐾! 3 𝐾! 2 𝐾! 1 𝐾![0]

X

Round 1

Round 2

X

𝐾" 3 𝐾" 2 𝐾" 1 𝐾"[0]

𝐾! 3 𝐾! 2 𝐾! 1 𝐾![0]

X

Round 3

Round 4

X

𝐾" 3 𝐾" 2 𝐾" 1 𝐾"[0]

X
(Reverse)

After round

After round

After round

After round

Figure 9. Keyshcedule of PIPO from Round 1 to Round 4.
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3.4. Substitution of PIPO Block Cipher
3.4.1. Quantum Circuit Design for 3-Qubit Sbox and 5-Qubit Sbox1

In Algorithm 1, 5-bit Sbox1 and 3-bit Sbox can be implemented using CNOT gates,
Toffoli gates, and X gates. It can also be implemented without any additional qubits. These
are shown in Algorithms 3 and 4.

Algorithm 3 5-qubit Sbox1 in quantum circuits.

Input: 5-qubit X(x7, x6, x5, x4, x3)

Output: 5-qubit X(x7, x6, x5, x4, x3)

1: x5 ←− Toffoli (x7, x6, x5)

2: x4 ←− Toffoli (x3, x5, x4)

3: x7 ←− CNOT (x4, x7)

4: x6 ←− CNOT (x3, x6)

5: x4 ←− X (x4)

6: x5 ←− X (x5)

7: x3 ←− Toffoli (x4, x5, x3)

8: x3 ←− X (x3)

9: x4 ←− X (x4) //reverse

10: x5 ←− X (x5) //reverse

11: x7 ←− CNOT (x5, x7)

12: x4 ←− Toffoli (x5, x6, x4)

13: return X(x7, x6, x5, x4, x3)

Additionally, we optimized the 3-qubit Sbox as follows. In the OR quantum gate in
Figure 5, X gates are used to prepare input values (X, Y), perform the reverse operation
(X, Y), and compute the result (Z). We minimized the use of X gates in the 3-qubit Sbox. In
the 3-bit Sbox of Algorithm 1, the OR operation is used twice. In this case, the part using X
gates for the output of the first OR (i.e., reverse (x2, x1) and result (x0)) and the part using X
gates of the second OR (i.e., input (x2, x0), result (x1)) overlap each other. Therefore, the X
gates in the overlapping part can be omitted. Lastly, since the NOT operation is performed
on x2 in the 3-bit Sbox of Algorithm 1, x2 of the reverse(x2, x0) in the second OR can be
omitted. X gates, which are omitted by overlapping each other, are marked with the same
color.

In Algorithm 1, extend XOR is performed after 5-qubit and 3-qubit Sbox operations.
The quantum circuit for extend XOR is simple and is shown in Equation (2).
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Algorithm 4 The 3-qubit Sbox in quantum circuits.

Input: 3-qubit X(x2, x1, x0)

Output: 3-qubit X(x2, x1, x0)

1: x2 ←− Toffoli (x1, x0, x2)

2: x2 ←− X (x2)

3: x1 ←− X (x1)

4: x0 ←− Toffoli (x2, x1, x0)

5: x0 ←− X (x0)

6: x2 ←− X (x2) //reverse

7: x1 ←− X (x1) //reverse

8: x2 ←− X (x2)

9: x0 ←− X (x0)

10: x1 ←− Toffoli (x2, x0, x1)

11: x1 ←− X (x1)

12: x2 ←− X (x2) //reverse

13: x0 ←− X (x0) //reverse

14: x2 ←− X (x2)

15: return X(x2, x1, x0)

CNOT(x1, x7), CNOT(x2, x3), CNOT(x0, x4) (2)

3.4.2. Quantum Circuit Design for 5-Qubit Sbox2

As mentioned above, the inefficient part when implementing PIPO Sbox as a quantum
circuit is the 5-bit Sbox2. In Figure 3, 3-bit of Sbox2’s output (5-bit) is XORed to the output
of 3-bit Sbox, and the remaining 2-bit is the final result value. However, the input 3-bit of
Sbox2 is also the final result. Therefore, in the quantum circuit, before 3-qubit is entered into
Sbox2, 3 temp qubits to store input 3-qubit must be newly allocated. If only an additional 3
qubits are required to complete the PIPO encryption, this is working properly. However,
every time the Sbox runs, it needs to allocate 3 qubits. For example, after allocating 3
additional temp qubits, we store the input 3-qubit in the temp qubits and use the temp
qubits as the input for Sbox2. Then, the output 2-qubit of Sbox2 is used as the result value,
but the remaining 3 qubits are XORed and are no longer needed. Unfortunately, as shown
in Section 2.2, these 3 qubits cannot be initialized to zero. They become garbage qubits. We
need to allocate 3 qubits for every Sbox.

However, we implemented the PIPO Sbox quantum circuit without additional qubits
by using two new Sboxes (i.e., Sboxnew1, Sboxnew2) with the modified operation of Sbox2
and the reverse operation. Equation (3) is the operation of Sbox2 in Algorithm 1. t0(x7),
t1(x3), and t2(x4) are 3 bits that must be XORed to the 3-bit Sbox output. Sboxnew1 generates
only 3-qubit to be XORed to the output of 3-qubit Sbox. Operations marked in red have no
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effect on t0, t1, and t2. Therefore, the proposed Sboxnew1 is optimized by excluding the red
operations. This is shown in Algorithm 5.

t0 ←− x7, t1 ←− x3, t2 ←− x4
x6 ←− x6 ⊕ (t0 & x5)
t0 ←− t0 ⊕ x6
x6 ←− x6 ⊕ (t2 ∨ t1)
t1 ←− t1 ⊕ x5
x5 ←− x5 ⊕ (x6 ∨ t2)
t2 ←− t2 ⊕ (t1 & t0)

(3)

Algorithm 5 Sboxnew1 in quantum circuits.

Input: 5-qubit X(x7, x6, x5, x4, x3)

Output: 3-qubit X(x7, x4, x3)

1: x6 ←− Toffoli (x7, x5, x6)

2: x7 ←− CNOT (x6, x7)

3: x3 ←− CNOT (x5, x3)

4: x6 ←− Toffoli (x3, x7, x4)

5: return X(x7, x4, x3)

After generating 3 qubits from Sboxnew1, XOR operation is performed to the output of
3-qubit Sbox (i.e., x0, x1, x2), and then reverse operation of Sboxnew1 is performed. This is
because x7, x4, and x3 must be returned to values before Sboxnew1 to be the final values.
After performing the reverse operation, Sboxnew2 is executed.

Sboxnew2 receives 5-qubit, and 2 qubits become final result values, but 3 qubits main-
tain their values as they are entered. Fortunately, this is possible because if we change
operations of PIPO Sbox2, we can generate the final result 2-bit, but it keeps the other
3-bit unchanged. Excluding the blue-marked operations of Equation (3), it is possible to
generate 2-bit (x5, x6) while maintaining 3-bit (x7, x4, x3). In the proposed Sboxnew2, the
OR operation is used twice like a 3-qubit Sbox. The overlapping part (i.e., same color) is
omitted to optimize. This is shown in Algorithm 6.

In Algorithm 1, bit swap operations are performed. This can be done with quan-
tum swap gates. The quantum swap gate changes values of two target qubits to each
other [17]. The implementation of quantum swap gates for swaps in Algorithm 1 is shown
in Equation (4). The use of these four swap gates does not need to be measured in quantum
resources by relabeling the qubits. This is described in detail in Section 3.5.

Swap(x7, x0), Swap(x7, x1), Swap(x3, x6), Swap(x4, x5) (4)
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Algorithm 6 Sboxnew2 in quantum circuits.

Input: 5-qubit X(x7, x6, x5, x4, x3)

Output: 5-qubit X(x7, x6, x5, x4, x3)

1: x6 ←− Toffoli (x7, x5, x6)

2: x4 ←− X (x4)

3: x3 ←− X (x3)

4: x6 ←− Toffoli (x4, x3, x6)

5: x6 ←− X (x6)

6: x4 ←− X (x4) //reverse

7: x3 ←− X (x3) //reverse

8: x6 ←− X (x6)

9: x4 ←− X (x4)

10: x5 ←− Toffoli (x6, x4, x5)

11: x5 ←− X (x5)

12: x6 ←− X (x6) //reverse

13: x4 ←− X (x4) //reverse

14: return X(x7, x6, x5, x4, x3)

3.4.3. Quantum Circuit Design for PIPO Sbox

The proposed PIPO Sbox quantum circuit consists of four steps, as shown in Figure 10.
In Step 1, the input 8-qubit is divided into 5-qubit and 3-qubit, and each Sbox is executed.
Then, XOR the output of the 3-qubit Sbox to the 5-qubit Sbox output. In Step 2, Sboxnew1 is
executed and the output 3-qubit is XORed to the right 3-qubit line. As mentioned above,
Sboxnew1 is optimized to generate only this 3-qubit. In Step 3, the reverse operation of
Sboxnew1 is performed. Then, Sboxnew1 (reverse) output returns to the state before it is
entered into Sboxnew1. In Step 4, Sboxnew2 is executed, which generates a final result value
of 2-qubit and maintains the input value of 3-qubit.

We designed Sboxnew1 and Sboxnew2 by dividing the roles of 5-bit Sbox2 and utilized
reverse operation. As a result, we implemented an efficient quantum PIPO Sbox without
qubits for the temp storage.
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Figure 10. PIPO Sbox in quantum circuits.

3.5. Permutation of PIPO Block Cipher

Quantum resources are not used for the Permutation layer. In the Permutation layer,
only rotation operations that change the position of qubits are used. This can be done with
swap gates, but it can also be replaced by relabeling the qubits [18] without swap gates.
Therefore, the use of swap gates does not have to be measured as quantum resources. This
approach also applies to swap gates used in Sbox. Relabeling qubits for PIPO Permutation
is detailed in Algorithm 7.
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Algorithm 7 Relabeling qubits for block B.

Input: 64-qubit block B(B7, B6, B5, B4, B3, B2, B1, B0)

Output: 64-qubit block B(B7, B6, B5, B4, B3, B2, B1, B0)

1: B1(b15, b14, b13, b12, b11, b10, b9, b8)←− (b8, b15, b14, b13, b12, b11, b10, b9)

2: B2(b23, b22, b21, b20, b19, b18, b17, b16)←− (b19, b18, b17, b16, b23, b22, b21, b20)

3: B3(b31, b30, b29, b28, b27, b26, b25, b24)←− (b28, b27, b26, b25, b24, b31, b30, b29)

4: B4(b39, b38, b37, b36, b35, b34, b33, b32)←− (b33, b32, b39, b38, b37, b36, b35, b34)

5: B5(b47, b46, b45, b44, b43, b42, b41, b40)←− (b42, b41, b40, b47, b46, b45, b44, b43)

6: B6(b55, b54, b53, b52, b51, b50, b49, b48)←− (b54, b53, b52, b51, b50, b49, b48, b55)

7: B7(b63, b62, b61, b60, b59, b58, b57, b56)←− (b61, b60, b59, b58, b57, b56, b63, b62)

8: return B(B7, B6, B5, B4, B3, B2, B1, B0)

4. Evaluation

We implemented the PIPO block cipher in quantum circuits using the IBM ProjectQ, a
quantum programming tool provided by IBM. The ProjectQ provides a variety of compilers
such as Classical–Simulator, Resource–Counter, and Circuit–Drawer. We used the Classical–
Simulator to verify that the PIPO block cipher in the quantum circuit was implemented
correctly and the Resource–Counter to analyze the quantum resources and circuit depth
required for the PIPO quantum circuit. Based on this, quantum resources required for
proposed PIPO quantum circuits and those required for other block cipher quantum circuits
were compared, as shown in Table 2.

Table 2. Quantum resources required for PIPO quantum circuit implementation and comparison
with other block ciphers.

Quantum Circuit Qubits Toffoli Gates CNOT Gates X Gates Depth

PIPO-64/128 192 1248 2248 1477 248
PIPO-64/256 320 1632 2920 1930 324

SIMON-64/128 [8] 192 1408 7396 1216 2643
SPECK-64/128 [11] 193 3286 9238 57 -
CHAM-64/128 [10] 196 2400 12,285 240 -
HIGHT-64/128 [10] 201 6272 20,523 4 -

GIFT-64/128 [12] 192 1792 1792 3261 308

4.1. Analysis of Quantum Resources for PIPO and Other Block Ciphers

We focused on minimizing qubits and achieved the optimal number of qubits by allo-
cating qubits for the plaintext and master key only. The circuit depth is related to execution
time [19], and the circuit depth of PIPO block cipher is very low. This is possible because
many of quantum gates of the PIPO quantum circuit are performed in parallel. In the pro-
posed PIPO quantum circuit, most of the resources are used for Sbox. When implementing
the block cipher of the SPN structure as a quantum circuit, it is important to optimize the
Sbox operation, and this was achieved through the proposed Sbox implementation. In
addition, all other operations of PIPO were optimized as much as possible.

Compared with block ciphers using the same plaintext size (i.e., 64-bit) and key size
(i.e., 128-bit), the PIPO block cipher achieves an optimal number of qubits, and it has the



Electronics 2021, 10, 1194 16 of 18

lowest circuit depth and quantum gate complexity. Table 2 does not show circuit depths of
SPECK, CHAM, and HIGHT, but they are higher than SPECK.

By analyzing the quantum circuits and resources of Anand et al. [8], Jang et al. [11],
the hardware-optimized block cipher (i.e., SIMON) was better optimized in quantum
computers than in the software-optimized block cipher (i.e., SPECK). In Reference [12],
the authors obtained optimal quantum resources by implementing a hardware-optimized
operation of the GIFT Sbox operation as a quantum circuit. Through this, we confirmed
that operations optimized for hardware are also optimized for quantum computers.

4.2. Resource Estimation for Using the Grover Search Algorithm to PIPO

For the block cipher of the n-bit security level, a maximum of 2n queries are required
to recover the key by the classical brute force attack. However, in a quantum brute force
attack using the Grover’s algorithm, the key can be recovered with only a maximum of
2

n
2 queries.

The Grover search algorithm iterates over the oracle and diffusion operator. When
applying the Grover search algorithm to the key search of the block cipher, the quantum
circuit of the block cipher is implemented in the oracle and finds the key. Since the diffusion
operator only increases the amplitude of the answer returned by the oracle, the required
quantum resources are determined according to how the oracle is implemented.

In Reference [20], a block cipher key search using the Grover search algorithm requires
r pairs of known plaintext and ciphertext (r = keysize

blocksize ). That is, the PIPO-64/128 quantum
circuit should be operated two times, and the PIPO-64/256 quantum circuit should be
operated four times. In addition, the oracle of the Grover search algorithm needs the
reverse operation. Therefore, it requires four times resources used in the PIPO-64/128
quantum circuit and eight times resources used in the PIPO-64/256 quantum circuit. We
assume that the plaintext-ciphertext pairs was operated in parallel [20], which requires 2 ×
key size ×(r− 1) additional CNOT gates including reverse operation [5]. Finally, quantum
resources required for the oracle of the Grover search algorithm are as follows.

Qubits←− Qubits required for quantum circuit · r + 1
Toffoli gates←− Toffoli gates required for quantum circuit · 2 · r
CNOT gates←− CNOT gates required for quantum circuit · 2 · r + 2 · key size · (r− 1)
X gates←− X gates required for quantum circuit · 2 · r

(5)

Through this, quantum resources for applying PIPO block cipher and other ciphers to
the oracle of the Grover search algorithm are shown in Table 3.

Table 3. Quantum resources for applying PIPO block cipher to the oracle of the Grover’s search
algorithm.

Block Cipher r Qubits Toffoli Gates CNOT Gates X Gates

PIPO-64/128 2 385 4992 9248 5908
PIPO-64/256 4 1281 130,562 24,896 15,440

SPECK-64/128 (Extrapolation) [11] 2 387 13,144 37,208 228
GIFT-64/128 [12] 2 385 7168 7424 13,044

5. Conclusions

We implemented and optimized the SPN structured block cipher (i.e., PIPO) as a
quantum circuit. Optimal qubits, quantum gates, and circuit depth are achieved, and
the proposed PIPO quantum circuit is the most compact compared to research results of
other block ciphers. When using the Grover search algorithm to the key search of the
block cipher, the block cipher quantum circuit is implemented in the oracle. Therefore,
a compact Grover search algorithm can be applied to the key search for PIPO block
cipher through the proposed quantum circuit. Additionally, the proposed method, which
optimizes various cryptographic operations as quantum circuits, can be an interesting
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point in the upcoming quantum computer era. In the future, we plan to implement
another variety of lightweight block ciphers in quantum circuits, including candidate
from the NIST lightweight cryptography standardization https://csrc.nist.gov/projects/
lightweight-cryptography (accessed on 13 May 2021). As in the case of PIPO Sbox, we
expected that some operations that are not cost-critical in classical computers may be
expensive when implemented in quantum computers. Moreover, these features found
in implementing various block ciphers will be an interesting direction to pursue. By
utilizing these features, if a new block cipher that requires a lot of quantum resources for
implementation were developed, it could become a quantum resistant block cipher.

Author Contributions: Data curation, K.J.; Investigation, G.S., H.K. (Hyeokdong Kwon) and S.U.;
Software, K.J. and W.-K.L.; Supervision, H.S.; Writing—original draft, K.J.; Writing—review and
editing, K.J., H.K. (Hyunji Kim) and H.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was partly supported by Institute for Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (<Q|Crypton>,
No.2019-0-00033, Study on Quantum Security Evaluation of Cryptography based on Computational
Quantum Complexity) and this work was partly supported by Institute for Information & communi-
cations Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No.2018-0-00264,
Research on Blockchain Security Technology for IoT Services). This research was financially sup-
ported by Hansung University for Hwajeong Seo.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium

on Theory of Computing; ACM: New York, NY, USA, 1996; pp. 212–219.
2. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
3. Bogdanov, A.; Khovratovich, D.; Rechberger, C. Biclique cryptanalysis of the full AES. In International Conference on the Theory and

Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2011; pp. 344–371.
4. Tao, B.; Wu, H. Improving the biclique cryptanalysis of AES. In Australasian Conference on Information Security and Privacy;

Springer: Cham, Switzerland, 2015; pp. 39–56.
5. Grassl, M.; Langenberg, B.; Roetteler, M.; Steinwandt, R. Applying Grover’s algorithm to AES: Quantum resource estimates. In

Post-Quantum Cryptography; Springer: Cham, Switzerland, 2016; pp. 29–43.
6. Langenberg, B.; Pham, H.; Steinwandt, R. Reducing the Cost of Implementing AES as a Quantum Circuit. IEEE Trans. Quantum

Eng. 2020, 1, 1–12. [CrossRef]
7. Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover oracles for quantum key search on AES and LowMC.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Cham, Switzerland, 2020;
pp. 280–310.

8. Anand, R.; Maitra, A.; Mukhopadhyay, S. Grover on SIMON. Quantum Inf. Process. 2020, 19, 1–17. [CrossRef]
9. Schlieper, L. In-place implementation of Quantum-Gimli. arXiv 2020, arXiv:2007.06319.
10. Jang, K.; Choi, S.; Kwon, H.; Kim, H.; Park, J.; Seo, H. Grover on Korean Block Ciphers. Appl. Sci. 2020, 10, 6407. [CrossRef]
11. Jang, K.; Choi, S.; Kwon, H.; Seo, H. Grover on SPECK: Quantum Resource Estimates. Cryptology ePrint Archive, Report

2020/640, 2020. Available online: https://eprint.iacr.org/2020/640 (accessed on 13 May 2021).
12. Jang, K.; Kim, H.; Eum, S.; Seo, H. Grover on GIFT. Cryptology ePrint Archive, Report 2020/1405, 2020. Available online:

https://eprint.iacr.org/2020/1405 (accessed on 13 May 2021).
13. Kim, H.; Jeon, Y.; Kim, G.; Kim, J.; Sim, B.Y.; Han, D.G.; Seo, H.; Kim, S.; Hong, S.; Sung, J.; et al. PIPO: A Lightweight Block

Cipher with Efficient Higher-Order Masking Software Implementations. In International Conference on Information Security and
Cryptology; Springer: Cham, Switzerland, 2020; pp. 99–122.

14. Dasu, V.A.; Baksi, A.; Sarkar, S.; Chattopadhyay, A. LIGHTER-R: Optimized Reversible Circuit Implementation For SBoxes. In
Proceedings of the 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 260–265.
[CrossRef]

15. Jean, J.; Peyrin, T.; Sim, S.M.; Tourteaux, J. Optimizing Implementations of Lightweight Building Blocks. IACR Trans. Symmetric
Cryptol. 2017, 2017, 130–168. [CrossRef]

16. Steiger, D.S.; Häner, T.; Troyer, M. ProjectQ: An open source software framework for quantum computing. Quantum 2018, 2, 49.
[CrossRef]

17. Garcia-Escartin, J.C.; Chamorro-Posada, P. A SWAP gate for qudits. Quantum Inf. Process. 2013, 12, 3625–3631. [CrossRef]

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
http://doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1109/TQE.2020.2965697
http://dx.doi.org/10.1007/s11128-020-02844-w
http://dx.doi.org/10.3390/app10186407
https://eprint.iacr.org/2020/640
https://eprint.iacr.org/2020/1405
http://dx.doi.org/10.1109/SOCC46988.2019.1570548320
http://dx.doi.org/10.46586/tosc.v2017.i4.130-168
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.1007/s11128-013-0621-x


Electronics 2021, 10, 1194 18 of 18

18. Znidaric, M.; Giraud, O.; Georgeot, B. How many CNOT gates does it take to generate a three-qubit state? arXiv 2007,
arXiv:0711.4021.

19. Bhattacharjee, D.; Chattopadhyay, A. Depth-Optimal Quantum Circuit Placement for Arbitrary Topologies. arXiv 2017,
arXiv:1703.08540.

20. Amento-Adelmann, B.; Grassl, M.; Langenberg, B.; Liu, Y.K.; Schoute, E.; Steinwandt, R. Quantum cryptanalysis of block ciphers:
A case study. In Proceedings of the Poster at Quantum Information Processing QIP, Delft, The Netherlands, 15–19 January 2018;
pp. 235–243.


	Introduction
	Related Work
	PIPO Block Cipher
	Encryption of PIPO Block Cipher
	AddRoundkey and Keyschedule of PIPO Block Cipher
	Substitution Layer of PIPO Block Cipher
	Permutation Layer of PIPO Block Cipher

	Quantum Computer and Programming
	Grover's Algorithm

	Proposed Method
	Quantum Circuit Design for PIPO Block Cipher
	AddRoundKey of PIPO Block Cipher
	Keyschedule of PIPO Block Cipher
	Substitution of PIPO Block Cipher
	Quantum Circuit Design for 3-Qubit Sbox and 5-Qubit Sbox1
	Quantum Circuit Design for 5-Qubit Sbox2
	Quantum Circuit Design for PIPO Sbox

	Permutation of PIPO Block Cipher

	Evaluation
	Analysis of Quantum Resources for PIPO and Other Block Ciphers
	Resource Estimation for Using the Grover Search Algorithm to PIPO

	Conclusions
	References

