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Abstract: Education is one of the sectors that improves the future of societies; unfortunately, the
pandemic generated by coronavirus disease 2019 has caused a variety of problems that directly
affect learning. Universities have found it necessary to begin a transition towards remote or online
educational models. To do so, the only method that guarantees the continuity of classes is using
information and communication technologies. The transition in the foreground points to the use of
technological platforms that allow interaction and the development of classes through synchronous
sessions. In this way, it has been possible to continue developing both administrative and academic
activities. However, in effective education, there are factors that create an ideal environment where
the generation of knowledge is possible. By moving from traditional educational models to remote
models, this environment has been disrupted, significantly affecting student learning. Identifying
the factors that influence academic performance has become the priority of universities. This work
proposes the use of intelligent techniques that allow the identification of the factors that affect learning
and allow effective decision-making that allows improving the educational model.

Keywords: artificial intelligence; remote education; WEKA

1. Introduction

Currently, improving the quality of university education is one of the main objectives
of higher education institutions. To meet this objective, student-centered educational
methods have been designed that allow them to improve student learning and lower
university dropout rates [1]. However, choosing the educational method and models
that allow adequate decision-making and actions is not an easy process to apply, due to
the diversity of factors that influence academic performance [2]. Academic performance
is generally associated with psychological, economic, social and institutional factors [3].
Therefore, student success depends on characteristics, means and values that establish an
ideal environment for the generation of learning [4]. Several of the works related to the
prediction of academic performance associate factors such as the pre-university education
of the country, as well as the method used by the teacher, with very few existing applications
analyzing university educational models through the available data in institutions [5].

Generally, academic performance is the product of the achievements obtained by
students in the traditional grading system [6]. This assessment is associated with factors
such as the habits of the student in the practices of study, work, fun, etc., the family in
relation to the student’s environment, and economic income. Universities provide edu-
cational resources, interaction with teachers and students, schedules, teacher pedagogy,
etc. Most of the studies analyzed focus on identifying the difficulties that students have
or the problems that are generated in learning, but they rarely propose real solutions
applied to the new reality [7] which has occurred because of the coronavirus disease 2019
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(COVID-19) pandemic [8,9]. Universities and their educational models have been com-
promised by COVID-19 [10]. The solution that universities have taken is to move from
traditional educational models to remote models [11,12]. These remote education models
are executed in an environment where ICT are integrated, allowing communication and
the execution of certain administrative activities [13]. However, the remote educational
mode presents problems that affect learning. These works posit psychological, economic
and academic problems as the main factors. In the remote education model, the traditional
education method is maintained, but it does not create a suitable environment where
the teacher is the main actor of learning [14]. By not having the control of the group,
through teacher–student physical interaction, in addition to problems related to the use
of technology, teachers take a back seat, which is detrimental to learning. In addition,
there are problems related to the student’s lack of interest in the educational model [15].
Faced with these problems, the academic quality and management departments have
been overwhelmed in academic monitoring and the identification of learning problems.
Effectiveness has even been lost, causing even more serious problems such as repeating
or dropping out of college [16,17]. Several works focus on the use of artificial intelligence
(AI) techniques or models to identify the factors that influence the academic performance
of students [18–20]. This analysis allows for identifying and characterizing the profiles
of the students to classify them, according to the academic performance of the different
subjects [21]. For this, several works use techniques such as decision trees or regressions,
applied to databases of learning management systems (LMS).

Other works use data mining techniques or the Gradient Boosting Machine to predict
academic performance [22]. In its processing, absenteeism, basic education, the economy
and age are identified as pre-determining factors in academic performance. In addition,
there are studies that make use of algorithms based on machine learning, fuzzy logic,
K nearest neighbor, fuzzy logic or neural networks that have been able to predict aca-
demic performance with greater accuracy [23,24]. Other variables include motivating
tasks, objectives, perception of instrumentalization and self-regulated learning [25]. Other
works analyzed the personality traits among students against academic performance in
the same conditions, finding significant differences in each of the groups, with which
a prediction was established according to the traits of the students [26]. In general, AI
has been used to predict a wide variety of events, among which the following stand out:
characterization and prediction of academic downloads, improvement of learning, and
prediction of performance based on cognitive and non-cognitive factors [27]. Once the
problems that affect the learning of university students have been identified, the research
question is posed that allows us to propose a method adaptable to the current situation.
The question is “Is artificial intelligence, with its potential to generate knowledge from
data, capable of generating an academic monitoring system that identifies problems in
academic performance in order to improve current educational models?”

This work proposes the prediction of the academic performance of university students
with the use of AI techniques based on the use of classifiers. The work was carried out
on a sample of computer engineering students from a private university in Ecuador. [28],
for which a set of factors are considered, such as the frequency of study, interaction with
teachers, economic factor, university resources, infrastructure, etc. This work is divided
into the following sections that have been considered key to reach the proposed objectives.
Section 2 defines the materials and methods; Section 3 presents the results obtained from
the analysis; Section 4 presents the discussion of the results obtained with the proposal for
improvement in the educational modality to improve learning; and Section 5 presents the
conclusions found in the development of the work.

2. Materials and Methods

To develop the method, it is necessary to identify the concepts that are used in each
stage of the development of the proposal and how they define the guidelines of the problem
encountered in learning.
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2.1. Theoretical Foundation

To establish the method, it is necessary to start from several concepts that contribute to
the design proposal of an academic monitoring system. As main concepts, the modality of
remote education is considered; this concept seeks to clarify the real situation of education.
In the technical part, reference is made to artificial intelligence.

2.1.1. Remote Education Model

Due to the threat of COVID-19, universities are faced with decisions about how to
continue teaching and learning while keeping their staff and students safe from contagion.
Several universities have chosen to cancel all face-to-face classes, including labs and other
learning experiences [29]. To continue with the activities, teachers have passed their courses
to LMS to follow a model similar to online education. The transition to remote education
can provide the flexibility to teach and learn anywhere, anytime, while university staff and
support teams are generally available to help education actors learn and implement remote
learning [30]. In the current situation, the learning management teams and department do
not offer the same level of support to all teachers in such a narrow preparation window.
No matter how clever a solution is, it is understandable that many instructors find this a
stressful process, impairing their educational activity.

The main drawbacks that arose due to the contingency was the lack of preparation for
this modality, since the institutions had to engage remotely and restructure the educational
plan that was already established. These new emerging scenarios invite us to rethink
education from the point of view of informal and non-formal settings, in which learning
can reside outside the usual contexts and even outside educational institutions [31,32].
Both daily learning through the use of technologies and informational connections through
networks and nodes can be two perspectives that allow understanding the new environ-
ments and environments of teachers and students. On the other hand, universities have
been forced to respond to this health emergency with different academic contingency
plans according to their installed capacity. This has not been easy, given that educational
institutions have been configured around a face-to-face modality. This has been reflected in
the resistance around these modalities, the lack of training of teachers in digital skills, and
an ineffective integration of ICT in the classroom.

2.1.2. Artificial Intelligence in Education

Providing each student with the faculty to achieve the highest possible level should
be the goal of universities and teachers. In the pursuit of these purposes, it is essential to
take into account a crucial aspect in training—evaluation. Traditional models propose a
homogeneous rate of learning, whose form of evaluation is purely informative and only
classifies students according to their results. Faced with instructional models, which pro-
pose student-centered learning, with a heterogeneous, formative, personalized assessment
and with immediate feedback [33]. However, conducting a formative assessment involves
a lot of work for the teacher. In this sense, AI can help to deal with this task and puts into
practice the ideas proposed by the instructional models [34]. The key is in automation,
which allows meeting the needs of many students in better conditions than doing it with
traditional methods.

AI in education offers numerous possibilities to add more value to students, facilitate
the teaching-learning process and improve the positioning of educational institutions. AI
uses fields such as machine learning (ML), deep learning and natural language processing
(NLP) to make algorithms learn by themselves [35,36]. That is, they can process, automate
and organize large amounts of data to execute an action and obtain a specific result. Using
these innovations in education can bring multiple benefits, especially if you consider that
digital transformation is a reality and determines how we will relate. AI algorithms can
identify patterns in student behavior—for example, the frequency with which they access
counseling services, to interpret whether a student is having difficulties in their educational
training. With the processing of these data, it is possible to obtain the necessary information
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to establish trends in its performance. In fact, some AI software is capable of evaluating
the initial state of the student and making projections of its evolution or predicting how
likely it is that a student will drop out at a certain time. This allows the implementation of
corrective actions to design better teaching methodologies or create curricular networks
that favor more efficient learning.

2.1.3. Low-Code/No-Code Artificial Intelligence Techniques

Currently, no-code/base-code AI platforms range from guided platforms, offering
classic drag-and-drop functionality, to fully automated machine learning services suitable
for machine learning beginners and professionals alike. In addition to no-code artificial
intelligence solutions, there are also low-code solutions. In fact, a growing number of
tools promise to make the field of data science more accessible. This is not an easy task
considering the complexity of data science and the machine learning process. However,
many libraries and tools, including Weka, Keras and FastAI, make creating a data science
project significantly easier by providing a high-level, easy-to-use interface with several
pre-built components. No-code platforms do not require deep programming knowledge,
but they allow one to build simple environments quickly [37]. The border between no-code
and low-code platforms is quite thin. Platforms that promote themselves as “no-code”
often leave some room for customization.

2.2. Analysis of the Factors That Influence Learning with the Use of Artificial Intelligence

For the development of the methodology, intelligent classification techniques, based
on AI algorithms, were considered. The tool used for the execution of the algorithms is the
Weka program [38]. Smart ranking allows you to predict the academic performance of a
college student. With the results obtained, it is possible to establish effective and personal-
ized strategies such as assistance and follow-up programs for students with a projected
performance that is unsatisfactory [39]. In addition, the ranking system determines the
factors that affect a student’s academic performance. With this information, it is possible to
deploy continuous improvement programs at the institutional level. Knowing that these
answers are important for decisions, the demand for explainable AI (XAI) is considered.
The XAI is the ability to explain a machine learning prediction. Some works substitute a
global explanation about what is driving an algorithm in general as a response to the need
for explicability [40]. Others equate regression modeling with machine learning, as it can
provide a set of explainable factors behind a prediction. Regression modeling is not the
same as machine learning; XAI is any machine learning technology that can accurately
explain a prediction at the individual level. The methodology is described in a general way
in seven stages, which are observed in Figure 1.

• Data sources (surveys, xlms, databases)
• Sample selection
• Database construction
• Attribute mapping
• Computational processing
• Academic performance prediction
• Identification of influential attributes
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Figure 1. Methodology of a model for the identification of academic performance.

The methodology proposal begins with the collection of information in the data
sources. Sources include surveys, xlms files, databases, etc. In order to analyze each of the
12 attributes involved in the classification study, several attributes comprise data that were
obtained through surveys. The surveys used a five-level scale:

• 1: never
• 2: rarely
• 3: sometimes
• 4: almost always
• 5: always.

However, in some questions, 1 should be understood as the lowest level, terrible or
none, and 5 should be understood as the highest level, many or excellent. In phase two,
the sample is selected. In order to obtain greater statistical reliability, a simple random
sampling was applied to 56 students belonging to the fourth level of the computer science
engineering program. The sample calculation was carried out by means of the sample
calculation equation [41], where:

• n: dimension of the sample.
• Z: confidence level,
• p: variation of success.
• q: variation of failure.
• M: number of students in the undergraduate program.
• e: sample error.

In phase three, the database was built, and the survey was applied to a number n,
obtained from the equation of the sample calculation of randomly selected individuals.
Therefore, it was considered adequate when it comes to applying Bayesian models. In
addition to the surveys, the academic data of the selected students were integrated, such as
grade point average, economic situation, etc. The data to enter the system were organized
into 5 groups, according to the academic average of each student.

• A: Average between (8–10)
• B: average between (<8–6)
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• C: average between (<6–4)
• D: average between (<4–2)
• E: average between (<2–0).

In phase 4, the attribute correlation was generated, for which a correlation matrix of
the analyzed attributes was built with respect to the dependent variable. This correlation
allowed us to demonstrate that the effect produced on the dependent variable is not the
product of a single independent variable and establishes the variables that present a greater
correlation with the dependent variable. In addition, a previous selection of variables was
carried out before using the Bayesian classifier, by means of which the multivariate analysis
was carried out.

Phase five performed the computational processing based on the previously defined
groups and the attributes selected in phase 4. The header of the. arff file was designed for
ingestion in the software platform with the Weka tool. The heading includes each of the
nine attributes analyzed, plus the average attribute of each student. Additionally, with the
results obtained in step 2, the body of the .arff file was structured to be analyzed by the
Weka program, by means of the different artificial intelligence techniques. In phase six, the
prediction of academic performance was generated. The .arff file was analyzed by means
of a tree-type classifier and other techniques included in Weka that can give good results;
however, the advantage of the classifier is that it allows for obtaining efficient results with
few data.

In each phase, the main influencing attributes in academic performance were identified.
By means of the J48 classification algorithm, Weka makes it possible to obtain the decision
tree. Based on this tree, the main influencing attributes of students’ academic performance
were identified.

3. Results

The results evaluate the method used for the analysis and prediction of academic
performance. For which, several data sources were used: among the sources are surveys,
as well as data stored in academic and financial systems. In addition, the LMS data are
included, as well as the report issued by the platform used to generate synchronous sessions.
These sessions replace face-to-face classes due to the COVID-19 pandemic. Therefore, the
university that participated in this study is running a remote education model. In phase
one, the structure shown in Table 1 is generated, where the attributes and the type of data
they handle are established.

Table 1. Structure of attributes assigned to the generated analysis in the classifier.

Attributes Type of Data

Students (a) Numeric

Income level (b) Text -Numeric

Frequency in the study (c) Numeric
Frequency in academic activities (d) Numeric

Frequency at work (e) Numeric

Environment (f) Numeric
Family atmosphere (g) Numeric

Educational resources (h) Numeric
Interaction (i) Numeric
Schedules (j) Numeric
Padagogy (k) Numeric

Academic average (l) Numeric
Approves (m) Text
Learning (n) Text

Dependent variable (o) Numeric
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In phase two, the sample is selected, based on Equation (1) of the sample population;
the parameters that are considered to define the sample size are the following:

• N = 320 is the total number of students who are part of the computer engineering
academic program

• Z = 1645 confidence level.
• p = 0.5
• q = 0.5
• e = 0.10 (10% sampling error, for a 90% interval).

n =
N ∗ Z2∗p ∗ q

e2 ∗ (N − 1) + Z2∗p ∗ q
(1)

The sample size obtained (n) was 55.9. Therefore, 56 students were considered for
the analysis.

In phases three and four, the database and the correlation between attributes are
built [42]. Table 2 presents the database containing the 56 students chosen at random
from the 320 students that make up the Computer Engineering program. In this table,
the correlation of each of the 56 initial columns (independent variables or attributes) with
respect to the last column, called the dependent variable, was calculated, and the results
are in the last row of the table. To calculate this correlation, the values in the “dependent
variable” column were substituted as: A = 5, B = 4, C = 3, D = 2, E = 1.

Table 2. Data table with the correlation between independent variables and the dependent variable.

A B B-1 C D E F G H I J K L M N O

1 Low 1 3 5 3 0 3 3 2 1 5 1 False E 1
2 Medium 2 4 4 4 3 2 2 1 0 3 4 False C 3
3 High 3 4 1 5 0 3 0 5 2 1 8 True A 5
4 High 3 1 5 3 3 4 0 0 5 1 0 False E 1
5 Medium 2 1 4 4 5 2 4 1 1 2 7 True B 4
6 Medium 2 1 4 2 1 5 5 1 5 4 6 True B 4
7 High 3 5 4 0 2 3 4 4 1 5 8 True A 5
8 Medium 2 4 0 5 5 4 5 0 1 4 5 False C 3
9 High 3 0 4 2 1 1 2 5 2 1 2 False D 2

10 Low 1 4 1 3 2 5 1 4 3 0 2 False D 2
11 Low 1 0 4 3 0 0 3 0 3 1 0 False E 1
12 Low 1 4 5 0 3 3 1 3 5 2 1 False E 1
13 Medium 2 0 2 2 1 0 5 1 1 1 0 False E 1
14 High 3 3 1 4 5 0 0 1 5 5 6 True B 4
15 High 3 3 4 2 2 3 3 5 2 4 10 True A 5
16 Medium 2 3 2 5 1 1 2 0 4 0 0 False E 1
17 Low 1 4 4 3 4 4 3 2 3 2 5 False C 3
18 High 3 5 5 3 5 2 1 3 5 2 8 True A 5
19 Medium 2 5 1 4 0 0 5 2 1 3 9 True A 5
20 Low 1 3 2 2 5 4 1 2 3 4 9 True A 5
21 Medium 2 0 2 2 5 4 5 1 1 3 4 False C 3
22 Medium 3 2 2 3 4 3 5 1 2 2 4 False C 3
23 High 2 2 4 1 5 4 2 3 3 4 8 True A 5
24 Medium 1 1 2 5 5 1 4 3 1 2 1 False E 1
25 Low 1 1 1 5 4 1 5 4 5 5 3 False D 2
26 Low 1 1 3 3 4 4 3 2 5 1 1 False E 1
27 Low 2 4 1 4 3 2 3 3 2 1 4 False C 3
28 Medium 2 5 3 1 2 2 2 3 2 1 1 False E 1
29 Medium 3 1 2 2 4 1 1 3 4 4 6 True B 4
30 High 3 2 3 1 1 5 2 1 3 4 5 False C 3
31 High 3 4 4 4 5 5 1 4 1 5 6 True B 4
32 High 1 1 2 3 3 5 2 5 3 1 2 False D 2
33 Low 3 5 5 4 3 3 5 5 2 2 9 True A 5
34 High 1 1 4 2 5 4 5 2 4 4 3 False D 2
35 Low 1 2 2 5 1 3 5 2 3 3 4 False C 3
36 Low 2 2 5 5 1 3 2 5 2 2 7 True B 4
37 Medium 3 4 5 3 3 1 2 1 5 3 7 True B 4
38 High 3 5 1 4 5 3 1 5 4 2 8 True A 5
39 High 3 5 1 1 3 4 5 5 3 5 8 True A 5
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Table 2. Cont.

A B B-1 C D E F G H I J K L M N O

40 High 3 5 5 4 3 3 1 4 2 2 3 False D 2
41 High 2 2 2 4 1 2 4 5 1 1 1 False E 1
42 Medium 2 1 2 4 2 2 2 2 3 2 1 False E 1
43 Medium 2 5 5 2 5 1 2 3 5 5 6 True B 4
44 Medium 2 1 3 1 1 3 4 1 3 2 3 False D 2
45 Medium 1 1 5 2 5 5 1 4 3 3 5 False C 3
46 Low 3 5 3 4 1 1 3 5 4 5 8 True A 5
47 High 2 1 5 1 2 5 5 2 2 3 1 False E 1
48 Medium 1 2 3 2 1 3 4 2 2 5 2 False D 2
49 Low 2 1 4 4 4 5 4 2 2 3 3 False D 2
50 Medium 2 4 4 5 4 5 5 2 3 1 3 False D 2
51 Medium 2 1 1 1 2 3 4 5 3 3 7 True B 4
52 Medium 1 1 3 1 3 1 3 5 4 1 5 False C 3
53 Low 3 5 3 5 4 2 4 1 2 1 2 False D 2
54 High 3 1 2 5 2 1 5 2 2 3 1 False E 1
55 High 3 2 3 4 1 5 5 5 2 4 10 True A 5
56 High 3 4 1 4 5 5 4 1 2 5 1 False E 1

Corr_coef 0.40 0.41 −0.02 −0.07 0.13 0.04 −0.10 0.40 0.06 0.40 0.98

Column “b” refers to the level of income—this factor was measured based on the
existing financial problems due to the pandemic. To calculate the correlation coeffi-
cient, in the calculation the measurement criteria were changed to the following values;
low = 1, medium = 2, high = 3. However, the table presents the text in column “b” for a
better understanding of it, and in column “b-1” the values for correlation. When processing
the data with the analysis tool, column “b-1” will be eliminated.

In the table, in addition to the values of each attribute, the existing correlation co-
efficient between each attribute and the dependent variable was added. Values above
0.38 are marked in green, considering that they are the values closest to the trend line.
These values are considered to create the data that will be analyzed with Weka [43]. The
attributes that are considered most significant in determining factors in learning are income
level, frequency of study, interaction with the teacher, the pedagogy used in remote classes,
and the academic average. Table 3 shows the five categories with the data that are used in
the analysis. As general aspects, it is indicated that column “a” represents the identifiers of
the students that have been placed in the tables. For this reason, these values are sequential
and refer to data security and protection. These identifiers are used to determine the
students who have problems in the different subjects; if these results are necessary, the
personal identification of each student will be passed on to those in charge of academic
quality. In these areas, strict controls are applied to the information and the people who
handle it, complying with regulations and policies on data protection.

In phases six and seven, the prediction of academic performance and the identifica-
tion of the influencing attributes in academic performance are performed. To do this, the
database is uploaded to the Weka system. When executing the algorithm, it shows infor-
mation about the type of classifier used, the database being used (students), the number of
instances (21), the number of attributes (6), and the type of test (cross validation).

• Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
• Relation: student
• Instances: 21
• Attributes: 6
• Income_level

# Frequency-in-the-study
# Interaction
# Padagogy
# Academic_average
# Learning

• Test mode: 10-fold cross-validation
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Table 3. Database for the generation of the .arff file with the factors that have the greatest impact on
academic performance.

A B C I K L N

1 Low 3 2 5 1 E
2 Medium 4 1 3 4 C
3 High 4 5 1 8 A
4 High 1 0 1 0 E
5 Medium 1 1 2 7 B
6 Medium 1 1 4 6 B
7 High 5 4 5 8 A
8 Medium 4 0 4 5 C
9 High 0 5 1 2 D

10 Low 4 4 0 2 D
11 Low 0 0 1 0 E
12 Low 4 3 2 1 E
13 Medium 0 1 1 0 E
14 High 3 1 5 6 B
15 High 3 5 4 10 A
16 Medium 3 0 0 0 E
17 Low 4 2 2 5 C
18 High 5 3 2 8 A
19 Medium 5 2 3 9 A
20 Low 3 2 4 9 A
21 Medium 0 1 3 4 C
22 Medium 2 1 2 4 C
23 High 2 3 4 8 A
24 Medium 1 3 2 1 E
25 Low 1 4 5 3 D
26 Low 1 2 1 1 E
27 Low 4 3 1 4 C
28 Medium 5 3 1 1 E
29 Medium 1 3 4 6 B
30 High 2 1 4 5 C
31 High 4 4 5 6 B
32 High 1 5 1 2 D
33 Low 5 5 2 9 A
34 High 1 2 4 3 D
35 Low 2 2 3 4 C
36 Low 2 5 2 7 B
37 Medium 4 1 3 7 B
38 High 5 5 2 8 A
39 High 5 5 5 8 A
40 High 5 4 2 3 D
41 High 2 5 1 1 E
42 Medium 1 2 2 1 E
43 Medium 5 3 5 6 B
44 Medium 1 1 2 3 D
45 Medium 1 4 3 5 C
46 Low 5 5 5 8 A
47 High 1 2 3 1 E
48 Medium 2 2 5 2 D
49 Low 1 2 3 3 D
50 Medium 4 2 1 3 D
51 Medium 1 5 3 7 B
52 Medium 1 5 1 5 C
53 Low 5 1 1 2 D
54 High 1 2 3 1 E
55 High 2 5 4 10 A
56 High 4 1 5 1 E

Corr_coef 0.40 0.41 0.40 0.40 0.98
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The classifier describes the tree information that has been generated and the number
of instances that each node classifies. A level of success of 80.95% was obtained in the
prediction of academic performance. In the processing carried out by the algorithm, the
main factors influencing academic performance were identified and the classification tree
was obtained. The tree identifies the branches of attributes that lead to the highest academic
averages (A and B). In the same way, the branches that lead to the worst average (E) can be
found. The sequence of steps from the initial node to the final node represents the attributes
that lead to obtaining a better academic average. The tree data obtained according to the
following sequence of attributes are those presented in Figure 2a. In this figure, it is
presented how the different factors affect learning in each of the possible situations in
relation to the attribute “Income level”. In addition, Figure 2b shows the details of the
learning process carried out by the J48 algorithm, where the percentage of classification of
instances is 80.3571%, this value representing a high value of effectiveness.
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Figure 2. This figure presents the data obtained from the analysis of the data by the algorithm J48. (a) Tree generated by in
the processing of learning in relation to economic problems; (b) description of correct and incorrect classification instances
and error values.

In Figure 3, the learning results of the algorithm are displayed, the learning is shown on
the “x” axis and it is possible to contrast it with each attribute that has been integrated into
the analysis. In this case, it was evaluated with the attribute that encompasses the financial
problems faced by the students. This is presented on the “y” axis. The visualization allows
us to establish where the most problems are found—for example, the “x”s in blue are the
students with the highest scores. Of 56 students, 12 have an average of 8–10, of which
eight have serious financial problems, one has medium-level problems and three have few
financial problems. This information is important in all groups; however, it is necessary to
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establish a greater follow-up in groups C, D, and E, since, their academic averages indicate
that there are problems in academic performance, and this constitutes a risk factor relating
to dropping out or increases in repetition. This index is very marked in the group in which
its average is between 0 and 2. Of 14 students who are in this group, only four have mild
financial problems. The remaining 10 have a high probability of dropping out due to
financial problems. With this information, the university can make decisions that allow
it to establish financial aid, such as scholarships or financing, in order to avoid increases
in student dropouts. By having the ability to cross-validate information, the visualization
tool guarantees the reliability of the results and an adequate presentation for the use of the
different areas involved in academic quality.
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To contrast the algorithm used, the processing was also done with the use of random
forest. The data are presented in Figure 4, where it can be seen that it consists of 56 instances,
of which 23 are correct, with a rate of 41.0714%. There are 33 wrong instances. This shows
that learning with the J48 algorithm is better according to the stratified cross-validation
data. To improve the prediction, it is possible to modify the values in the cross-validation;
however, we decided to present in a future work a training process with a greater number
of data to improve the values of instances of correct classification.
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4. Discussion

Identifying academic performance is a time-consuming task. This burden on a teacher
causes many problems due to the limited time available for the preparation of classes
and training activities [44]. The area of academic quality is overwhelmed by the large
volume of students who have to be analyzed. For this reason, the generation of ICT
tools that focus on analyzing the data generated by the students becomes a necessity.
The variables that affect student learning are various, and discovering those that have
the greatest incidence is where the analysis work is concentrated. Intelligent techniques,
employing algorithms such as the one used in this work, “J48”, become a tempting solution
for academic management [45].

Several of the works carried out focus on various techniques that allow them to
generate knowledge about educational data; this involves a large investment of resources,
both technological, economic and human, and its implementation requires long periods
of time. This is something that universities do not have if they want to respond to the
problems generated by the pandemic. The solution presented is the first step for the
integration of AI into educational processes in the short term [46]. By having the ability to
use a tool that has a variety of analysis algorithms, it is possible to train the classification
method and apply it according to the needs of the university. AS an open source tool,
the costs are greatly reduced, and the response is immediate. This is the most important
characteristic in the new normal, where, after more than 13 months of isolation due to the
pandemic, there is no immediate end in sight. Universities need to provide immediate
answers to learning problems.

The classification process allows for identifying the most influential attributes on
academic performance. The work carried out shows that an adequate academic perfor-
mance is based on a good frequency in the study, good interaction with teachers and good
pedagogy. There are other important factors affecting academic performance, such as the
quality of teachers [6]. In the literature review, several categories of factors influencing
academic performance were identified, the most recurrent being economic, social, personal
and institutional problems. These factors cannot always be controlled by universities. This
work shows that, by controlling the attributes that have been identified, it is possible to
influence the academic performance of a student.

Various works associate academic performance with personal, social, and institutional
factors, as well as resources and enthusiasm, etc.; meanwhile, this work associates academic
performance specifically to human factors related to teachers and students. These factors
in a remote education model should be the main ones for universities. Interaction with
teachers plays a very important role in academic performance. When comparing the
classification percentages with the classification percentages obtained by some works cited
in the introduction to this article, it is found that the level of success is high, which supports
the reliability of the study.
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5. Conclusions

Education will never be the same again; the pandemic has brought the continuity of
educational activities to a critical point. ICT have demonstrated their potential by offering
a wide variety of tools that allow the development people’s activities. However, educa-
tion, which has undergone a forced and abrupt transition towards a remote educational
model, needs greater integration of technologies. The integration of ICT in education
should focus on accompanying the student in their learning. This undoubtedly serves as a
starting point to create new educational models where students take a central role in their
learning, alongside ICT which allows for creating suitable environments for the generation
of knowledge.

AI is one of the tools that are capable of creating quick solutions that contribute
to student learning. The creation of academic monitoring models and recommendation
systems become ideal assistants for teachers. By having exact data on the academic
problems that students face, it is possible to define educational models aligned to the needs
of the students.

This work identifies the factors that influence learning, through intelligent techniques
that are quick to execute and provide a great response capacity to the problems we face in
the new reality. Along these lines, universities are preparing for a permanent transition
to a hybrid and remote educational model, where the integration of technologies must be
considered in an integral model that is able to recognize the limitations of students and
teachers, and from this knowledge ideal environments can be created for the generation of
knowledge. This work opens up a great variety of possibilities for more robust applications,
where data analysis is a preamble for the identification of patterns in educational data and
AI is in charge of generating knowledge that allow to improve learning. In future works,
the authors propose the use of intelligent techniques in data analysis architectures, for the
generation of digital environments that are closer to the construction of Smart campus.

When evaluating the method proposed in this work, encouraging results have been
obtained in the use of the WEKA tool. However, this efficiency is determined by the volume
of data, which is small relative to the speed at which datasets can grow. This tool, which is
presented as ideal for evaluating the operation of intelligent classification processes, can be
a limitation in a production environment where a greater number of factors are integrated.
Future work should consider the integration of tools with greater scalability and robustness
that can even be integrated into big data architectures.

As a future work, the creation of applications that combine IoT with AI in universities
is proposed, with the aim of understanding and predicting a variety of risks, as well as
automating a rapid response, allowing better management of the security of education
actors. In the same way, the use of machine learning is proposed, so as to analyze the data
of wearable devices, in order to estimate the risk of heat stress that students may suffer
in classrooms.
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